
z/OS Communications Server

IP  IMS  Sockets Guide  

Version 1 Release  7 

SC31-8830-02  

���





z/OS Communications Server

IP  IMS  Sockets Guide  

Version 1 Release  7 

SC31-8830-02  

���



Note: 

Before  using this information  and the product it supports, be sure to read the general  information  under “Notices” on page 

321.

Third  Edition  (September  2005)  

This  edition  applies  to Version  1 Release  7 of z/OS  (5694-A01)  and  Version  1 Release  7 of z/OS.e  (5655-G52)  and  to 

all  subsequent  releases  and  modifications  until  otherwise  indicated  in new  editions.  

IBM  welcomes  your  comments.  You may  send  your  comments  to  the  following  address.  

   International  Business  Machines  Corporation  

   Attn:  z/OS  Communications  Server  Information  Development  

   Department  AKCA,  Building  501  

   P.O.  Box  12195,  3039  Cornwallis  Road  

   Research  Triangle Park,  North  Carolina  27709-2195

You  can  send  us comments  electronically  by  using  one  of the  following  methods:  

Fax  (USA  and  Canada):  

1+919-254-4028  

 Send  the  fax to “Attn:  z/OS  Communications  Server  Information  Development”  

Internet  e-mail:  

comsvrcf@us.ibm.com  

World Wide  Web: 

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If  you  would  like  a reply,  be sure  to include  your  name,  address,  telephone  number,  or FAX  number.  Make  sure  to 

include  the  following  in your  comment  or note:  

v   Title and  order  number  of this  document  

v   Page  number  or topic  related  to  your  comment

When  you  send  information  to IBM,  you  grant  IBM  a nonexclusive  right  to use  or distribute  the  information  in any 

way  it believes  appropriate  without  incurring  any  obligation  to you.  

© Copyright  International  Business  Machines  Corporation  1994,  2005.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html


Contents  

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 

About this document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 

Who  should  read  this  document   . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 

How  this  document  is organized   . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv  

How  to use  this  document   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 

Determining  whether  a publication  is current  . . . . . . . . . . . . . . . . . . . . . . . xiv 

How  to contact  IBM  service   . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 

Conventions  and  terminology  used  in this  document   . . . . . . . . . . . . . . . . . . . . . xv 

Clarification  of notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv  

How  to read  a syntax  diagram   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 

Symbols  and  punctuation   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv  

Parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi  

Syntax  examples   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi  

Prerequisite  and  related  information   . . . . . . . . . . . . . . . . . . . . . . . . . . xviii  

Required  information   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 

Related  information   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 

How  to send  your  comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii  

Summary of changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv 

Part 1. IMS overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Chapter 1. Using TCP/IP with IMS . . . . . . . . . . . . . . . . . . . . . . . . . 3 

The  role  of IMS  TCP/IP   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

Introduction  to IMS  TCP/IP   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

IMS  TCP/IP  feature  components   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  

The  IMS  Listener   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

The  IMS  Assist  module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  

The  MVS  TCP/IP  socket  application  programming  interface  (Sockets  Extended)  . . . . . . . . . . . . 5  

Chapter 2. Introduction to TCP/IP for IMS  . . . . . . . . . . . . . . . . . . . . . 7 

What  IMS  TCP/IP  does  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  

Using  IMS  with  SNA  or TCP/IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  

TCP/IP  internets   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Mainframe  interactive  processing   . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Client/server  processing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

TCP,  UDP,  and  IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

The  socket  API   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  

Programming  with  sockets   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Socket  types   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  

Addressing  TCP/IP  hosts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

A typical  client/server  program  flow  chart   . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Concurrent  and  iterative  servers   . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  

The  basic  socket  calls   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

Server  TCP/IP  calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

Socket   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

Bind  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

Listen   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

Accept   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

GIVESOCKET  and  TAKESOCKET  . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Read  and  write   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

 

© Copyright  IBM Corp. 1994, 2005 iii



Client  TCP/IP  calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  

The  socket  call   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

The  connect  call   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Read/Write  calls  — the  conversation   . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

The  close  call  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

Other  socket  calls   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

The  SELECT  call  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  

IOCTL  and  FCNTL  calls   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  

GIVESOCKET  and  TAKESOCKET  calls   . . . . . . . . . . . . . . . . . . . . . . . . . 21  

What  you  need  to run  IMS  TCP/IP   . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

TCP/IP  services   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

A summary  of what  IMS  TCP/IP  provides   . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Part 2. Using the IMS Listener  . . . . . . . . . . . . . . . . . . . . . . . . 25 

Chapter 3. Principles of operation  . . . . . . . . . . . . . . . . . . . . . . . . 27 

Overview   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

The  role  of the  IMS  Listener  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

The  role  of the  IMS  Assist  module  . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  

Client/server  logic  flow   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

How  the  connection  is established  . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

How  the  server  exchanges  data  with  the  client   . . . . . . . . . . . . . . . . . . . . . . 30 

How  the  IMS  Listener  manages  multiple  connection  requests  . . . . . . . . . . . . . . . . . . 34  

Use  of the  IMS  message  queue   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Call  sequence  for  the  IMS  Listener  . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Application  design  considerations   . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  

Programs  that  are  not  started  by  the  IMS  Listener   . . . . . . . . . . . . . . . . . . . . . 36 

When  the  client  is an IMS  MPP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

Abend  processing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Implicit-mode  support  for  ROLB  processing   . . . . . . . . . . . . . . . . . . . . . . . 38  

Restrictions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  

Chapter 4. How to write an IMS TCP/IP client program  . . . . . . . . . . . . . . . 39 

Client  program  logic  flow  — general   . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

Explicit-mode  client  program  logic  flow   . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

Explicit-mode  client  call  sequence   . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

Explicit-mode  application  data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

Implicit-mode  client  logic  flow   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

Implicit-mode  client  call  sequence   . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

Implicit  mode  application  data  stream   . . . . . . . . . . . . . . . . . . . . . . . . . 42 

Implicit-mode  application  data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  

IMS  TCP/IP  message  segment  formats   . . . . . . . . . . . . . . . . . . . . . . . . . . 43  

Transaction-request  message  segment  (client  to  Listener)   . . . . . . . . . . . . . . . . . . . 43 

Request-status  message  segment   . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  

Complete-status  message  segment  . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  

End-of-message  segment  (EOM)   . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

PL/I  coding   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  

Chapter 5. How to write an IMS TCP/IP server program  . . . . . . . . . . . . . . . 47 

Server  program  logic  flow  —general   . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  

Explicit-mode  server  program  logic  flow   . . . . . . . . . . . . . . . . . . . . . . . . . 47 

Explicit-mode  call  sequence   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

Explicit-mode  application  data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

Transaction-initiation  message  segment   . . . . . . . . . . . . . . . . . . . . . . . . . 49  

Program  design  considerations   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

I/O  PCB  — explicit-mode  server   . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Explicit-mode  server  — PL/I  programming  considerations   . . . . . . . . . . . . . . . . . . 50  

Implicit-mode  server  program  logic  flow   . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Implicit-mode  server  call  sequence   . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

Implicit-mode  application  data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  

 

iv z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



Programming  to the  Assist  module  interface   . . . . . . . . . . . . . . . . . . . . . . . 52  

Implicit-mode  server  PL/I  programming  considerations   . . . . . . . . . . . . . . . . . . . 52 

Implicit-mode  server  C  language  programming  considerations   . . . . . . . . . . . . . . . . . 53  

I/O  PCB  implicit-mode  server   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

Chapter 6. How to customize and operate the IMS Listener  . . . . . . . . . . . . . 55 

How  to start  the  IMS  Listener   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

How  to stop  the  IMS  Listener   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  

The  IMS  Listener  configuration  file  . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  

TCPIP  statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

LISTENER  statement   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  

TRANSACTION  statement   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

The  IMS  Listener  security  exit   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  

TCP/IP  services  definitions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

The  hlq.PROFILE.TCPIP  data  set   . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

The  hlq.TCPIP.DATA  data  set   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

Chapter 7. Using the CALL instruction application programming interface (API)  . . . . 61 

Environmental  restrictions  and  programming  requirements   . . . . . . . . . . . . . . . . . . . 61 

Linkage  conventions  for the  CALL  instruction  API   . . . . . . . . . . . . . . . . . . . . . . 62 

Output  register  information   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

Compatibility  considerations   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  

CALL  instruction  application  programming  interface  (API)   . . . . . . . . . . . . . . . . . . . 63 

Understanding  COBOL,  Assembler,  and  PL/I  call  formats  . . . . . . . . . . . . . . . . . . . . 63 

COBOL  language  call format   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

Assembler  language  call  format   . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  

PL/I  language  call  format   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  

Converting  parameter  descriptions   . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  

Diagnosing  problems  in applications  using  the  CALL  instruction  API   . . . . . . . . . . . . . . . . 65 

Error  messages  and  return  codes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

Code  CALL  instructions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  

ACCEPT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  

BIND   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

CLOSE   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

CONNECT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  

FCNTL   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

FREEADDRINFO   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

GETADDRINFO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

GETCLIENTID   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

GETHOSTBYADDR   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  

GETHOSTBYNAME   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 

GETHOSTID   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

GETHOSTNAME   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  

GETIBMOPT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

GETNAMEINFO   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

GETPEERNAME   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

GETSOCKNAME   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

GETSOCKOPT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  

GIVESOCKET   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

INITAPI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

IOCTL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

LISTEN   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

NTOP   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  

PTON   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  

READ   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

READV   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  

RECV   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 

RECVFROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  

RECVMSG   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 

SELECT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  

 

Contents  v



SELECTEX   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 

SEND   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 

SENDMSG   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  

SENDTO   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  

SETSOCKOPT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  

SHUTDOWN   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  

SOCKET   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  

TAKESOCKET   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  

TERMAPI   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  

WRITE   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  

WRITEV   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 

Using  data  translation  programs  for  socket  call  interface   . . . . . . . . . . . . . . . . . . . . 181 

Data  translation   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 

Bit-string  processing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 

Call  interface  sample  programs   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  

Sample  code  for IPv4  server  program   . . . . . . . . . . . . . . . . . . . . . . . . . 201 

Sample  program  for  IPv4  client  program   . . . . . . . . . . . . . . . . . . . . . . . . 205  

Sample  code  for IPv6  server  program   . . . . . . . . . . . . . . . . . . . . . . . . . 208 

Sample  program  for  IPv6  client  program   . . . . . . . . . . . . . . . . . . . . . . . . 214  

Common  variables  used  in PL/I  sample  programs   . . . . . . . . . . . . . . . . . . . . . 218  

COBOL  call  interface  sample  IPv6  server  program   . . . . . . . . . . . . . . . . . . . . . 224 

COBOL  call  interface  sample  IPv6  client  program   . . . . . . . . . . . . . . . . . . . . . 237 

Chapter 8. IMS Listener samples  . . . . . . . . . . . . . . . . . . . . . . . . 247 

IMS  TCP/IP  control  statements   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 

JCL  for  starting  a message  processing  region   . . . . . . . . . . . . . . . . . . . . . . . 247  

JCL  for  linking  the  IMS  Listener   . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  

Listener  IMS  definitions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 

Sample  program  explicit-mode   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  

Program  flow   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  

Sample  explicit-mode  client  program  (C  language)   . . . . . . . . . . . . . . . . . . . . . 251  

Sample  explicit-mode  server  program  (Assembler  language)  . . . . . . . . . . . . . . . . . . 254  

Sample  program  implicit-mode   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  

Program  flow   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  

Sample  implicit-mode  client  program  (C  language)  . . . . . . . . . . . . . . . . . . . . . 261 

Sample  implicit-mode  server  program  (Assembler  language)   . . . . . . . . . . . . . . . . . 266 

Sample  program  - IMS  MPP  client   . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  

Program  flow   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  

Sample  client  program  for  non-IMS  server  . . . . . . . . . . . . . . . . . . . . . . . . 271 

Sample  server  program  for IMS  MPP  client   . . . . . . . . . . . . . . . . . . . . . . . 281  

Part 3. Appendixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 

Appendix A. Return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 

Sockets  extended  ERRNOs   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  

Appendix B. Related protocol specifications (RFCs) . . . . . . . . . . . . . . . . 299 

Internet  drafts   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 

Appendix C. Information APARs  . . . . . . . . . . . . . . . . . . . . . . . . 315 

Information  APARs for  IP documents   . . . . . . . . . . . . . . . . . . . . . . . . . . 315  

Information  APARs for  SNA  documents   . . . . . . . . . . . . . . . . . . . . . . . . . 316 

Other  information  APARs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 

Appendix D. Accessibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 

Using  assistive  technologies   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  

Keyboard  navigation  of the  user  interface   . . . . . . . . . . . . . . . . . . . . . . . . . 319 

z/OS  information   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  

 

vi z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 

Trademarks   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329  

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 

z/OS  Communications  Server  information   . . . . . . . . . . . . . . . . . . . . . . . . 331  

z/OS  Communications  Server  library   . . . . . . . . . . . . . . . . . . . . . . . . . 331 

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 

Communicating Your Comments to IBM  . . . . . . . . . . . . . . . . . . . . . 343

 

Contents  vii



viii z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



Figures  

 1.  The  use of TCP/IP  with  IMS   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

 2.  TCP/IP  protocols  when  compared  to  the OSI  Model  and  SNA  . . . . . . . . . . . . . . . . . 9 

 3.  A typical  client/server  session   . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

 4.  An  iterative  server   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  

 5.  A concurrent  server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  

 6.  The  SELECT  call   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  

 7.  How  user  applications  access  TCP/IP  networks  with  IMS  TCP/IP   . . . . . . . . . . . . . . . 24 

 8.  IMS  TCP/IP  message  flow  for  transaction  initiation   . . . . . . . . . . . . . . . . . . . . 29 

 9.  IMS  TCP/IP  message  flow  for  explicit-mode  input/output  . . . . . . . . . . . . . . . . . . 31 

10.   IMS  TCP/IP  message  flow  for  implicit  mode  input/output   . . . . . . . . . . . . . . . . . 33  

11.  JCL:  Sample  run  Listener  procedure   . . . . . . . . . . . . . . . . . . . . . . . . . 55 

12.   Definition  of the  TCP/IP  profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

13.   The  TCPIPJOBNAME  Parameter  in the  DATA data  set  . . . . . . . . . . . . . . . . . . . 60  

14.   Storage  definition  statement  examples   . . . . . . . . . . . . . . . . . . . . . . . . 64 

15.   ACCEPT  call  instructions  example   . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

16.   BIND  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

17.   CLOSE  call instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

18.   CONNECT  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 73  

19.   FCNTL  call  instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

20.   FREEADDRINFO  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . 77 

21.   GETADDRINFO  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . 79 

22.   GETCLIENTID  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . 86 

23.   GETHOSTBYADDR  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . 88  

24.   HOSTENT  structure  returned  by  the  GETHOSTBYADDR  call  . . . . . . . . . . . . . . . . . 89 

25.   GETHOSTBYNAME  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . 90 

26.   HOSTENT  structure  returned  by  the  GETHOSTYBYNAME  call   . . . . . . . . . . . . . . . . 91 

27.   GETHOSTID  call  instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . . 92 

28.   GETHOSTNAME  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . 93  

29.   GETIBMOPT  call  instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . . 95 

30.   Example  of name  field   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  

31.   GETNAMEINFO  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . 98  

32.   GETPEERNAME  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . 102 

33.   GETSOCKNAME  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . 104 

34.   GETSOCKOPT  call  instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . 106 

35.   GIVESOCKET  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . 116 

36.   INITAPI call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

37.   IOCTL  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

38.   COBOL  language  example  for SIOCGHOMEIF6   . . . . . . . . . . . . . . . . . . . . . 122  

39.   Interface  request  structure  (IFREQ)  for  the  IOCTL  call   . . . . . . . . . . . . . . . . . . . 123 

40.   COBOL  language  example  for SIOCGIFNAMEINDEX   . . . . . . . . . . . . . . . . . . . 124 

41.   COBOL  II example  for SIOCGIFCONF   . . . . . . . . . . . . . . . . . . . . . . . . 126  

42.   LISTEN  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . . 127 

43.   NTOP  call  instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 

44.   PTON  call  instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

45.   READ  call  instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  

46.   READV  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . . 134  

47.   RECV  call  instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

48.   RECVFROM  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . 138 

49.   RECVMSG  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 141 

50.   SELECT  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . . 146  

51.   SELECTEX  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 151 

52.   SEND  call  instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 

53.   SENDMSG  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 156 

54.   SENDTO  call  instruction  example  . . . . . . . . . . . . . . . . . . . . . . . . . . 161  

55.   SETSOCKOPT  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . 163 

 

© Copyright  IBM Corp. 1994, 2005 ix



56.   SHUTDOWN  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . 173  

57.   SOCKET  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . . 174  

58.   TAKESOCKET  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . 176  

59.   TERMAPI  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 178  

60.   WRITE  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . . 179 

61.   WRITEV  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . . 180 

62.   EZACIC04  EBCDIC-to-ASCII  table   . . . . . . . . . . . . . . . . . . . . . . . . . 183  

63.   EZACIC04  call instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 183  

64.   EZACIC05  ASCII-to-EBCDIC  table   . . . . . . . . . . . . . . . . . . . . . . . . . 185  

65.   EZACIC05  call instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 185  

66.   EZACIC06  call instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 187  

67.   EZAZIC08  call  instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 190  

68.   EZACIC09  call instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 193  

69.   EZACIC14  EBCDIC-to-ASCII  table   . . . . . . . . . . . . . . . . . . . . . . . . . 197  

70.   EZACIC14  call instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 197  

71.   EZACIC15  ASCII-to-EBCDIC  table   . . . . . . . . . . . . . . . . . . . . . . . . . 199  

72.   EZACIC15  call instruction  example   . . . . . . . . . . . . . . . . . . . . . . . . . 199  

73.   EZASOKPS  PL/1  sample  server  program  for IPv4   . . . . . . . . . . . . . . . . . . . . 202  

74.   EZASOKPC  PL/1  sample  client  program  for  IPv4   . . . . . . . . . . . . . . . . . . . . 206 

75.   EZASO6PS  PL/1  sample  server  program  for IPv6   . . . . . . . . . . . . . . . . . . . . 209  

76.   EZASO6PC  PL/1  sample  client  program  for IPv6   . . . . . . . . . . . . . . . . . . . . 215 

77.   EZASO6CS  COBOL  call  interface  sample  IPv6  server  program   . . . . . . . . . . . . . . . . 225  

78.   EZASO6CC  COBOL  call  interface  sample  IPv6  client  program   . . . . . . . . . . . . . . . . 238 

79.   Cross  zone  Lnk  IMS  application  interface   . . . . . . . . . . . . . . . . . . . . . . . 249 

80.   Sample  C client  to drive  IMS  Listener   . . . . . . . . . . . . . . . . . . . . . . . . 252  

81.   Sample  assembler  IMS  server   . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 

82.   Sample  C client  to drive  IMS  Listener   . . . . . . . . . . . . . . . . . . . . . . . . 262  

83.   Sample  assembler  IMS  server   . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 

84.   Sample  of IMS  program  as a client   . . . . . . . . . . . . . . . . . . . . . . . . . 272 

85.   Sample  of IMS  program  as a server   . . . . . . . . . . . . . . . . . . . . . . . . . 282

 

x z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



Tables  

1.   First  fullword  passed  in a bit string  in select   . . . . . . . . . . . . . . . . . . . . . . 20 

2.   Second  fullword  passed  in a bit string  in select   . . . . . . . . . . . . . . . . . . . . . 20 

3.   OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT   . . . . . . . . . . . . . . . . . 107 

4.   IOCTL  call  arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

5.   OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT   . . . . . . . . . . . . . . . . . 164 

6.   Sockets  extended  ERRNOs   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 

7.   IP information  APARs for  z/OS  Communications  Server   . . . . . . . . . . . . . . . . . . 315 

8.   SNA  information  APARs for  z/OS  Communications  Server   . . . . . . . . . . . . . . . . . 316  

9.   Non-document  information  APARs  . . . . . . . . . . . . . . . . . . . . . . . . . 316

 

© Copyright  IBM Corp. 1994, 2005 xi

||
||



xii z/OS V1R7.0  Comm  Svr: IP IMS Sockets Guide



About  this  document  

This  document  describes  how  to  use  IP  Services  with  IMS  Version  7 and  above.  It 

describes  the  IMS  call  interface  and  the  supporting  functions.  The  information  in 

this  document  supports  both  IPv6  and  IPv4.  Unless  explicitly  noted,  information  

describes  IPv4  networking  protocol.  IPv6  support  is qualified  within  the  text.  

This  document  addresses  the  following  topics:  

v   IMS  client/server  application  design  

v   The  IMS  Listener  

v   The  IMS  Assist  function  

v   The  IMS  socket  calls,  including  call  syntax  conventions

This  document  supports  z/OS.e.  

Who should read this document 

This  document  is  intended  for  programmers  who  have  some  familiarity  with  IMS  

Transaction  Manager  and  IP  Services,  and  who  need  to develop  IMS  client/server  

applications.  

To ensure  proper  interprogram  communication,  the  two  halves  of a client/server  

program  must  be  developed  together.  At  a minimum,  they  must  agree  on  protocol  

and  data  formats.  To complicate  matters  (particularly  in  the  case  of a UNIX  

processor  talking  to  an  IMS  mainframe),  the  technology  differences  are  so  extensive  

that  the  two  halves  will  often  be  coded  by  different  individuals  —  one,  an  IP 

socket  programmer;  the  other,  an  IMS  programmer.  

This  document  has  been  designed  for  users  with  a variety  of  backgrounds  and  

needs:  

v   Application  designers  need  to know  how  the  various  components  of  IMS  

TCP/IP  interact  to  provide  program-to-program  communication.  These  readers  

should  read  Chapter  3, “Principles  of  operation,”  on  page  27.  

v   Experienced  IP  socket  programmers  need  to know  the  protocol  and  message  

formats  necessary  to establish  communication  with  the  IMS  Listener  and  with  

the  server  program.  These  readers  should  read  Chapter  4, “How  to write  an  IMS  

TCP/IP  client  program,”  on  page  39  and  Chapter  7, “Using  the  CALL  instruction  

application  programming  interface  (API),”  on  page  61.  

v   Experienced  IMS  application  programmers  will  be  familiar  with  IMS  

input/output  calls  (GU,  GN,  ISRT).  These  programmers  have  two  choices:  

–   Programmers  with  IMS  experience  and  little  or  no  TCP/IP  programming  

experience  will  probably  want  to  use  the  IMS  Assist  module,  which  accepts  

standard  IMS  I/O  calls,  and  converts  them  to  equivalent  socket  calls.  They  

should  read  the  sections  on  implicit-mode  programming.  

–   IMS  programmers  with  socket  experience  can  chose  to  code  native  C  

language  or  use  the  Sockets  Extended  API.  These  programmers  should  read  

the  sections  on  explicit-mode  programming  and  Chapter  7,  “Using  the  CALL  

instruction  application  programming  interface  (API),”  on  page  61.
v    IMS  system  programmers  and  communication  programmers  are  responsible  for  

the  IMS  system  itself.  These  readers  should  read  Chapter  6,  “How  to  customize  

and  operate  the  IMS  Listener,”  on  page  55.

 

© Copyright  IBM Corp. 1994, 2005 xiii



How this document is organized 

The  z/OS  Communications  Server:  IP  IMS  Sockets  Guide  is divided  into  the  following  

parts:  

v   Part  1,  “IMS  overview,”  on  page  1 provides  an  overview  of  TCP/IP  as it  is used  

with  IMS  and  the  types  of applications  for  which  it is intended  to be  used.  

v   Part  2,  “Using  the  IMS  Listener,”  on  page  25  provides  information  on  the  IMS  

Listener  including  principles  of operation,  writing  and  customizing  client  and  

server  programs,  use  of  the  CALL  Instruction  API,  and  samples.  

v   Part  3,  ″Appendixes″ provides  additional  information  for  this  document.
v    “Notices”  on  page  321  contains  notices  and  trademarks  used  in  this  document.  

v   “Bibliography”  on  page  331  contains  descriptions  of  the  documents  in  the  z/OS® 

Communications  Server  library.

How to use this document 

Determining whether a publication is current 

As  needed,  IBM® updates  its  publications  with  new  and  changed  information.  For  

a given  publication,  updates  to  the  hardcopy  and  associated  BookManager® 

softcopy  are  usually  available  at  the  same  time.  Sometimes,  however,  the  updates  

to  hardcopy  and  softcopy  are  available  at different  times.  The  following  

information  describes  how  to  determine  if you  are  looking  at  the  most  current  

copy  of  a publication:  

v   At  the  end  of  a publication’s  order  number  there  is a dash  followed  by  two  

digits,  often  referred  to  as the  dash  level.  A  publication  with  a higher  dash  level  

is more  current  than  one  with  a lower  dash  level.  For  example,  in the  

publication  order  number  GC28-1747-07,  the  dash  level  07  means  that  the  

publication  is more  current  than  previous  levels,  such  as  05  or  04.  

v   If  a hardcopy  publication  and  a softcopy  publication  have  the  same  dash  level,  it  

is possible  that  the  softcopy  publication  is more  current  than  the  hardcopy  

publication.  Check  the  dates  shown  in  the  Summary  of  Changes.  The  softcopy  

publication  might  have  a more  recently  dated  Summary  of  Changes  than  the  

hardcopy  publication.  

v   To compare  softcopy  publications,  you  can  check  the  last  two  characters  of  the  

publication’s  file  name  (also  called  the  book  name).  The  higher  the  number,  the  

more  recent  the  publication.  Also,  next  to the  publication  titles  in  the  CD-ROM  

booklet  and  the  readme  files,  there  is an  asterisk  (*)  that  indicates  whether  a 

publication  is new  or  changed.

How to contact IBM service 

For  immediate  assistance,  visit  this  Web site:  

http://www.software.ibm.com/network/commserver/support/  

 Most  problems  can  be  resolved  at this  Web site,  where  you  can  submit  questions  

and  problem  reports  electronically,  as  well  as  access  a variety  of  diagnosis  

information.  

For  telephone  assistance  in  problem  diagnosis  and  resolution  (in  the  United  States  

or  Puerto  Rico),  call  the  IBM  Software  Support  Center  anytime  (1-800-IBM-SERV).  

You will  receive  a return  call  within  8 business  hours  (Monday  – Friday,  8:00  a.m.  

– 5:00  p.m.,  local  customer  time).  

 

xiv z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide

http://www.software.ibm.com/network/commserver/support/


Outside  of  the  United  States  or  Puerto  Rico,  contact  your  local  IBM  representative  

or  your  authorized  IBM  supplier.  

If  you  would  like  to  provide  feedback  on  this  publication,  see  “Communicating  

Your Comments  to  IBM”  on  page  343.  

Conventions and terminology used in this document 

This  publication  uses  the  following  typographic  conventions:  

v   Commands  that  you  enter  verbatim  onto  the  command  line  are  presented  in 

bold. 

v   Variable  information  and  parameters  that  you  enter  within  commands,  such  as 

filenames,  are  presented  in  italic. 

v   System  responses  are  presented  in  monospace.

Clarification of notes 

Information  traditionally  qualified  as  Notes  is  further  qualified  as  follows:  

Note  Supplemental  detail  

Tip Offers  shortcuts  or  alternative  ways  of performing  an  action;  a hint  

Guideline  

Customary  way  to  perform  a procedure;  stronger  request  than  

recommendation  

Rule  Something  you  must  do;  limitations  on  your  actions  

Restriction  

Indicates  certain  conditions  are  not  supported;  limitations  on  a product  or  

facility  

Requirement  

Dependencies,  prerequisites  

Result  Indicates  the  outcome

How to read a syntax diagram 

The  syntax  diagram  shows  you  how  to  specify  a command  so  that  the  operating  

system  can  correctly  interpret  what  you  type.  Read  the  syntax  diagram  from  left  to 

right  and  from  top  to bottom,  following  the  horizontal  line  (the  main  path).  

Symbols and punctuation 

The  following  symbols  are  used  in  syntax  diagrams:  

��  Marks  the  beginning  of  the  command  syntax.  

� Indicates  that  the  command  syntax  is continued.  

| Marks  the  beginning  and  end  of  a fragment  or  part  of the  command  

syntax.  

��  Marks  the  end  of the  command  syntax.

You  must  include  all  punctuation  such  as  colons,  semicolons,  commas,  quotation  

marks,  and  minus  signs  that  are  shown  in  the  syntax  diagram.  

 

About  this document  xv



Parameters 

The  following  types  of  parameters  are  used  in syntax  diagrams:  

Required  

Required  parameters  are  displayed  on  the  main  path.  

Optional  

Optional  parameters  are  displayed  below  the  main  path.  

Default  

Default  parameters  are  displayed  above  the  main  path.

Parameters  are  classified  as  keywords  or  variables.  Keywords  are  displayed  in  

uppercase  letters  and  can  be  entered  in  uppercase  or  lowercase.  For  example,  a 

command  name  is a keyword.  

Variables  are  italicized,  appear  in  lowercase  letters,  and  represent  names  or  values  

you  supply.  For  example,  a data  set  is a variable.  

Syntax examples 

In  the  following  example,  the  USER  command  is a keyword.  The  required  variable  

parameter  is user_id, and  the  optional  variable  parameter  is password.  Replace  the  

variable  parameters  with  your  own  values.  

�� USER user_id 

password
 ��

 

Longer  than  one  line:  If a diagram  is  longer  than  one  line,  the  first  line  ends  with  

a single  arrowhead  and  the  second  line  begins  with  a single  arrowhead.  

�� First  Line OPERAND1 OPERAND2 OPERAND3 OPERAND4 OPERAND5 OPERAND6 �

� Second  Line ��

 

Required  operands:  Required  operands  and  values  appear  on  the  main  path  line.  

�� REQUIRED_OPERAND ��

 

You must  code  required  operands  and  values.  

Choose  one  required  item  from  a stack:  If  there  is more  than  one  mutually  

exclusive  required  operand  or  value  to  choose  from,  they  are  stacked  vertically  in  

alphanumeric  order.  

�� REQUIRED_OPERAND_OR_VALUE_1 

REQUIRED_OPERAND_OR_VALUE_2
 ��

 

Optional  values:  Optional  operands  and  values  appear  below  the  main  path  line.  

�� 

OPERAND
 ��

 

You can  choose  not  to  code  optional  operands  and  values.  

 

xvi z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



Choose  one  optional  operand  from  a stack:  If  there  is more  than  one  mutually  

exclusive  optional  operand  or  value  to choose  from,  they  are  stacked  vertically  in 

alphanumeric  order  below  the  main  path  line.  

�� 

OPERAND_OR_VALUE_1
 

OPERAND_OR_VALUE_2

 ��

 

Repeating  an  operand:  An  arrow  returning  to  the  left  above  an  operand  or  value  

on  the  main  path  line  means  that  the  operand  or  value  can  be  repeated.  The  

command  means  that  each  operand  or value  must  be  separated  from  the  next  by  a 

comma.  

��

 

�

 , 

REPEATABLE_OPERAND

 

��

 

Selecting  more  than  one  operand:  An  arrow  returning  to  the  left  above  a group  of  

operands  or  values  means  more  than  one  can  be  selected,  or  a single  one  can  be  

repeated.  

�� 

�

 

,
 

REPEATABLE_OPERAND_OR_VALUE_1

 

REPEATABLE_OPERAND_OR_VALUE_2

 

REPEATABLE_OPER_OR_VALUE_1

 

REPEATABLE_OPER_OR_VALUE_2

 ��

 

If  an  operand  or  value  can  be  abbreviated,  the  abbreviation  is described  in the  text  

associated  with  the  syntax  diagram.  

Case  Sensitivity:  TCP/IP  commands  are  not  case  sensitive.  You can  code  them  in 

uppercase  or  lowercase.  

Nonalphanumeric  characters:  If a diagram  shows  a character  that  is not  

alphanumeric  (such  as  parentheses,  periods,  commas,  and  equal  signs),  you  must  

code  the  character  as part  of the  syntax.  In  this  example,  you  must  code  

OPERAND=(001,0.001).  

�� OPERAND=(001,0.001) ��

 

Blank  spaces  in  syntax  diagrams:  If  a diagram  shows  a blank  space,  you  must  

code  the  blank  space  as  part  of the  syntax.  In  this  example,  you  must  code  

OPERAND=(001  FIXED).  

�� OPERAND=(001  FIXED) ��

 

Default  operands:  Default  operands  and  values  appear  above  the  main  path  line.  

TCP/IP  uses  the  default  if you  omit  the  operand  entirely.  

 

About this document  xvii



��
 DEFAULT 

OPERAND

 

��

 

Variables:  A  word  in  all  lowercase  italics  is a variable. Where  you  see  a variable  in  

the  syntax,  you  must  replace  it with  one  of  its  allowable  names  or  values,  as 

defined  in  the  text.  

�� variable ��

 

Syntax  fragments:  Some  diagrams  contain  syntax  fragments,  which  serve  to break  

up  diagrams  that  are  too  long,  too  complex,  or  too  repetitious.  Syntax  fragment  

names  are  in  mixed  case  and  are  shown  in  the  diagram  and  in  the  heading  of  the  

fragment.  The  fragment  is placed  below  the  main  diagram.  

�� Reference  to Syntax  Fragment ��

 

Syntax  Fragment:  

 1ST_OPERAND,2ND_OPERAND,3RD_OPERAND 

 

References  to  syntax  notes  appear  as  numbers  enclosed  in  parentheses  above  the  

line.  Do  not  code  the  parentheses  or  the  number.  An  example  of a syntax  note  

identifier  and  note  is  shown  below.  

��
 (1) 

OPERAND
 

��

 

Notes:   

1 An  example  of  a syntax  note.

Prerequisite and related information 

z/OS  Communications  Server  function  is  described  in  the  z/OS  Communications  

Server  library.  Descriptions  of those  documents  are  listed  in  “z/OS  

Communications  Server  information”  on  page  331,  in  the  back  of this  document.  

Required information 

Before  using  this  product,  you  should  be  familiar  with  TCP/IP,  VTAM®, MVS™, 

and  UNIX® System  Services.  

Related information 

This  section  contains  subsections  on:  

v   “Softcopy  information”  on  page  xix  

v   “Other  documents”  on  page  xix  

v   “Redbooks”  on  page  xx  

v   “Where  to  find  related  information  on  the  Internet”  on  page  xx  

v   “Using  LookAt  to  look  up  message  explanations”  on  page  xxii  

v   “Using  IBM  Health  Checker  for  z/OS”  on  page  xxii

 

xviii z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Softcopy information 

Softcopy  publications  are  available  in  the  following  collections:  

 Titles  Order  

Number  

Description  

z/OS  V1R7  Collection  SK3T-4269  This  is the  CD collection  shipped  with  the  z/OS  product.  It includes  

the  libraries  for  z/OS  V1R7,  in both  BookManager  and  PDF  

formats.  

z/OS  Software  Products  

Collection  

SK3T-4270  This  CD  includes,  in both  BookManager  and  PDF  formats,  the 

libraries  of z/OS  software  products  that  run  on z/OS  but  are  not 

elements  and  features,  as well  as the  Getting  Started  with  Parallel  

Sysplex® bookshelf.  

z/OS  V1R7  and  Software  

Products  DVD  Collection  

SK3T-4271  This  collection  includes  the  libraries  of z/OS  (the  element  and  

feature  libraries)  and  the  libraries  for z/OS  software  products  in 

both  BookManager  and  PDF  format.  This  collection  combines  

SK3T-4269  and  SK3T-4270.  

z/OS  Licensed  Product  Library  SK3T-4307  This  CD  includes  the  licensed  documents  in both  BookManager  and  

PDF  format.  

System  Center  Publication  IBM  

S/390® Redbooks™ Collection  

SK2T-2177  This  collection  contains  over  300  ITSO  redbooks  that  apply  to the  

S/390  platform  and  to host  networking  arranged  into  subject  

bookshelves.
  

Other documents 

For  information  about  z/OS  products,  refer  to  z/OS  Information  Roadmap  

(SA22-7500).  The  Roadmap  describes  what  level  of  documents  are  supplied  with  

each  release  of  z/OS  Communications  Server,  as  well  as describing  each  z/OS  

publication.  

Relevant  RFCs  are  listed  in  an  appendix  of the  IP  documents.  Architectural  

specifications  for  the  SNA  protocol  are  listed  in  an  appendix  of  the  SNA  

documents.  

The  following  table  lists  documents  that  might  be  helpful  to readers.  

 Title  Number  

DNS  and  BIND, Fourth  Edition,  O’Reilly  and  Associates,  2001  ISBN  0-596-00158-4  

Routing  in the Internet  , Christian  Huitema  (Prentice  Hall  PTR,  1995)  ISBN  0-13-132192-7  

sendmail, Bryan  Costales  and  Eric  Allman,  O’Reilly  and  Associates,  2002  ISBN  1-56592-839-3  

SNA  Formats  GA27-3136  

TCP/IP  Illustrated,  Volume I: The  Protocols, W. Richard  Stevens,  Addison-Wesley  

Publishing,  1994  

ISBN  0-201-63346-9  

TCP/IP  Illustrated,  Volume II: The  Implementation, Gary  R. Wright and  W. Richard  

Stevens,  Addison-Wesley  Publishing,  1995  

ISBN  0-201-63354-X  

TCP/IP  Illustrated,  Volume III, W. Richard  Stevens,  Addison-Wesley  Publishing,  1995  ISBN  0-201-63495-3  

TCP/IP  Tutorial  and  Technical  Overview  GG24-3376  

Understanding  LDAP  SG24-4986  

z/OS  Crytographic  Service  System  Secure  Sockets  Layer  Programming  SC24-5901  

z/OS  Integrated  Security  Services  Firewall  Technologies  SC24-5922  

z/OS  Integrated  Security  Services  LDAP  Client  Programming  SC24-5924  

z/OS  Integrated  Security  Services  LDAP  Server  Administration  and  Use  SC24-5923  

 

About  this document  xix



Title Number  

z/OS  JES2  Initialization  and  Tuning  Guide  SA22-7532  

z/OS  MVS  Diagnosis:  Procedures  GA22-7587  

z/OS  MVS  Diagnosis:  Reference  GA22-7588  

z/OS  MVS  Diagnosis:  Tools  and  Service  Aids  GA22-7589  

z/OS  MVS  Using  the  Subsystem  Interface  SA22-7642  

z/OS  Program  Directory  GI10-0670  

z/OS  UNIX  System  Services  Command  Reference  SA22-7802  

z/OS  UNIX  System  Services  Planning  GA22-7800  

z/OS  UNIX  System  Services  Programming:  Assembler  Callable  Services  Reference  SA22-7803  

z/OS  UNIX  System  Services  User’s  Guide  SA22-7801  

z/OS  XL C/C++  Run-Time  Library  Reference  SA22-7821  

zSeries  OSA-Express  Customer’s  Guide  and  Reference  SA22-7935
  

Redbooks 

The  following  Redbooks  might  help  you  as you  implement  z/OS  Communications  

Server.  

 Title Number  

Communications  Server  for z/OS  V1R2  TCP/IP  Implementation  Guide  Volume 1: Base  and  

TN3270  Configuration  

SG24-5227  

Communications  Server  for z/OS  V1R2  TCP/IP  Implementation  Guide  Volume 2: UNIX  

Applications  

SG24-5228  

Communications  Server  for z/OS  V1R2  TCP/IP  Implementation  Guide  Volume 4: 

Connectivity  and  Routing  

SG24-6516  

Communications  Server  for z/OS  V1R2  TCP/IP  Implementation  Guide  Volume 7: Security  SG24-6840  

IBM  Communication  Controller  Migration  Guide  SG24-6298  

IP Network  Design  Guide  SG24-2580  

Managing  OS/390® TCP/IP  with  SNMP  SG24-5866  

Migrating  Subarea  Networks  to an IP Infrastructure  SG24-5957  

OS/390  eNetwork  Communications  Server  V2R7  TCP/IP  Implementation  Guide:  Volume 3: 

MVS  Applications  

SG24-5229  

Secureway  Communications  Server  for OS/390  V2R8  TCP/IP:  Guide  to Enhancements  SG24–5631  

SNA  and  TCP/IP  Integration  SG24-5291  

TCP/IP  in a Sysplex  SG24-5235  

TCP/IP  Tutorial  and  Technical  Overview  GG24-3376  

Threadsafe  Considerations  for CICS  SG24-6351
  

Where to find related information on the Internet 

z/OS  

 This  site  provides  information  about  z/OS  Communications  Server  release  

availability,  migration  information,  downloads,  and  links  to  information  

about  z/OS  technology  

 http://www.ibm.com/servers/eserver/zseries/zos/  

 

xx z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|
|
|

|
|
|

|
|
|

||

|
|
|

||

|
|
|

http://www.ibm.com/servers/eserver/zseries/zos/


z/OS  Internet  Library  

 Use  this  site  to  view  and  download  z/OS  Communications  Server  

documentation  

 http://www.ibm.com/servers/eserver/zseries/zos/bkserv/  

IBM  Communications  Server  product  

 The  primary  home  page  for  information  about  z/OS  Communications  

Server  

 http://www.software.ibm.com/network/commserver/  

IBM  Communications  Server  product  support  

 Use  this  site  to  submit  and  track  problems  and  search  the  z/OS  

Communications  Server  knowledge  base  for  Technotes,  FAQs,  white  

papers,  and  other  z/OS  Communications  Server  information  

 http://www.software.ibm.com/network/commserver/support/  

IBM  Systems  Center  publications  

 Use  this  site  to  view  and  order  Redbooks,  Redpapers,  and  Technotes  

 http://www.redbooks.ibm.com/  

IBM  Systems  Center  flashes  

 Search  the  Technical  Sales  Library  for  Techdocs  (including  Flashes,  

presentations,  Technotes,  FAQs,  white  papers,  Customer  Support  Plans,  

and  Skills  Transfer  information)  

 http://www.ibm.com/support/techdocs/atsmastr.nsf  

RFCs  

 Search  for  and  view  Request  for  Comments  documents  in  this  section  of 

the  Internet  Engineering  Task Force  Web site,  with  links  to  the  RFC  

repository  and  the  IETF  Working  Groups  Web page  

 http://www.ietf.org/rfc.html  

Internet  drafts  

 View  Internet-Drafts,  which  are  working  documents  of the  Internet  

Engineering  Task Force  (IETF)  and  other  groups,  in this  section  of  the  

Internet  Engineering  Task Force  Web site  

 http://www.ietf.org/ID.html

Information  about  Web addresses  can  also  be  found  in  information  APAR  II11334.  

DNS  Web sites:    For  more  information  about  DNS,  see  the  following  USENET  

news  groups  and  mailing  addresses:  

USENET  news  groups  

comp.protocols.dns.bind  

BIND  mailing  lists  

http://www.isc.org/ml-archives/  

BIND  Users  

v   Subscribe  by  sending  mail  to  bind-users-request@isc.org.  

v   Submit  questions  or  answers  to  this  forum  by  sending  mail  to  

bind-users@isc.org.

 

About  this document  xxi

|
|

|
|

|
|
|

|

|
|
|

|
|
|

|
|
|

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.isc.org/ml-archives/


BIND  9 Users  (This  list  might  not  be  maintained  indefinitely.)  

v   Subscribe  by  sending  mail  to bind9-users-request@isc.org.  

v   Submit  questions  or  answers  to  this  forum  by  sending  mail  to  

bind9-users@isc.org.

Note:   Any  pointers  in  this  publication  to  Web sites  are  provided  for  convenience  

only  and  do  not  in  any  manner  serve  as  an  endorsement  of  these  Web sites.  

 Using LookAt to look up message explanations 

LookAt  is an  online  facility  that  lets  you  look  up  explanations  for  most  of  the  IBM  

messages  you  encounter,  as  well  as  for  some  system  abends  and  codes.  Using  

LookAt  to  find  information  is faster  than  a conventional  search  because  in  most  

cases  LookAt  goes  directly  to the  message  explanation.  

You can  use  LookAt  from  the  following  locations  to find  IBM  message  

explanations  for  z/OS  elements  and  features,  z/VM®, VSE/ESA™, and  Clusters  for  

AIX® and  Linux™: 

v   The  Internet.  You can  access  IBM  message  explanations  directly  from  the  LookAt  

Web site  at  http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.  

v   Your z/OS  TSO/E  host  system.  You can  install  code  on  your  z/OS  or  z/OS.e  

systems  to  access  IBM  message  explanations,  using  LookAt  from  a TSO/E  

command  line  (for  example,  TSO/E  prompt,  ISPF, or  z/OS  UNIX  System  

Services).  

v   Your Microsoft® Windows® workstation.  You can  install  code  to access  IBM  

message  explanations  on  the  z/OS  Collection  (SK3T-4269),  using  LookAt  from  a 

Microsoft  Windows  command  prompt  (also  known  as  the  DOS  command  line).  

v   Your wireless  handheld  device.  You can  use  the  LookAt  Mobile  Edition  with  a 

handheld  device  that  has  wireless  access  and  an  Internet  browser  (for  example,  

Internet  Explorer  for  Pocket  PCs,  Blazer  or  Eudora  for  Palm  OS,  or  Opera  for  

Linux  handheld  devices).  Link  to  the  LookAt  Mobile  Edition  from  the  LookAt  

Web site.

You  can  obtain  code  to  install  LookAt  on  your  host  system  or  Microsoft  Windows  

workstation  from  a disk  on  your  z/OS  Collection  (SK3T-4269),  or  from  the  LookAt  

Web site  (click  Download, and  select  the  platform,  release,  collection,  and  location  

that  suit  your  needs).  More  information  is available  in  the  LOOKAT.ME  files  

available  during  the  download  process.  

Using IBM Health Checker for z/OS 

IBM  Health  Checker  for  z/OS  is a z/OS  component  that  installations  can  use  to  

gather  information  about  their  system  environment  and  system  parameters  to  help  

identify  potential  configuration  problems  before  they  impact  availability  or  cause  

outages.  Individual  products,  z/OS  components,  or  ISV  software  can  provide  

checks  that  take  advantage  of the  IBM  Health  Checker  for  z/OS  framework.  This  

book  may  refer  to  checks  or  messages  associated  with  this  component.  

For  additional  information  about  checks  and  about  IBM  Health  Checker  for  z/OS,  

see  IBM  Health  Checker  for  z/OS:  User’s  Guide. z/OS  V1R4,  V1R5,  and  V1R6  users  

can  obtain  the  IBM  Health  Checker  for  z/OS  from  the  z/OS  Downloads  page  at  

http://www.ibm.com/servers/eserver/zseries/zos/downloads/.  

SDSF  also  provides  functions  to  simplify  the  management  of checks.  See  z/OS  

SDSF  Operation  and  Customization  for  additional  information.  

 

xxii z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/downloads/


How to send your comments 

Your feedback  is  important  in  helping  to provide  the  most  accurate  and  

high-quality  information.  If you  have  any  comments  about  this  document  or  any  

other  z/OS  Communications  Server  documentation:  

v   Go  to  the  z/OS  contact  page  at:  

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html  

There  you  will  find  the  feedback  page  where  you  can  enter  and  submit  your  

comments.  

v   Send  your  comments  by  e-mail  to comsvrcf@us.ibm.com.  Be  sure  to  include  the  

name  of  the  document,  the  part  number  of the  document,  the  version  of z/OS  

Communications  Server,  and,  if applicable,  the  specific  location  of the  text  you  

are  commenting  on  (for  example,  a section  number,  a page  number  or a table  

number).

 

About  this document  xxiii

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html


xxiv z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



Summary  of  changes  

Summary  of  changes  

for  SC31-8830-02  

z/OS  Version  1 Release  7 

 This  document  contains  information  previously  presented  in  SC31-8830-01,  which  

supports  z/OS  V1R5.  

The  information  in  this  document  includes  descriptions  of support  for  both  IPv4  

and  IPv6  networking  protocols.  Unless  explicitly  noted,  descriptions  of IP  protocol  

support  concern  IPv4.  IPv6  support  is qualified  within  the  text.  

This  document  refers  to Communications  Server  data  sets  by  their  default  SMP/E  

distribution  library  name.  Your installation  might,  however,  have  different  names  

for  these  data  sets  where  allowed  by  SMP/E,  your  installation  personnel,  or  

administration  staff.  For  instance,  this  document  refers  to samples  in SEZAINST  

library  as simply  in SEZAINST.  Your installation  might  choose  a data  set  name  of 

SYS1.SEZAINST,  CS390.SEZAINST  or  other  high  level  qualifiers  for  the  data  set  

name.  

Changed  Information  

v   Two  additional  return  codes  for  EZACIC08  documented  (see  “EZACIC08”  on  

page  189)  

v   SIOCTTLSCTL  has  been  updated  (see  “IOCTL”  on  page  119)

This  document  contains  terminology,  maintenance,  and  editorial  changes.  Technical  

changes  or  additions  to the  text  and  illustrations  are  indicated  by  a vertical  line  to  

the  left  of  the  change.  

You might  notice  changes  in  the  style  and  structure  of some  content  in this  

document–for  example,  headings  that  use  uppercase  for  the  first  letter  of  initial  

words  only,  and  procedures  that  have  a different  look  and  format.  The  changes  are  

ongoing  improvements  to  the  consistency  and  retrievability  of information  in  our  

documents.  

Summary  of  changes  

for  SC31-8830-01  

z/OS  Version  1 Release  5 

 This  document  contains  information  previously  presented  in  SC31-8830-00,  which  

supports  z/OS  V1R2.  The  information  in  this  document  supports  both  IPv6  and  

IPv4.  Unless  explicitly  noted,  information  describes  IPv4  networking  protocol.  IPv6  

support  is  qualified  within  the  text.  

New  information  

v   IPv6  information  and  examples.

Changed  Information  

v   Maximum  number  of  sockets  in  MAXSOC  variable  increased  to  65535.  

v   Updated  instructions  for  using  the  implicit-mode  sample  program.  

 

© Copyright  IBM Corp. 1994, 2005 xxv



v   The  following  call  instructions:  

–   GETHOSTBYADDR  (see  “GETHOSTBYADDR”  on  page  87)  

–   GETHOSTBYNAME  (see  “GETHOSTBYNAME”  on  page  90)  

–   GETSOCKOPT  (see  “GETSOCKOPT”  on  page  105)  

–   INITAPI  (see  “INITAPI”  on  page  117)  

–   RECVMSG  (see  “RECVMSG”  on  page  140)  

–   SETSOCKOPT  (see  “SETSOCKOPT”  on  page  163)
v    Sample  client  program  for  non-IMS  server  (see  “Sample  client  program  for  

non-IMS  server”  on  page  271)  

v   Sample  server  program  for  IMS  MPP  client  (see  “Sample  server  program  for  IMS  

MPP  client”  on  page  281)

This  document  contains  terminology,  maintenance,  and  editorial  changes.  Technical  

changes  or  additions  to the  text  and  illustrations  are  indicated  by  a vertical  line  to  

the  left  of  the  change.  

Starting  with  z/OS  V1R5,  you  might  notice  changes  in  the  style  and  structure  of 

some  content  in  this  document—for  example,  headings  that  use  uppercase  for  the  

first  letter  of  initial  words  only,  and  procedures  that  have  a different  look  and  

format.  The  changes  are  ongoing  improvements  to  the  consistency  and  

retrievability  of  information  in  our  documents.  

Summary  of  changes  

for  SC31-8830-00  

z/OS  Version  1 Release  2 

 This  document  contains  information  previously  presented  in OS/390  V2R5  eNetwork  

Communications  Server:  IP  IMS  Sockets  Guide, SC31-8519.  

This  document  contains  terminology,  maintenance,  and  editorial  changes.  Technical  

changes  or  additions  to the  text  and  illustrations  are  indicated  by  a vertical  line  to  

the  left  of  the  change.  

 

xxvi z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



Part  1. IMS  overview  

 

© Copyright  IBM Corp. 1994, 2005 1



2 z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



Chapter  1.  Using  TCP/IP  with  IMS  

This  chapter  includes  a discussion  of  the  kind  of applications  for  which  IMS  

TCP/IP  is intended  and  an  overview  of its  components.  

The role of IMS TCP/IP 

The  IMS/ESA  database  and  transaction  management  facility  is used  throughout  

the  world.  For  many  enterprises,  IMS  is  the  data  processing  backbone,  supporting  

large  personnel  and  financial  databases,  manufacturing  control  files,  and  inventory  

management  facilities.  IMS  backup  and  recovery  features  protect  valuable  data  

assets,  and  the  IMS  Transaction  Manager  provides  high-speed  access  for  thousands  

of  concurrent  users.  

Traditionally,  many  IMS  users  have  used  3270-type  protocol  to  communicate  with  

the  IMS  Transaction  Manager.  In  that  environment,  all  of the  processing,  including  

display  screen  formatting,  is done  by  the  IMS  mainframe.  During  the  decade  of  the  

1980s,  users  began  to move  some  of  the  processing  outboard  into  personal  

computers.  However,  these  PCs  were  typically  connected  to IMS  via  SNA  3270  

protocol.  

During  that  period,  although  most  IMS  users  were  focused  on  3270  PC  emulation,  

many  non-IMS  users  were  busy  building  a network  based  on  a different  protocol,  

called  TCP/IP.  As  this  trend  developed,  the  need  for  an  access  path  between  

TCP/IP-communicating  devices  and  the  still-indispensable  processing  power  of 

IMS  became  clear. IMS  TCP/IP  provides  that  access  path.  Its  role  can  be  more  

easily  understood  when  one  distinguishes  between  traditional  3270  applications  (in  

which  the  IMS  processor  does  all  the  work),  and  the  more  complex  client/server  

applications  (in  which  the  application  logic  is divided  between  the  IMS  processor  

and  another  programmable  device  such  as  a TCP/IP  host).  

MVS  TCP/IP  supports  both  application  types:  

v   When  a TCP/IP  host  needs  access  to  a traditional  3270  Message  Format  Service  

(MFS)  application,  it does  not  need  to  use  the  IMS  TCP/IP  feature;  it can  

connect  to  IMS  directly  through  Telnet  which  provides  3270  emulation  services  

for  TCP/IP-connected  clients.  Telnet  is a part  of  the  base  TCP/IP  Services  

product.  (Refer  to  the  z/OS  Communications  Server:  IP  User’s  Guide  and  Commands  

for  more  information).  

v   When  a TCP/IP  host  needs  to  support  a client/server  application,  it should  use  

the  IMS  TCP/IP  feature  of TCP/IP  Services.  This  feature  is specifically  designed  

to  support  two-way  client/server  communication  between  an  IMS  message  

processing  program  (MPP)  and  a TCP/IP  host.

As  used  in  this  document,  the  term  client  refers  to  a program  that  requests  services  

of  another  program.  That  other  program  is known  as  the  server. The  client  is often  

a UNIX-based  program;  however,  DOS,  OS/2,  CMS,  and  MVS-based  programs  can  

also  act  as  clients.  Similarly,  as  used  in  this  document,  the  term  server  refers  to  a 

program  that  is  often  an  IMS  MPP;  however,  the  server  can  be  a TCP/IP  host,  

responding  to  an  IMS  MPP  client.  

 

© Copyright  IBM Corp. 1994, 2005 3



Introduction to IMS TCP/IP 

For  peer-to-peer  applications  that  use  SNA  communication  facilities,  remote  

programmable  devices  communicate  with  IMS  through  the  advanced  

program-to-program  communication  (APPC)  API.  For  peer-to-peer  applications  

that  use  TCP/IP  communication  facilities,  remote  programmable  devices  

communicate  with  IMS  through  facilities  provided  by  IMS  TCP/IP.  

The  IMS  TCP/IP  feature  provides  the  services  necessary  to  establish  and  maintain  

connection  between  a TCP/IP-connected  host  and  an  IMS  MPP.  In  addition,  it 

allows  client/server  applications  to be  developed  using  the  TCP/IP  socket  

application  programming  interface.  

In  operation,  when  a TCP/IP  client  requires  program-to-program  communication  

with  an  IMS  server  message  processing  program  (MPP),  the  client  sends  its  request  

to  TCP/IP  Services.  TCP/IP  passes  the  request  to  the  IMS  Listener,  which  

schedules  the  requested  MPP  and  transfers  control  of  the  connection  to it.  Once  

control  of  the  connection  is passed,  data  transfer  between  the  server  and  the  

remote  client  is performed  using  socket  calls.  

IMS TCP/IP feature components 

The  IMS  TCP/IP  feature  consists  of the  following  components:  

v   The  IMS  Listener,  which  provides  connectivity  

v   The  IMS  Assist  module,  which  simplifies  TCP/IP  communications  programming  

v   The  Sockets  Extended  application  programming  interface  (API)  

1

The IMS Listener 

The  purpose  of  the  Listener  is to  provide  clients  with  a single  point  of contact  to  

IMS.  The  IMS  Listener  is a batch  program  (BMP)  that  waits  for  connection  requests  

from  remote  TCP/IP-connected  hosts.  When  a request  arrives,  the  Listener  

schedules  the  appropriate  transaction  (the  server)  and  passes  a TCP/IP  socket  

(representing  the  connection)  to  that  server.  

The  IMS  Listener  maintains  connection  requests  until  the  requested  MPP  takes  

control  of  the  socket.  The  Listener  is capable  of  maintaining  a variable  number  of 

concurrent  connection  requests.  

The IMS Assist module 

The  Assist  module  is  a subroutine  that  is a part  of  the  server  program.  Its  use  is 

optional.  Its  purpose  is to  allow  the  use  of  conventional  IMS  calls  for  TCP/IP  

communication  between  client  and  server.  In  use,  the  Assist  module  intercepts  the  

IMS  calls  and  issues  the  corresponding  socket  commands;  consequently,  IMS  MPP  

programmers  who  use  the  IMS  Assist  module  require  no  TCP/IP  skills.  

Programs  that  do  use  the  Assist  module  are  known  as implicit-mode  programs  

because  the  socket  calls  are  issued  implicitly  by  the  Assist  module.  

Programs  that  do  not  use  the  Assist  module  issue  socket  calls  directly.  Such  

programs  are  known  as  explicit-mode  programs  because  of  their  explicit  use  of the  

calls.  

1. Shipped  with the TCP/IP  V3R2 for MVS base product 

 

4 z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



The MVS TCP/IP socket application programming interface 

(Sockets Extended) 

The  socket  call  interface  provides  a set  of programming  calls  that  can  be  used  in an  

IMS  message  processing  program  to  conduct  a conversation  with  a peer  program  

in  another  TCP/IP  processor.  The  interface  is  derived  from  BSD  4.3  socket,  a 

commonly  used  communications  programming  interface  in  the  TCP/IP  

environment.  Socket  calls  include  connection,  initiation,  and  termination  functions,  

as  well  as  basic  read/write  communication.  The  MVS  TCP/IP  socket  call  interface  

makes  it possible  to  issue  socket  calls  from  programs  written  in  COBOL,  PL/I,  and  

assembler  language.  

The  IMS  socket  calls  are  a subset  of  the  TCP/IP  socket  calls.  They  are  designed  to  

be  used  in  programs  written  in  other  than  C language;  hence  the  term  Sockets  

Extended.  

 

Chapter 1. Using TCP/IP  with IMS 5



6 z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



Chapter  2.  Introduction  to TCP/IP  for  IMS  

This  chapter  presents  an  overview  of  TCP/IP  as  it  is used  with  MVS.  

What IMS TCP/IP does 

The  IMS  TCP/IP  feature  allows  remote  users  to access  IMS  client/server  

applications  over  TCP/IP  internets.  It  is a feature  of TCP/IP  Services.  Figure  1 

shows  how  IMS  TCP/IP  gives  a variety  of remote  users  peer-to-peer  

communication  with  IMS  applications.  

It  is  important  to  understand  that  IMS  TCP/IP  is primarily  intended  to  support  

peer-to-peer  applications,  as  opposed  to the  traditional  IMS  mainframe  interactive  

applications  in  which  the  IMS  system  contained  all  programmable  logic,  and  the  

remote  terminal  was  often  referred  to  as  a “dumb”  terminal.  To connect  a TCP/IP  

host  to  one  of  those  traditional  applications,  you  should  first  consider  the  use  of  

Telnet,  a function  of  TCP/IP  Services  which  provides  3270  emulation.  With  Telnet,  

you  can  access  existing  3270-style  Message  Format  Services  applications  without  

modification.  You should  consider  IMS  TCP/IP  only  when  developing  new  

peer-to-peer  applications  in which  both  ends  of  the  connection  are  programmable.  

 

 IMS  TCP/IP  provides  a variant  of the  BSD  4.3  Socket  interface,  which  is widely  

used  in  TCP/IP  networks  and  is  based  on  the  UNIX  system  and  other  operating  

systems.  The  socket  interface  consists  of  a set  of  calls  that  IMS  application  

programs  can  use  to  set  up  connections,  send  and  receive  data,  and  perform  

general  communication  control  functions.  The  programs  can  be  written  in  COBOL,  

PL/I,  assembler  language,  or  C.  

System/390

IMS region

IMS
BMP

IMS
OTMA

Connection
Server

IMS
Listener

TCP/IP

for

MVS

LAN

UNIX

OS/2

other
networks

VAX

  

Figure  1. The  use  of TCP/IP  with  IMS

 

© Copyright  IBM Corp. 1994, 2005 7



Using IMS with SNA or TCP/IP 

IMS  is  an  online  transaction  processing  system.  This  means  that  application  

programs  using  IMS  can  handle  large  numbers  of data  transactions  from  large  

networks  of computers  and  terminals.  

Communication  throughout  these  networks  has  often  been  based  on  the  Systems  

Network  Architecture  (SNA)  family  of  protocols.  IMS  TCP/IP  offers  IMS  users  an  

alternative  to  SNA  —  the  TCP/IP  family  of  protocols  for  those  users  whose  native  

communications  protocol  is TCP/IP.  

TCP/IP internets 

This  section  describes  some  of the  basic  ideas  behind  the  TCP/IP  family  of  

protocols.  

Like  SNA,  TCP/IP  is a set  of  communication  protocols  used  between  physically  

separated  computer  systems.  Unlike  SNA  and  most  other  protocols,  TCP/IP  is not  

designed  for  a particular  hardware  technology.  TCP/IP  can  be  implemented  on  a 

wide  variety  of  physical  networks,  and  is specially  designed  for  communicating  

between  systems  on  different  physical  networks  (local  and  wide  area).  This  is 

called  internetworking. 

Mainframe interactive processing 

TCP/IP  Services  supports  traditional  3270  mainframe  interactive  (MFI)  applications  

with  an  emulator  function  called  Telnet  (TN3270).  For  these  applications,  all  

program  logic  runs in  the  mainframe,  and  the  remote  host  uses  only  that  amount  

of  logic  necessary  to  provide  basic  communications  services.  Thus,  if your  

requirement  is simply  to  provide  access  from  a remote  TCP/IP  host  to existing  IMS  

MFI  applications,  you  should  consider  Telnet  rather  than  IMS  TCP/IP  as  the  

communications  vehicle.  Telnet  3270-emulation  functions  allow  your  TCP/IP  host  

to  communicate  with  traditional  applications  without  modification.  

Client/server processing 

TCP/IP  also  supports  client/server  processing,  where  processes  are  either:  

v   Servers  that  provide  a particular  service  and  respond  to  requests  for  that  service  

v   Clients  that  initiate  the  requests  to  the  servers

With  IMS  TCP/IP,  remote  client  systems  can  initiate  communications  with  IMS  and  

cause  an  IMS  transaction  to start.  It  is anticipated  that  this  will  be  the  most  

common  mode  of  operation.  (Alternatively,  the  remote  system  can  act  as  a server  

with  IMS  initiating  the  conversation.)  

TCP,  UDP,  and IP 

TCP/IP  is  a family  of  protocols  that  is named  after  its  two  most  important  

members.  Figure  2 on  page  9 shows  the  TCP/IP  protocols  used  by  IMS  TCP/IP,  in 

terms  of  the  layered  Open  Systems  Interconnection  (OSI)  model,  which  is widely  

used  to  describe  data  communication  systems.  For  IMS  users  who  might  be  more  

accustomed  to  SNA,  the  left  side  of Figure  2 shows  the  SNA  layers,  which  

correspond  very  closely  to  the  OSI  layers.  

 

 

8 z/OS V1R7.0  Comm  Svr: IP IMS Sockets  Guide



The  protocols  implemented  by  TCP/IP  Services  and  used  by  IMS  TCP/IP,  are  

highlighted  in  Figure  2:  

Transmission  Control  Protocol  (TCP)   

In  terms  of the  OSI  model,  TCP  is a transport-layer  protocol.  It  provides  a 

reliable  virtual-circuit  connection  between  applications;  that  is,  a connection  is 

established  before  data  transmission  begins.  Data  is sent  without  errors  or  

duplication  and  is received  in  the  same  order  as  it is sent.  No  boundaries  are  

imposed  on  the  data;  TCP  treats  the  data  as  a stream  of bytes.  

User  Datagram  Protocol  (UDP)   

UDP  is  also  a transport-layer  protocol  and  is  an  alternative  to  TCP.  It  provides  

an  unreliable  datagram  connection  between  applications  (that  is, data  is 

transmitted  link  by  link;  there  is no  end-to-end  connection).  The  service  

provides  no  guarantees:  data  can  be  lost  or  duplicated,  and  datagrams  can  

arrive  out  of  order.  

Internet  Protocol  (IP)   

In  terms  of the  OSI  model,  IP  is a network-layer  protocol.  It provides  a 

datagram  service  between  applications,  supporting  both  TCP  and  UDP.

The socket API 

The  socket  API  is a collection  of  socket  calls  that  enable  you  to  perform  the  

following  primary  communication  functions  between  application  programs:  

v   Set  up  and  establish  connections  to other  users  on  the  network  

v   Send  and  receive  data  to and  from  other  users  

v   Close  down  connections

In  addition  to  these  basic  functions,  the  API  enables  you  to:  

v   Interrogate  the  network  system  to  get  names  and  status  of relevant  resources  

v   Perform  system  and  control  functions  as  required

IMS  TCP/IP  provides  two  TCP/IP  socket  application  program  interfaces  (APIs),  

similar  to  those  used  on  UNIX  systems.  One  interfaces  to C  language  programs,  

the  other  to  COBOL,  PL/I,  and  System/370*  assembler  language  programs.  

v   C  language. Historically,  TCP/IP  has  been  associated  with  the  C language  and  

the  UNIX  operating  system.  Textbook  descriptions  of  socket  calls  are  usually  

given  in  C,  and  most  socket  programmers  are  familiar  with  the  C interface  to  

TCP/IP.  For  these  reasons,  TCP/IP  Services  includes  a C language  API.  If you  

are  writing  new  TCP/IP  applications  and  are  familiar  with  C language  

programming,  you  might  prefer  to  use  this  interface.  Refer  to the  z/OS  

  

Figure  2. TCP/IP  protocols  when  compared  to the  OSI  Model  and  SNA

 

Chapter  2. Introduction to TCP/IP  for IMS 9



Communications  Server:  IP  Sockets  Application  Programming  Interface  Guide  and  

Reference  for  the  C  language  socket  calls  supported  by  MVS  TCP/IP.  

v   Sockets  Extended  API  (COBOL,  PL/I,  Assembler  Language). The  Sockets  

Extended  API  (Sockets  Extended)  is for  those  who  want  to write  in  COBOL,  

PL/I,  or  assembler  language,  or  who  have  COBOL,  PL/I,  or  assembler  language  

programs  that  need  to  be  modified  to  run with  TCP/IP.  The  Sockets  Extended  

API  enables  you  to  do  this  by  using  CALL  statements.  If  you  are  writing  new  

TCP/IP  applications  in  COBOL,  PL/I,  or  assembler  language,  you  might  prefer  

to  use  the  Sockets  Extended  API.  With  this  interface,  C  language  is  not  required.  

See  Chapter  7, “Using  the  CALL  instruction  application  programming  interface  

(API),”  on  page  61  for  details  of  this  interface.

Programming with sockets 

The  original  UNIX  socket  interface  was  designed  to  hide  the  physical  details  of  the  

network.  It  included  the  concept  of  a socket, which  would  represent  the  connection  

to  the  programmer,  yet  shield  the  program  (as  much  as  possible)  from  the  details  

of  communication  programming.  A  socket  is  an  end-point  for  communication  that  

can  be  named  and  addressed  in  a network.  From  an  application  program  

perspective,  a socket  is a resource  that  is allocated  by  the  TCP/IP  address  space.  A  

socket  is represented  to  the  program  by  an  integer  called  a socket  descriptor. 

Socket types 

The  MVS  socket  APIs  provide  a standard  interface  to the  transport  and  

internetwork  layer  interfaces  of TCP/IP.  They  support  three  socket  types:  stream,  

datagram,  and  raw. Stream  and  datagram  sockets  interface  to the  transport  layer  

protocols,  and  raw  sockets  interface  to the  network  layer  protocols.  All  three  socket  

types  are  discussed  here  for  background  purposes.  

Stream  sockets  transmit  data  between  TCP/IP  hosts  that  are  already  connected  to  

one  another.  Data  is  transmitted  in a continuous  stream;  in  other  words,  there  are  

no  record  length  or  newline  character  boundaries  between  data.  Communicating  

processes  

2 must  agree  on  a scheme  to  ensure  that  both  client  and  server  have  

received  all  data.  One  way  of doing  this  is for  the  sending  process  to  send  the  

length  of  the  data,  followed  by  the  data  itself.  The  receiving  process  reads  the  

length  and  then  loops,  accepting  data  until  all  of  it has  been  transferred.  

In  TCP/IP  terminology,  the  stream  socket  interface  defines  a reliable  

connection-oriented  service.  In this  context,  the  word  reliable  means  that  data  is 

sent  without  error  or  duplication  and  is received  in  the  same  order  as  it is sent.  

Flow  control  is built  in  to  avoid  data  overruns.  

The  datagram  socket  interface  defines  a connectionless  service.  Datagrams  are  sent  

as  independent  packets.  The  service  provides  no  guarantees;  data  can  be  lost  or  

duplicated,  and  datagrams  can  arrive  out  of  order.  The  size  of a datagram  is 

limited  to  the  size  that  can  be  sent  in  a single  transaction  (currently  the  default  is 

8192  and  the  maximum  is 65507).  No  disassembly  and  reassembly  of packets  is 

performed  by  TCP/IP.  

The  raw  socket  interface  allows  direct  access  to lower  layer  protocols,  such  as  IP 

and  Internet  Control  Message  Protocol  (ICMP).  This  interface  is often  used  for  

testing  new  protocol  implementations.  

2. In TCP/IP terminology,  a process  is essentially  the same as an application  program. 

 

10 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Addressing TCP/IP hosts 

The  following  section  describes  how  one  TCP/IP  host  addresses  another  TCP/IP  

host.  

3 

Address families 

An  address  family  defines  a specific  addressing  format.  Applications  that  use  the  

same  addressing  family  have  a common  scheme  for  addressing  socket  end-points.  

TCP/IP  for  IMS  supports  the  AF_INET  address  family.  

Socket addresses 

A  socket  address  in  the  AF_INET  family  comprises  4 fields:  the  name  of  the  

address  family  itself  (AF_INET),  a port,  an  internet  address,  and  an  eight-byte  

reserved  field.  In  COBOL,  a socket  address  looks  like  this:  

01  NAME  

    03 FAMILY       PIC  9(4)  BINARY.  

    03 PORT         PIC  9(4)  BINARY.  

    03 IP_ADDRESS   PIC 9(8)  BINARY.  

    03 RESERVED     PIC X(8).  

You will  find  this  structure  in  every  call  that  addresses  another  TCP/IP  host.  

In  this  structure,  FAMILY is a half-word  that  defines  which  addressing  family  is  

being  used.  In IMS,  FAMILY is always  set  to  a value  of 2,  which  specifies  the  

AF_INET  internet  address  family.  

4 The  PORT  field  identifies  the  application  port  

number;  it  must  be  specified  in  network  byte  order.  The  IP_ADDRESS  field  is  the  

internet  address  of  the  network  interface  used  by  the  application.  It also  must  be  

specified  in  network  byte  order.  The  RESERVED  field  should  be  set  to  all  zeros.  

Internet (IP) addresses 

An  internet  addresses  (otherwise  known  as  an  IP  address)  is a 32-bit  field  that  

represents  a network  interface.  An  IP  address  is commonly  represented  in  dotted  

decimal  notation  such  as  129.5.25.1. Every  internet  address  within  an  administered  

AF_INET  domain  must  be  unique.  A common  misunderstanding  is  that  a host  

must  have  only  one  internet  address.  In  fact,  a single  host  may  have  several  

internet  addresses  —  one  for  each  network  interface.  

Ports 

A  port  is  a 16-bit  integer  that  defines  a specific  application,  within  an  IP  address,  

in  which  several  applications  use  the  same  network  interface.  The  port  number  is  a 

qualifier  that  TCP/IP  uses  to  route  incoming  data  to  a specific  application  within  

an  IP  address.  Some  port  numbers  are  reserved  for  particular  applications  and  are  

called  well-known  ports, such  as Port  23,  which  is the  well-known  port  for  Telnet.  

As  an  example,  an  MVS  system  with  an  IP  address  of  129.9.12.7  might  have  IMS  as 

port  2000,  and  Telnet as  port  23.  In  this  example,  a client  desiring  connection  to  

IMS  would  issue  a CONNECT  call,  requesting  port  2000  at IP  address  129.9.12.7.  

Sockets  and  ports:  

Note:   It is  important  to  understand  the  difference  between  a socket  and  a port.  

TCP/IP  defines  a port  to  represent  a certain  process  on  a certain  machine  

3. In TCP/IP terminology,  a host is simply a computer  that is running  TCP/IP. There is no connotation  of ″mainframe″ or large 

processor within  the TCP/IP  definition  of the word host. 

4. Note that sockets  support  many address families, but TCP/IP  for IMS only supports the internet  address family.  

 

Chapter  2. Introduction to TCP/IP  for IMS 11



(network  interface).  A  port  represents  the  location  of  one  process  in  a host  

that  can  have  many  processes.  A  bound  socket  represents  a specific  port  and  

the  IP  address  of its  host.  

Domain names 

Because  dotted  decimal  IP  addresses  are  difficult  to remember,  TCP/IP  also  allows  

you  to  represent  host  interfaces  on  the  network  as  alphabetic  names,  such  as  

Alana.E04.IBM.COM,  or  CrFre@AOL.COM.  Every  Domain  Name  has  an  equivalent  

IP  address  or  set  of  addresses.  TCP/IP  includes  service  functions  

(GETHOSTBYNAME  and  GETHOSTBYADDR)  that  will  help  you  convert  from  one  

notation  to  another.  

Network byte order 

In  the  open  environment  of  TCP/IP,  internet  addresses  must  be  defined  in  terms  of 

the  architecture  of the  machines.  Some  machine  architectures,  such  as  IBM  

mainframes,  define  the  lowest  memory  address  to  be  the  high-order  bit,  which  is 

called  big  endian. However,  other  architectures,  such  as  IBM  PCs,  define  the  lowest  

memory  address  to  be  the  low-order  bit,  which  is called  little  endian. 

Network  addresses  in  a given  network  must  all  follow  a consistent  addressing  

convention.  This  convention,  known  as  network  byte  order,  defines  the  bit-order  of 

network  addresses  as  they  pass  through  the  network.  The  TCP/IP  standard  

network  byte  order  is big-endian.  In  order  to participate  in  a TCP/IP  network,  

little-endian  systems  usually  bear  the  burden  of  conversion  to network  byte  order. 

Note:   The  socket  interface  does  not  handle  application  data  bit-order  differences.  

Application  writers  must  handle  these  bit  order  differences  themselves.  

A typical client/server program flow chart 

Stream-oriented  socket  programs  generally  follow  a prescribed  sequence.  See  

Figure  3 on  page  13  for  a diagram  of  the  logic  flow  for  a typical  client  and  server.  

As  you  study  this  diagram,  keep  in  mind  the  fact  that  a concurrent  server  typically  

starts  before  the  client  does,  and  waits  for  the  client  to  request  connection  at step  

�3�. It  then  continues  to  wait  for  additional  client  requests  after  the  client  

connection  is closed.  

 

 

12 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Concurrent and iterative servers 

An  iterative  server  handles  both  the  connection  request  and  the  transaction  involved  

in  the  call  itself.  Iterative  servers  are  fairly  simple  and  are  suitable  for  transactions  

that  do  not  last  long.  

However,  if the  transaction  takes  more  time,  queues  can  build  up  quickly.  In  

Figure  4 on  page  14,  once  Client  A starts  a transaction  with  the  server,  Client  B 

cannot  make  a call  until  A has  finished.  

 

  

Figure  3. A typical  client/server  session

 

Chapter  2. Introduction to TCP/IP for IMS 13



So,  for  lengthy  transactions,  a different  sort  of  server  is needed  —  the  concurrent  

server, as  shown  in  Figure  5.  Here,  Client  A  has  already  established  a connection  

with  the  server,  which  has  then  created  a child  server  process  to handle  the  

transaction.  This  allows  the  server  to  process  Client  B’s  request  without  waiting  for  

A’s transaction  to  complete.  More  than  one  child  server  can  be  started  in this  way.  

TCP/IP  provides  a concurrent  server  program  called  the  IMS  Listener.  It is 

described  in  Chapter  6, “How  to customize  and  operate  the  IMS  Listener,”  on  page  

55.  

 

 Figure  3 on  page  13  illustrates  a concurrent  server  at  work.  

The basic socket calls 

The  following  is an  overview  of  the  basic  socket  calls.  

The  following  calls  are  used  by  the  server:  

SOCKET  

Obtains  a socket  to  read  from  or  write  to.  

BIND  Associates  a socket  with  a port  number.  

LISTEN  

Tells TCP/IP  that  this  process  is listening  for  connections  on  this  socket.  

SELECT  

Waits  for  activity  on  a socket.  

ACCEPT  

Accepts  a connection  from  a client.

The  following  calls  are  used  by  a concurrent  server  to pass  the  socket  from  the  

parent  server  task  (Listener)  to the  child  server  task  (user-written  application).  

Iterative
Server

Client B

Client A

TCP/IP
  

Figure  4. An iterative  server

Concurrent
Server

child
server

process

TCP/IP

Client B

Client A

  

Figure  5. A concurrent  server

 

14 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



GIVESOCKET  

Gives  a socket  to  a child  server  task.  

TAKESOCKET  

Accepts  a socket  from  a parent  server  task.  

GETCLIENTID  

Optionally  used  by  the  parent  server  task  to  determine  its  own  address  

space  name  (if  unknown)  prior  to issuing  the  GIVESOCKET.

The  following  calls  are  used  by  the  client:  

SOCKET  

Allocates  a socket  to  read  from  or  write  to.  

CONNECT  

Allows  a client  to open  a connection  to a server’s  port.

The  following  calls  are  used  by  both  the  client  and  the  server:  

WRITE  

Sends  data  to the  process  on  the  other  host.  

READ  Receives  data  from  the  other  host.  

CLOSE  

Terminates  a connection,  deallocating  the  socket.

For  full  discussion  and  examples  of  these  calls,  see  Chapter  7,  “Using  the  CALL  

instruction  application  programming  interface  (API),”  on  page  61.  

Server TCP/IP calls 

To understand  Socket  programming,  the  client  program  and  the  server  program  

must  be  considered  separately.  In  this  section  the  call  sequence  for  the  server  is 

described;  the  next  section  discusses  the  typical  call  sequence  for  a client. This  is  

the  logical  presentation  sequence  because  the  server  is usually  already  in execution  

before  the  client  is started.  The  step  numbers  (such  as�5�) in this  section  refer  to 

the  steps  in Figure  3 on  page  13.  

Socket 

The  server  must  first  obtain  a socket  �1�. This  socket  provides  an  end-point  to  

which  clients  can  connect.  

A  socket  is actually  an  index  into  a table  of  connections  in  the  TCP/IP  address  

space,  so  TCP/IP  usually  assigns  socket  numbers  in  ascending  order.  In COBOL,  

the  programmer  uses  the  SOCKET  call  to  obtain  a new  socket.  

The  socket  function  specifies  the  address  family  (AF_INET),  the  type  of  socket  

(STREAM),  and  the  particular  networking  protocol  (PROTO)  to use.  (When  PROTO  

is  set  to  zero,  the  TCP/IP  address  space  automatically  uses  the  appropriate  

protocol  for  the  specified  socket  type).  Upon  return,  the  newly  allocated  socket’s  

descriptor  is  returned  in  RETCODE.  

For  an  example  of the  SOCKET  call,  see  “SOCKET”  on  page  174.  

Bind 

At  this  point  �2�, an  entry  in the  table  of  communications  has  been  reserved  for  

the  application.  However,  the  socket  has  no  port  or  IP address  associated  with  it 

until  the  BIND  call  is issued.  The  BIND  function  requires  three  parameters:  

 

Chapter  2. Introduction to TCP/IP for IMS 15



v   The  socket  descriptor  that  was  just  returned  by  the  SOCKET  call.  

v   The  number  of  the  port  on  which  the  server  wishes  to  provide  its  service  

v   The  IP  address  of  the  network  connection  on  which  the  server  is listening.  If  the  

application  wants  to  receive  connection  requests  from  any  network  interface,  the  

IP  address  should  be  set  to  zeros.

For  an  example  of  the  BIND  call,  see  “BIND”  on  page  68.  

Listen 

After  the  bind,  the  server  has  established  a specific  IP  address  and  port  upon  

which  other  TCP/IP  hosts  can  request  connection.  Now  it must  notify  the  TCP/IP  

address  space  that  it  intends  to  listen  for  connections  on  this  socket.  The  server  

does  this  with  the  LISTEN�3�  call,  which  puts  the  socket  into  passive  open  mode.  

Passive  open  mode  describes  a socket  that  can  accept  connection  requests,  but  cannot  

be  used  for  communication.  A  passive  open  socket  is used  by  a listener  program  

like  the  IMS  Listener  to await  connection  requests.  Sockets  that  are  directly  used  

for  communication  between  client  and  server  are  known  as  active  open  sockets.  In  

passive  open  mode,  the  socket  is open  for  client  contacts;  it  also  establishes  a 

backlog  queue  of  pending  connections.  

This  LISTEN  call  tells  the  TCP/IP  address  space  that  the  server  is ready  to  begin  

accepting  connections.  Normally,  only  the  number  of  requests  specified  by  the  

BACKLOG  parameter  will  be  queued.  

For  an  example  of  the  LISTEN  call,  see  “LISTEN”  on  page  126.  

Accept 

At  this  time  �5�, the  server  has  obtained  a socket,  bound  the  socket  to  an  IP  

address  and  port,  and  issued  a LISTEN  to open  the  socket.  The  server  main  task  is 

now  ready  for  a client  to  request  connection  �4�. The  ACCEPT  call  temporarily  

blocks  further  progress.  

5 

The  default  mode  for  Accept  is blocking.  Accept  behavior  changes  when  the  socket  

is non-blocking.  The  FCNTL()  or  IOCTL()  calls  can  be  used  to  disable  blocking  for  

a given  socket.  When  this  is  done,  calls  that  would  normally  block  continue  

regardless  of  whether  the  I/O  call  has  completed.  If  a socket  is  set  to non-blocking  

and  an  I/O  call  issued  to  that  socket  would  otherwise  block  (because  the  I/O  call  

has  not  completed)  the  call  returns  with  ERRNO  35  (EWOULDBLOCK).  

When  the  ACCEPT  call  is  issued,  the  server  passes  its  socket  descriptor,  S, to  

TCP/IP.  When  the  connection  is established,  the  ACCEPT  call  returns  a new  socket  

descriptor  (in  RETCODE)  that  represents  the  connection  with  the  client.  This  is  the  

socket  upon  which  the  server  subtask  communicates  with  the  client. Meanwhile,  

the  original  socket  (S)  is  still  allocated,  bound  and  ready  for  use  by  the  main  task  

to  accept  subsequent  connection  requests  from  other  clients.  

To accept  another  connection,  the  server  calls  ACCEPT  again.  By  repeatedly  calling  

ACCEPT,  a concurrent  server  can  establish  simultaneous  sessions  with  multiple  

clients.  

For  an  example  of  the  ACCEPT  call,  see  “ACCEPT”  on  page  65.  

5. Blocking  is a UNIX  concept  in which the requesting process is suspended  until the request is satisfied.  It is roughly analogous  to 

the MVS wait. A socket  is blocked  while an I/O call waits for an event to complete.  If a socket is set to block, the calling  program  

is suspended  until  the expected  event  completes.  

 

16 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



GIVESOCKET and TAKESOCKET  

The  GIVESOCKET  and  TAKESOCKET  functions  are  not  supported  with  the  IMS  

TCP/IP  OTMA  Connection  server.  A  server  handling  more  than  one  client  

simultaneously  acts  like  a dispatcher  at a messenger  service.  A  messenger  

dispatcher  gets  telephone  calls  from  people  who  want  items  delivered  and  the  

dispatcher  sends  out  messengers  to  do  the  work.  In  a similar  manner,  the  server  

receives  client  requests,  and  then  spawns  tasks  to  handle  each  client.  

In  UNIX-based  servers,  the  fork()  system  call  is used  to dispatch  a new  subtask  

after  the  initial  connection  has  been  established.  When  the  fork()  command  is used,  

the  new  process  automatically  inherits  the  socket  that  is connected  to  the  client.  

Because  of  architectural  differences,  CICS  sockets  does  not  implement  the  fork()  

system  call.Tasks  use  the  GIVESOCKET  and  TAKESOCKET  functions  to  pass  

sockets  from  parent  to  child.  The  task  passing  the  socket  uses  GIVESOCKET,  and  

the  task  receiving  the  socket  uses  TAKESOCKET.  See  “GIVESOCKET  and  

TAKESOCKET  calls”  on  page  21  for  more  information  about  these  calls.  

Read and write 

Once  a client  has  been  connected  with  the  server,  and  the  socket  has  been  

transferred  from  the  main  task  (parent)  to the  subtask  (child),  the  client  and  server  

exchange  application  data,  using  various  forms  of  READ/WRITE  calls.  See  

“Read/Write  calls  —  the  conversation”  on  page  18  for  details  about  these  calls.  

Client TCP/IP calls 

The  TCP/IP  call  sequence  for  a client  is simpler  than  the  one  for  a concurrent  

server.  A  client  only  has  to support  one  connection  and  one  conversation.  A  

concurrent  server  obtains  a socket  upon  which  it can  listen  for  connection  requests,  

and  then  creates  a new  socket  for  each  new  connection.  

The socket call 

In  the  same  manner  as  the  server,  the  first  call  �1�  issued  by  the  client  is  the  

SOCKET  call.  This  call  causes  allocation  of  the  socket  on  which  the  client  will  

communicate.  

CALL  ’EZASOKET’  USING  SOCKET-FUNCTION  SOCTYPE  PROTO  ERRNO  RETCODE.  

See  “SOCKET”  on  page  174  for  a sample  of the  SOCKET  call.  

The connect call 

Once  the  SOCKET  call  has  allocated  a socket  to  the  client,  the  client  can  then  

request  connection  on  that  socket  with  the  server  through  use  of  the  CONNECT  

call  �4�. 

The  CONNECT  call  attempts  to  connect  socket  descriptor  (S)  to  the  server  with  an  

IP  address  of  NAME.  The  CONNECT  call  blocks  until  the  connection  is accepted  

by  the  server.  On  successful  return,  the  socket  descriptor  (S)  can  be  used  for  

communication  with  the  server.  

This  is  essentially  the  same  sequence  as that  of the  server;  however,  the  client  need  

not  issue  a BIND  command  because  the  port  of a client  has  little  significance.  The  

client  need  only  issue  the  CONNECT  call,  which  issues  an  implicit  BIND.  When  

the  CONNECT  call  is used  to  bind  the  socket  to  a port,  the  port  number  is 

assigned  by  the  system  and  discarded  when  the  connection  is closed.  Such  a port  

 

Chapter  2. Introduction to TCP/IP for IMS 17



is known  as an  ephemeral  port  because  its  life  is very  short  as  compared  with  that  

of  a concurrent  server,  whose  port  remains  available  for  a prolonged  time.  

See  “CONNECT”  on  page  72  for  an  example  of the  CONNECT  call.  

Read/Write  calls — the conversation 

A variety  of  I/O  calls  is available  to the  programmer.  The  READ  and  WRITE,  

READV  and  WRITEV,  and  SEND�6�  and  RECV�6�  calls  can  be  used  only  on  

sockets  that  are  in  the  connected  state.  The  SENDTO  and  RECVFROM,  and  

SENDMSG  and  RECVMSG  calls  can  be  used  regardless  of whether  a connection  

exists.  

The  WRITEV,  READV,  SENDMSG,  and  RECVMSG  calls  provide  the  additional  

features  of  scatter  and  gather  data.  Scattered  data  can  be  located  in multiple  data  

buffers.  The  WRITEV  and  SENDMSG  calls  gather  the  scattered  data  and  send  it. 

The  READV  and  RECVMSG  calls  receive  data  and  scatter  it into  multiple  buffers.  

The  WRITE  and  READ  calls  specify  the  socket  S on  which  to  communicate,  the  

address  in  storage  of  the  buffer  that  contains,  or  will  contain,  the  data  (BUF),  and  

the  amount  of  data  transferred  (NBYTE).  The  server  uses  the  socket  that  is 

returned  from  the  ACCEPT  call.  

These  functions  return  the  amount  of data  that  was  either  sent  or  received.  Because  

stream  sockets  send  and  receive  information  in  streams  of  data,  it can  take  more  

than  one  call  to  WRITE  or  READ  to  transfer  all  of  the  data.  It is up  to  the  client  

and  server  to  agree  on  some  mechanism  of signalling  that  all  of  the  data  has  been  

transferred.  

v   For  an  example  of  the  READ  call,  see  “READ”  on  page  131.  

v   For  an  example  of  the  WRITE  call,  see  “WRITE”  on  page  178.

The close call 

When  the  conversation  is over, both  the  client  and  server  call  CLOSE  to  end  the  

connection.  The  CLOSE  call  also  deallocates  the  socket,  freeing  its  space  in  the  

table  of  connections.  For  an  example  of  the  CLOSE  call,  see  “CLOSE”  on  page  70  

Other socket calls 

Several  other  calls  that  are  often  used  —  particularly  in  servers  —  are  the  SELECT  

call,  the  GIVESOCKET/TAKESOCKET  calls,  and  the  IOCTL  and  FCTL  calls.  These  

calls  are  discussed  next.  

The SELECT call 

Applications  such  as  concurrent  servers  often  handle  multiple  sockets  at  once.  In 

such  situations,  the  SELECT  call  can  be  used  to  simplify  the  determination  of  

which  sockets  have  data  to  be  read,  which  are  ready  for  data  to  be  written,  and  

which  have  pending  exceptional  conditions.  An  example  of  how  the  SELECT  call  is  

used  can  be  found  in  Figure  6 on  page  19.  

 

 

18 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



In  this  example,  the  application  sends  bit  sets  (the  xSNDMASK  sets)  to  indicate  

which  sockets  are  to  be  tested  for  certain  conditions,  and  receives  another  set  of  bits  

(the  xRETMASK  sets)  from  TCP/IP  to  indicate  which  sockets  meet  the  specified  

conditions.  

The  example  also  indicates  a time-out.  If  the  time-out  parameter  is NULL,  this  is 

the  C language  API  equivalent  of a wait  forever.  (In  Sockets  Extended,  a negative  

timeout  value  is  a wait  forever.)  If the  time-out  parameter  is nonzero,  SELECT  only  

waits  the  timeout  amount  of time  for  at least  one  socket  to  become  ready  on  the  

indicated  conditions.  This  is useful  for  applications  servicing  multiple  connections  

that  cannot  afford  to  wait  for  data  on  a single  connection.  If the  xSNDMASK  bits  

are  all  zero,  SELECT  acts  as a timer. 

With  the  Socket  SELECT  call,  you  can  define  which  sockets  you  want  to test  (the  

xSNDMASKs)  and  then  wait  (block)  until  one  of the  specified  sockets  is ready  to  

be  processed.  When  the  SELECT  call  returns,  the  program  knows  only  that  some  

event  has  occurred,  and  it must  test  a set  of bit  masks  (xRETMASKs)  to  determine  

which  of  the  sockets  had  the  event,  and  what  the  event  was.  

To maximize  performance,  a server  should  only  test  those  sockets  that  are  active.  

The  SELECT  call  allows  an  application  to select  which  sockets  will  be  tested,  and  

for  what.  When  the  Select  call  is issued,  it blocks  until  the  specified  sockets  are  

ready  to  be  serviced  (or, optionally)  until  a timer  expires.  When  the  select  call  

returns,  the  program  must  check  to  see  which  sockets  require  service,  and  then  

process  them.  

To allow  you  to  test  any  number  of  sockets  with  just  one  call  to  SELECT,  place  the  

sockets  to  test  into  a bit  set,  passing  the  bit  set  to the  select  call.  A  bit  set  is a string  

of  bits  where  each  possible  member  of  the  set  is represented  by  a 0 or  a 1. If the  

member’s  bit  is 0, the  member  is not  to  be  tested.  If the  member’s  bit  is 1,  the  

member  is  to  be  tested.  Socket  descriptors  are  actually  small  integers.  If socket  3 is 

a member  of  a bit  set,  then  bit  3 is set;  otherwise,  bit  3 is zero.  

Therefore,  the  server  specifies  3 bit  sets  of sockets  in  its  call  to  the  SELECT  

function:  one  bit  set  for  sockets  on  which  to receive  data;  another  for  sockets  on  

which  to  write  data;  and  any  sockets  with  exception  conditions.  The  SELECT  call  

    WORKING  STORAGE  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’SELECT’.  

        01  MAXSOC           PIC  9(8)  BINARY  VALUE  50. 

        01  TIMEOUT.  

            03  TIMEOUT-SECONDS    PIC  9(8)  BINARY.  

            03  TIMEOUT-MILLISEC   PIC 9(8)  BINARY.  

        01  RSNDMASK         PIC X(50).  

        01  WSNDMASK         PIC X(50).  

        01  ESNDMASK         PIC X(50).  

        01  RRETMASK         PIC X(50).  

        01  WRETMASK         PIC X(50).  

        01  ERETMASK         PIC X(50).  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  MAXSOC  TIMEOUT  

                        RSNDMASK  WSNDMASK  ESNDMASK  

                        RRETMASK  WRETMASK  ERETMASK  

                        ERRNO  RETCODE.  

Figure  6. The  SELECT  call

 

Chapter  2. Introduction to TCP/IP for IMS 19



tests  each  selected  socket  for  activity  and  returns  only  those  sockets  that  have  

completed.  On  return,  if a socket’s  bit  is raised,  the  socket  is ready  for  reading  data  

or  for  writing  data,  or  an  exceptional  condition  has  occurred.  

The  format  of  the  bit  strings  is a bit  awkward  for  an  assembler  programmer  who  is 

accustomed  to  bit  strings  that  are  counted  from  left  to right.  Instead,  these  bit  

strings  are  counted  from  right  to left.  

The  first  rule is that  the  length  of  a bit  string  is always  expressed  as  a number  of  

fullwords.  If the  highest  socket  descriptor  you  want  to  test  is socket  descriptor  

number  three,  you  have  to pass  a 4-byte  bit  string,  because  this  is the  minimum  

length.  If  the  highest  number  is 32,  you  must  pass  8 bytes  (2 fullwords).  

The  number  of  fullwords  in  each  select  mask  can  be  calculated  as  

INT(highest  socket  descriptor  / 32)  + 1 

Look  at  the  first  fullword  you  pass  in  a bit  string  in  Table 1.  

 Table 1. First  fullword  passed  in a bit string  in select  

Socket  

descriptor  

numbers  

represented  by 

byte  Bit  0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit  7 

Byte  0 31  30 29 28 27 26 25 24 

Byte  1 23  22 21 20 19 18 17 16 

Byte  2 15  14 13 12 11 10 9 8 

Byte  3 7 6 5 4 3 2 1 0
  

In  these  examples,  we  use  standard  assembler  numbering  notation;  the  left-most  

bit  or  byte  is relative  zero.  

If you  want  to  test  socket  descriptor  number  5 for  pending  read  activity,  you  raise  

bit  2 in  byte  3 of  the  first  fullword  (X'00000020').  If  you  want  to  test  both  socket  

descriptor  4 and  5, you  raise  both  bit  2 and  bit  3 in  byte  3 of  the  first  fullword  

(X'00000030').  

If you  want  to  test  socket  descriptor  number  32,  you  must  pass  two  fullwords,  

where  the  numbering  scheme  for  the  second  fullword  resembles  that  of  the  first.  

Socket  descriptor  number  32 is bit  7 in  byte  3 of  the  second  fullword.  If  you  want  

to  test  socket  descriptors  5 and  32,  you  pass  two  fullwords  with  the  following  

content:  X'0000002000000001'.  

The  bits  in  the  second  fullword  represents  the  socket  descriptor  numbers  shown  in 

Table  2.  

 Table 2. Second  fullword  passed  in a bit string  in select  

Socket  

descriptor  

numbers  

represented  by 

byte  Bit  0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit  7 

Byte  4 63  62 61 60 59 58 57 56 

 

20 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Table 2. Second  fullword  passed  in a bit string  in select  (continued)  

Socket  

descriptor  

numbers  

represented  by 

byte  Bit  0 Bit 1 Bit 2 Bit  3 Bit 4 Bit 5 Bit 6 Bit 7 

Byte  5 55 54 53  52  51 50 49 48 

Byte  6 47 46 45  44  43 42 41 40 

Byte  7 39 38 37  36  35 34 33 32
  

If  you  develop  your  program  in  COBOL  or  PL/I,  you  may  find  that  the  EZACIC06  

routine,  which  is  provided  as part  of TCP/IP  for  MVS,  will  make  it easier  for  you  

to  build  and  test  these  bit  strings.  This  routine  translates  between  a character  string  

mask  (one  byte  per  socket)  and  a bit  string  mask  (one  bit  per  socket).  

In  addition  to  its  function  of reporting  completion  on  Read/Write  events,  the  

SELECT  call  can  also  be  used  to  determine  completion  of  events  associated  with  

the  LISTEN  and  GIVESOCKET  calls.  

v   When  a connection  request  is pending  on  the  socket  for  which  the  main  process  

issued  the  LISTEN  call,  it will  be  reported  as a pending  read.  

v   When  the  parent  process  has  issued  a GIVESOCKET,  and  the  child  process  has  

taken  the  socket,  the  parent’s  socket  descriptor  is selected  with  an  exception  

condition.  The  parent  process  is expected  to  close  the  socket  descriptor  when  

this  happens.

IOCTL and FCNTL calls 

In  addition  to  SELECT,  applications  can  use  the  IOCTL  or  FCNTL  calls  to  help  

perform  asynchronous  (nonblocking)  socket  operations.  An  example  of  the  use  of  

the  IOCTL  call  is  shown  in  “IOCTL”  on  page  119. 

The  IOCTL  call  has  many  functions;  establishing  blocking  mode  is  only  one  of  its  

functions.  The  value  in  COMMAND  determines  which  function  IOCTL  will  

perform.  The  REQARG  of 0 specifies  non-blocking  (a  REQARG  of 1 would  request  

that  socket  S be  set  to  blocking  mode).  When  this  socket  is  passed  as  a parameter  

to  a call  that  would  block  (such  as RECV  when  data  is not  present),  the  call  returns  

with  an  error  code  in  RETCODE,  and  ERRNO  set  to  EWOULDBLOCK. Setting  the  mode  

of  the  socket  to  nonblocking  allows  an  application  to continue  processing  without  

becoming  blocked.  

GIVESOCKET and TAKESOCKET  calls 

The  GIVESOCKET  and  TAKESOCKET  functions  are  not  supported  with  the  IMS  

TCP/IP  OTMA  Connection  server.  Tasks use  the  GIVESOCKET  and  TAKESOCKET  

functions  to  pass  sockets  from  parent  to  child.  

For  programs  using  TCP/IP  for  MVS,  each  task  has  its  own  unique  8-byte  name.  

The  main  server  task  passes  three  arguments  to  the  GIVESOCKET  call:  

v   The  socket  number  it wants  to give  

v   Its  own  name  

6 

v   The  name  of  the  task  to  which  it wants  to give  the  socket

6. If a task does not know its address space name, it can use the GETCLIENTID  function  call to determine  its unique name. 

 

Chapter  2. Introduction to TCP/IP for IMS 21



If the  server  does  not  know  the  name  of the  subtask  that  will  receive  the  socket,  it 

blanks  out  the  name  of  the  subtask.  

7 The  first  subtask  calling  TAKESOCKET  with  

the  server’s  unique  name  receives  the  socket.  

The  subtask  that  receives  the  socket  must  know  the  main  task’s  unique  name  and  

the  number  of  the  socket  that  it is to receive.  This  information  must  be  passed  

from  main  task  to  subtask  in a work  area  that  is common  to  both  tasks.  

v   In  IMS,  the  parent  task  name  and  the  number  of the  socket  descriptor  are  passed  

from  parent  (Listener)  to child  (MPP)  through  the  message  queue.  

v   IN  CICS,  the  parent  task  name  and  the  socket  descriptor  number  are  passed  

from  the  parent  (Listener)  to the  transaction  program  by  means  of`  the  EXEC  

CICS  START and  EXEC  CICS  RETREIVE  function.

Because  each  task  has  its  own  socket  table,  the  socket  descriptor  obtained  by  the  

main  task  is  not  the  socket  descriptor  that  the  subtask  will  use.  When  

TAKESOCKET  accepts  the  socket  that  has  been  given,  the  TAKESOCKET  call  

assigns  a new  socket  number  for  the  subtask  to use.  This  new  socket  number  

represents  the  same  connection  as  the  parent’s  socket.  (The  transferred  socket  

might  be  referred  to  as  socket  number  54  by  the  parent  task  and  as socket  number  

3 by  the  subtask;  however,  both  socket  descriptors  represent  the  same  connection.)  

Once  the  socket  has  successfully  been  transferred,  the  TCP/IP  address  space  posts  

an  exceptional  condition  on  the  parent’s  socket.  The  parent  uses  the  SELECT  call  to  

test  for  this  condition.  When  the  parent  task  SELECT  call  returns  with  the  

exception  condition  on  that  socket  (indicating  that  the  socket  has  been  successfully  

passed)  the  parent  issues  CLOSE  to complete  the  transfer  and  deallocate  the  socket  

from  the  main  task.  

To continue  the  sequence,  when  another  client  request  comes  in,  the  concurrent  

server  (Listener)  gets  another  new  socket,  passes  the  new  socket  to  the  new  

subtask,  and  dissociates  itself  from  that  connection.  And  so  on.  

Summary 

To summarize,  the  process  of passing  the  socket  is accomplished  in  the  following  

way:  

v   After  creating  a subtask,  the  server  main  task  issues  the  GIVESOCKET  call  to  

pass  the  socket  to  the  subtask.  If  the  subtask’s  address  space  name  and  subtask  

ID  are  specified  in  the  GIVESOCKET  call,  (as  with  CICS)  only  a subtask  with  a 

matching  address  space  and  subtask  ID  can  take  the  socket.  If this  field  is set  to 

blanks,  (as  with  IMS)  any  MVS  address  space  requesting  a socket  can  take  this  

socket.  

v   The  server  main  task  then  passes  the  socket  descriptor  and  concurrent  server’s  

ID  to  the  subtask  using  some  form  of  commonly  addressable  technique  such  as  

the  IMS  Message  Queue.  

v   The  concurrent  server  issues  the  SELECT  call  to determine  when  the  

GIVESOCKET  has  successfully  completed.  

v   The  subtask  calls  TAKESOCKET  with  the  concurrent  server’s  ID  and  socket  

descriptor  and  uses  the  resulting  socket  descriptor  for  communication  with  the  

client.  

v   When  the  GIVESOCKET  has  successfully  completed,  the  concurrent  server  issues  

the  CLOSE  call  to  complete  the  handoff.

7. This is the case in IMS because  the Listener  has no way of knowing  which Message Processing Region will inherit  the socket. 

 

22 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



An  example  of  a concurrent  server  is the  IMS  Listener.  It is described  in  Chapter  6,  

“How  to  customize  and  operate  the  IMS  Listener,”  on  page  55.  Figure  5 on  page  14  

shows  a concurrent  server.  

What you need to run IMS TCP/IP 

IMS  TCP/IP  using  the  IMS  Listener  and  IMS  Assist  Module  is designed  for  use  on  

an  MVS/SP  host  system  running  IMS/ESA  Version  4 or  later.  

A  TCP/IP  host  can  communicate  with  any  remote  IMS  or  non-IMS  system  that  

runs TCP/IP.  The  remote  system  can,  for  example,  run a UNIX  or  OS/2  operating  

system.  

TCP/IP services 

TCP/IP  Services  is not  described  in  this  document  because  it  is a prerequisite  for  

IMS  TCP/IP.  However,  much  material  from  the  TCP/IP  library  has  been  repeated  

in  this  document  in an  attempt  to make  it independent  of that  library.  

A summary of what IMS TCP/IP provides 

Figure  7 on  page  24  shows  how  IMS  TCP/IP  allows  IMS  applications  to access  the  

TCP/IP  network.  It  shows  that  IMS  TCP/IP  makes  the  following  facilities  available  

to  your  application  programs:  

The  sockets  calls  (1  and  2 in  Figure  7 on  page  24)  

The  socket  API  is available  both  in  the  C language  and  in  COBOL,  PL/I,  or  

assembler  language.  It includes  the  following  socket  calls:  

 Basic  calls:  socket,  bind,  connect,  listen,  accept,  

shutdown,  close  

Read/write  calls:  send,  sendto,  recvfrom,  read,  write  

Advanced  calls:  gethostname,  gethostbyaddr,  gethostbyname,  

getpeername,  getsockname,  getsockopt,  

setsockopt,  fcntl,  ioctl,  select  

IBM-specific  calls:  initapi,  getclientid,  givesocket,  takesocket  

  

 

 

Chapter  2. Introduction to TCP/IP for IMS 23



IMS  TCP/IP  provides  for  both  connection-oriented  and  connectionless  (datagram)  

services,  using  the  TCP  and  UDP  protocols  respectively.  TCP/IP  does  not  support  

the  IP  (raw  socket)  protocol.  

The  Listener  (3)  

IMS  TCP/IP  includes  a concurrent  server  application,  called  the  Listener,  to  which  

the  client  makes  initial  connection  requests.  The  Listener  passes  the  connection  

request  on  to  the  user-written  server,  which  is typically  an  IMS  Message  Processing  

Program.  

Conversion  routines  (4)  

IMS  TCP/IP  provides  the  following  conversion  routines,  which  are  part  of the  base  

TCP/IP  Services  product:  

v   An  EBCDIC-to-ASCII  conversion  routine,  used  to  convert  EBCDIC  data  to  the  

ASCII  format  used  in  TCP/IP  networks  and  workstations.  The  conversion  

routine  is  run by  calling  the  EBCDIC-to-ASCII  translation  table  EZACIC04,  

documented  in  the  z/OS  Communications  Server:  IP  Configuration  Reference. 

v   A corresponding  ASCII-to-EBCDIC  conversion  routine  (EZACIC05),  documented  

in  the  z/OS  Communications  Server:  IP  Configuration  Reference. 

v   An  alternative  EBCDIC-to-ASCII  conversion  routine  (EZACIC14),  which  uses  the  

translation  table  documented  in  “EZACIC14”  on  page  197.  

v   Corresponding  ASCII-to-EBCDIC  conversion  routine  (EZACIC15),  which  uses  

the  translation  table  documented  in  “EZACIC15”  on  page  199.  

v   A module  that  converts  COBOL  character  arrays  into  bit-mask  arrays  used  in 

TCP/IP.  This  module,  which  is run by  calling  EZACIC06,  is used  with  the  socket  

SELECT  call.  

v   A module  that  interprets  a C language  structure  known  as Hostent  (EZACIC08).

User
Applications TCP/IP

network

MVS

IMS

TCP/IP
for

MVS

Applications Operating
Environment

1. C language
socket calls

2. COBOL,Ass.
sockets calls

5. Conversion
routines

4. Listener

3. IMS OTMA
Connection
Server

TCP/IP for IMS
  

Figure  7. How  user  applications  access  TCP/IP  networks  with  IMS  TCP/IP

 

24 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|
|
|
|

|
|

|
|

|
|

|
|
|

|



Part  2. Using  the  IMS  Listener  

 

© Copyright  IBM Corp. 1994, 2005 25



26 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Chapter  3.  Principles  of  operation  

This  chapter  describes  the  operation  of the  Listener  and  the  Assist  module.  Its  

purpose  is to  explain  how  a TCP/IP-to-IMS  connection  is  established,  and  how  the  

client  and  server  exchange  application  data.  For  specific  data  formats  and  the  

socket  protocols  used  when  coding  a TCP/IP  client  or  server,  see  Chapter  4,  “How  

to  write  an  IMS  TCP/IP  client  program,”  on  page  39  and  Chapter  5, “How  to  write  

an  IMS  TCP/IP  server  program,”  on  page  47.  

Overview 

The  IMS  TCP/IP  feature  consists  of  3 components:  the  IMS  Listener,  the  IMS  Assist  

module,  and  the  Sockets  Extended  API.  

8 The  Sockets  Extended  API  can  either  be  

used  independently,  or  with  the  other  2 components.  When  the  Sockets  Extended  

interface  is  used  independently,  an  IMS  MPP  can  either  serve  as  a client  or  as a 

server.  

When  the  IMS  Listener  is used,  the  IMS  MPP  acts  as  a server,  and  the  TCP/IP  

remote  acts  as  the  client.  The  Assist  module  is dependent  upon  the  IMS  Listener;  

therefore,  when  the  Assist  module  is used,  IMS  is the  server.  

Because  the  Listener  and  the  Assist  module  are  designed  to  support  IMS  as  a 

server,  the  next  several  chapters  are  based  on  that  assumption.  For  a discussion  of  

IMS  as  client, see  “When  the  client  is an  IMS  MPP”  on  page  36,  later  in this  

chapter,  and  the  sample  program  on  “Sample  program  - IMS  MPP  client”  on  page  

270.  

The role of the IMS Listener 

Since  the  IMS  Transaction  Manager  does  not  support  direct  connection  with  

TCP/IP,  some  other  program  must  establish  that  connection.  When  IMS  is  acting  as  

a server  to  a TCP/IP-connected  client, that  program  is the  IMS  Listener  —  an  IMS  

batch  message  program  (BMP)  whose  main  function  it  is to  establish  connection  

between  the  client  and  the  requested  IMS  transaction.  

When  the  client  requests  the  services  of an  IMS  message  processing  program  

(MPP),  it  sends  a message  to the  IMS  host  containing  the  transaction  code  of that  

MPP.  The  IMS  Listener  receives  that  request  and  schedules  the  requested  MPP;  it  

then  holds  the  connection  until  the  MPP  starts  and  accepts  the  connection.  Once  

the  MPP  owns  the  connection,  the  Listener  is no  longer  involved  with  it.  

The role of the IMS Assist module 

The  IMS  Assist  module  is a subroutine,  called  from  an  IMS  MPP  (server)  that  

translates  conventional  IMS  communication  calls  into  the  corresponding  socket  

calls.  Its  use  is optional.  Its  purpose  is to  shield  the  programmer  from  having  to  

understand  TCP/IP  programming.  To exchange  data  with  the  client,  the  server  

program  issues  traditional  IMS  message  queue  calls  (GU,  GN,  ISRT).  These  calls  

are  intercepted  by  the  Assist  module,  which  issues  the  appropriate  socket  calls.  

8. Shipped  with the TCP/IP  Services  base  product. 

 

© Copyright  IBM Corp. 1994, 2005 27



Use of the IMS Assist module — pros and cons 

The  Assist  module  makes  message  processing  program  (MPP)  coding  easier,  but  is 

accompanied  by  a series  of trade-offs.  This  section  discusses  the  trade-offs  between  

implicit  mode  and  explicit  mode.  

v   Implicit-mode  application  programmers  use  conventional  IMS  Transaction  

Manager  (TM)  calls  and  require  no  special  training;  explicit-mode  application  

programmers  must  understand  TCP/IP  socket  calls  and  protocols.  

v   Implicit-mode  transactions  must  adhere  to  constraints  imposed  by  the  IMS  

Assist  module.  By  contrast,  explicit-mode  transactions  use  the  TCP/IP  socket  call  

interface  and  have  no  specific  protocol  requirements  other  than  the  orderly  

initiation  and  termination  of  the  transaction.  

v   Implicit-mode  transactions  obtain  their  message  input  from  the  IMS  message  

queue.  Since  the  Listener  must  put  the  input  message  segments  on  the  queue  

before  the  server  begins  execution,  the  client  sends  all  application  data  with  the  

transaction  request.  Explicit-mode  transactions  bypass  the  message  queue  for  all 

application  data  —  both  input,  and  output.  

v   Implicit-mode  transactions  are  limited  to  a single  GU-GN/ISRT  iteration  (one  

input  of one  or  more  segments,  followed  by  one  output  of one  or  more  

segments)  for  each  message  retrieved  from  the  IMS  message  queue.  By  contrast,  

explicit-mode  transactions  have  no  such  limit.  Unlimited  read/write  sequences  

make  it  possible  to  design  conversations  in  which  the  two  programs  talk  back  

and  forth  without  limit.  

9

Client/server logic flow 

The  following  section  describes  the  flow  of  a client/server  application  through  the  

system  —  starting  with  the  client  and  continuing  on  through  the  Listener  to  the  

server.  The  complete  transaction,  including  initiation,  execution,  and  termination  is 

traced.  

How the connection is established 

The  following  paragraphs  describe  the  functions  the  Listener  performs  in  

coordinating  between  the  client  and  the  server.  With  the  exception  of  paragraph  6, 

the  Listener  performs  the  same  steps  for  both  explicit-  and  implicit-mode  servers.  

Paragraph  numbers  correspond  to  the  step  numbers  in  Figure  8. 

 

9. Because  of the potential  for long running conversations,  MPPs with multiple  conversational  iterations  should be carefully  

designed  to avoid the possibility  of extended  message  processing region occupancy.  

 

28 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



1.   Connection  request  

The  IMS  Listener  is an  IMS  batch  message  processing  program  (BMP).  When  

the  Listener  starts,  it establishes  a socket  on  which  it  can  “listen”  for  connection  

requests.  It  binds  itself  to the  specified  port,  and  then  listens  for  requests  from  

TCP/IP  clients.  When  a client  sends  a connection  request,  MVS  TCP/IP  notifies  

the  Listener  of  the  request.  

2.   Connection  processing  

When  the  Listener  receives  a connection  request,  it issues  a socket  ACCEPT  

call,  which  creates  a new  socket  specifically  for  that  connection.  

3.   Transaction-Request  Message  

IMS Message
Queue

Server

Connection
Request

Client

1

IMS Transaction Manager

MVS TCP/IP

IMS Listener

accept()

listen()

read TRM

verify transaction

ISRT TIM

read()
ISRT

givesocket()

SYNC

6*

5

4

3

2

1

client data}

7

8

*implicit-mode only

  

Figure  8. IMS  TCP/IP  message  flow  for transaction  initiation

 

Chapter  3. Principles  of operation  29



The  client  then  sends  a transaction-request  message  (TRM)  segment,  which  

includes  the  8-byte  name  of  the  requested  IMS  server  transaction  (otherwise  

known  as  the  TRANCODE).  

4.   Transaction  verification  

The  Listener  performs  several  tests  to  ensure  that  the  requested  transaction  

should  be  accepted:  

v   The  TRANCODE  is tested  against  IMS  Listener  configuration  file  

TRANSACTION  statements  to  ensure  that  the  requested  transaction  is 

eligible  to be  executed  from  a TCP/IP  client.  

v   If  security  data  is included  in  the  transaction-request  message  (TRM),  that  

data  is  passed  to  a user-written  security  exit.  The  purpose  of  this  exit  is to 

validate  the  credentials  of the  client  prior  to  allowing  the  transaction  to  be  

scheduled.  

v   The  Listener  issues  an  IMS  CHNG  call  to  a modifiable  alternate  PCB,  

specifying  the  TRANCODE  of  the  desired  transaction.  It then  issues  an  IMS  

INQY  call  to  ensure  that  the  transaction  is not  stopped  (due  to  previous  

abend  or  Master  Terminal  Operator  action).

The  following  actions  depend  on  the  results  of  the  verification:  

v   If  the  transaction  request  is rejected, the  IMS  Listener  returns  a request-status  

message  (RSM)  segment  to  the  client  with  an  indication  of  the  reason  for  

rejecting  the  request;  it then  closes  the  connection.  

v   If  the  transaction  request  is accepted  the  requested  transaction  is scheduled  

(the  Listener  does  not  return  a status  message  to  the  client).
5.   Transaction  Initiation  Message  (TIM)  

The  Listener  then  inserts  (ISRT)  a transaction  initiation  message  (TIM)  segment  

to  the  IMS  message  queue.  This  message  contains  information  needed  by  the  

server  program  when  it takes  responsibility  for  the  connection.  (Note  that  the  

client  sends  the  transaction  request  message  (TRM)  to the  Listener;  the  Listener  

sends  the  transaction  initiation  message  (TIM)  to  the  server.)  

6.   Client-to-server  input  data  transfer  (implicit  mode  only)  

If  the  transaction  is in  implicit  mode,  the  Listener  reads  the  client-to-server  

input  data  and  places  it on  the  message  queue.  

7.   Pass  the  socket  to  the  server  

Next,  the  Listener  issues  a GIVESOCKET  call,  which  makes  the  socket  available  

to  the  server  program.  

8.   Schedule  the  transaction  

Finally,  the  Listener  issues  an  IMS  SYNC  call  to  schedule  the  requested  IMS  

transaction  and  waits  for  the  server  program  to  take  responsibility  for  the  

connection.  

When  the  server  issues  a TAKESOCKET  call,  the  Listener  has  completed  its  

responsibility  for  the  socket  and  dissociates  itself  from  the  connection.  

Note:   The  Listener  is  a never-ending  IMS  Batch  Message  Program,  which  

processes  multiple  concurrent  transactions.  

How the server exchanges data with the client 

Once  the  server  begins  execution,  the  protocol  to  pass  input  data  to the  server  is a 

function  of  whether  the  transaction  mode  is  explicit  or  implicit.  

 

30 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Explicit-mode transactions 

The  following  section  describes  an  explicit-mode  server  program  which  exchanges  

application  data  with  a client.  

Step  numbers  in  Figure  9 correspond  to  the  paragraph  numbers  below.  

 

1.   Once  an  explicit-mode  server  begins  execution,  it issues  an  IMS  GU  call  to  

obtain  the  transaction  initiation  message  (TIM)  segment,  an  INITAPI  to  

establish  connection  with  MVS  TCP/IP,  and  a TAKESOCKET  call  to  establish  

direct  connection  between  client  and  server.  

IMS Message
Queue

Server

Client

IMS Transaction Manager

MVS TCP/IP

IMS Listener

2

3

4

1

GU  TIM

takesocket()

read()

write()

read()

write()

database calls

GU TIM

close()

  

Figure  9. IMS  TCP/IP  message  flow  for explicit-mode  input/output

 

Chapter  3. Principles  of operation  31



2.   Subsequently,  socket  READ  and  WRITE  commands  are  used  to  exchange  data  

between  client  and  server.  The  conversation  can  consist  of any  number  of 

database  calls  and  socket  READ/WRITE  exchanges.  

10 Client  data  is not  passed  

through  the  IMS  message  queue  and  is not  subject  to any  predefined  protocols.  

3.   The  transaction  indicates  completion  by  issuing  another  GU  to  the  I/O  PCB.  

This  notifies  the  Transaction  Manager  that  the  database  changes  should  be  

committed.  At  this  point,  the  server  program  might  send  a message  to  the  

client  indicating  that  the  database  changes  have  been  successfully  completed.  

If  another  message  awaits  this  transaction,  the  GU  will  cause  the  first  segment  

of  that  message  to  be  retrieved  and  the  program  should  issue  a new  

TAKESOCKET  call  to  start  the  process  again.  

4.   When  the  GU  call  returns  with  a QC  status  code,  the  server  ends  the  

conversation  by  closing  the  socket.

Implicit-mode transactions 

The  following  section  describes  how  the  Assist  module  and  the  server  program  

interact  to  exchange  application  data  with  the  client.  The  paragraph  numbers  

correspond  to  the  step  numbers  in  Figure  3.  

 

10. Because  of the potential  for long running conversations,  MPPs with multiple  conversational  iterations  should  be carefully 

designed  to avoid the possibility  of extended  message  processing region occupancy.  

 

32 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



1.   Server  GU  

GU  must  be  the  first  IMS  call  issued  by  the  server  to  the  I/O  PCB.  The  Assist  

module  retrieves  the  first  segment  from  the  message  queue  and  examines  it (for  

*LISTNR*  in the  first  field)  to determine  whether  it is  a transaction  initiation  

message.  (If  the  message  was  not  sent  by  the  Listener,  the  Assist  module  

assumes  the  transaction  was  started  by  an  SNA  terminal  and  immediately  

passes  the  input  segment  to  the  server.  In  this  case,  subsequent  I/O  PCB  calls  

(as  well  as  database  calls)  are  passed  directly  through  to  IMS  without  further  

consideration.)  

2.   Transaction  Initiation  Message  (TIM)  

IMS 
Message
Queue

Server

Client

IMSTM

MVS TCP/IP

Database calls and
I/O PCB calls can be
intermixed

IMS
Listener

Assist Module

GU TIM
takesocket()

GN appl data 1

GN appl data 2

GN appl data 3

accumulate output data

write() appl data 1

write() appl data 2

write() appl data 3

GU TIM

write() CSMOKY

close

GU IOPCB

GN IOPCB

GN IOPCB

ISRT   IOPCB

ISRT IOPCB

ISRT IOPCB

GU IOPCB

*

1 2

3

4

5
6

7

8

* 

  

Figure  10.  IMS  TCP/IP  message  flow  for implicit  mode  input/output

 

Chapter  3. Principles  of operation  33



If  the  message  was  sent  by  the  Listener,  the  initial  message  segment  is the  

transaction  initiation  message  (TIM);  the  Assist  module  does  not  return  it to the  

server.  Instead,  the  Assist  module  uses  the  TIM  contents  to issue  the  

TAKESOCKET  to  establish  connection  between  the  client  and  the  server  

program.  

3.   Server  input  data  

Once  the  server  owns  the  socket,  the  Assist  module  issues  a GN  to  retrieve  the  

first  segment  of  the  client  input  message  and  returns  it to the  server  program.  

Thus,  the  server  program  never  sees  the  TIM;  it receives  the  first  data  segment  

in  response  to  its  GU.  Subsequent  GN  calls  from  the  server  cause  the  Assist  

module  to  retrieve  the  remaining  segments  of the  message.  When  the  Assist  

module  reads  the  last  input  segment  for  that  transaction  from  the  message  

queue,  it receives  a QD  status  code  from  IMS,  which  it returns  to  the  server  

program.  

After  the  initial  GU  to  the  I/O  PCB,  server  GN  calls,  ISRT  calls,  and  database  

calls  can  be  intermixed.  

4.   Server  output  data  

When  the  server  program  issues  ISRT  calls  to  send  output  message  segments  to  

the  client,  the  IMS  Assist  module  accumulates  the  output  segments,  up  to 

maximum  of  32KB,  into  a buffer.  

5.   Commit  

The  server  signals  completion  by  issuing  a GU  to  the  I/O  PCB.  

6.   TCP/IP  writes  application  data  to  the  client.  

When  the  server  issues  the  GU,  the  Assist  module  issues  WRITE  calls  to  send  

the  data  to  the  client  and  passes  the  GU  to the  IMS  Transaction  Manager  to 

commit  the  database  changes.  

7.   Confirmation  

If  the  GU  is  successful,  (that  is, QC  status  or  spaces)  the  Assist  module  sends  a 

complete-status  message  segment  (CSM)  to the  client  to  confirm  the  successful  

commit  and  passes  the  status  code  back  to  the  server.  

8.   Close  the  socket  

Once  the  complete-status  message  has  been  sent  to  the  client,  the  Assist  module  

closes  the  socket,  ending  the  connection.  

If  the  GU  in  the  previous  step  resulted  in  a 'bb'  status  code  (indicating  

successful  return  of another  message)  the  program  logic  returns  to  step  2 to  

process  the  new  message.

How the IMS Listener manages multiple connection requests 

The  IMS  Listener  uses  2 queues  for  the  management  of connection  requests:  

1.   The  backlog  queue  (managed  by  MVS  TCP/IP)  contains  client  connection  

requests  that  have  not  yet  been  accepted  by  the  Listener.  If a client  requests  a 

connection  while  the  backlog  queue  is  full,  TCP/IP  rejects  the  connection  

request.  The  number  of requests  allowed  in  the  backlog  queue  is specified  in 

the  LISTENER  startup  configuration  statement  (BACKLOG  parameter),  see  

“LISTENER  statement”  on  page  57.  

2.   The  active  sockets  queue  contains  the  sockets  that  are  held  by  the  Listener  while  

they  wait  for  assignment  to a server  program.  Once  the  Listener  has  accepted  

the  connection,  the  connection  belongs  to the  Listener  until  it  is accepted  by  the  

server.  If  the  Listener  uses  all  of its  sockets  and  cannot  accept  any  more  

connections,  subsequent  requests  go  into  the  backlog  queue.  The  maximum  

 

34 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



number  of  sockets  available  is specified  in  the  LISTENER  startup  configuration  

statement,  (MAXACTSKT  parameter),  see  “LISTENER  statement”  on  page  57.

Use of the IMS message queue 

In  conventional  3270  applications,  the  IMS  message  queue  is a mechanism  for  

passing  communications  between  an  MPP  and  another  entity,  such  as  a 3270-type  

terminal,  or  another  message  processing  program  (MPP).  The  IMS  TCP/IP  feature  

uses  the  message  queue  for  communication  between  the  Listener  and  the  MPP.  

Messages  from  and  to  TCP/IP  hosts  bypass  IMS  message  format  services  (MFS).  

The  following  section  describes  how  IMS  TCP/IP  uses  the  IMS  message  queue:  

Input messages 

(Messages  that  are  input  to  the  MPP)  

v   Explicit-mode  transactions  only  use  the  message  queue  to pass  the  transaction  

initiation  message  (TIM)  from  the  Listener  to  the  server.  All  application  data  sent  

by  the  client  is  received  by  the  server  using  sockets  READ  calls,  thus  bypassing  

the  IMS  message  queue.  

v   Implicit-mode  transactions  use  the  message  queue  both  for  the  TIM  (which  is 

trapped  by  the  Assist  module  and  not  passed  on  to the  server)  and  for  all 

client-to-server  application  data  (which  is passed  to the  server  in  response  to  

IMS  GU,  GN  calls).

Output messages 

All  messages  that  are  output  from  the  server  go  directly  via  TCP/IP  to the  client;  

they  do  not  pass  through  the  message  queue.  

v   Explicit-mode  servers  use  socket  WRITE  calls  to  send  application  data  directly  to  

the  client.  

v   Implicit-mode  servers  use  the  IMS  ISRT  call  for  output,  but  the  inserted  data  is 

trapped  by  the  Assist  module  which,  in  turn,  issues  socket  WRITE  calls  to  send  

the  data  to  the  client.

Call sequence for the IMS Listener 

Although  you  will  probably  not  be  writing  a Listener  program,  it is  important  that  

you  match  the  sequence  of calls  issued  by  the  Listener  when  you  write  your  client  

program.  The  Listener  call  sequence  is:  

INITIALIZE  LISTENER  

INITAPI  

Connect  the  Listener  to  MVS  TCP/IP  at Listener  startup.  (This  call  is only  

used  in  programs  written  to  the  Sockets  Extended  interface.  

SOCKET  

Create  a socket  descriptor.  

BIND  Allocate  the  local  port  for  the  socket.  This  port  is used  by  clients  when  

requesting  connection  to IMS.  

LISTEN  

Create  a queue  for  incoming  connections.  

WAIT  FOR  CONNECTION  REQUEST  

SELECT  

Wait for  an  incoming  connection  request.  

 

Chapter  3. Principles  of operation  35



ACCEPT  

Accept  the  incoming  connection  request;  create  a new  socket  descriptor  to 

be  used  by  the  server  for  this  specific  connection.  

READ  Read  TRM;  determine  the  IMS  TRANCODE.  

CHNG  

Change  the  modifiable  alternate  PCB  to reflect  the  desired  IMS  

TRANCODE.  

INQY  Ensure  the  desired  IMS  TRANCODE  is available  for  scheduling.  

ISRT  Use  the  alternate  PCB  to  insert  the  transaction  initiation  message  (TIM)  

and  pass  control  information  and  user  input  data  to  the  server.  

GIVESOCKET  

Pass  the  newly  created  socket  to the  server.  

SYNC  Schedule  the  requested  transaction.  

SELECT  

Wait for  the  server  to  take  the  socket.  

CLOSE  

Release  the  socket.  

END  OF  CONNECTION  REQUEST  

 Return  to  ″WAIT  FOR  CONNECTION  REQUEST″ 

SHUTDOWN  LISTENER  

CLOSE  

Close  the  socket  through  which  the  Listener  receives  connection  requests  

from  MVS  TCP/IP.  

TERMAPI  

Disconnect  the  Listener  from  MVS  TCP/IP  before  shutting  down

Application design considerations 

The  following  is a set  of  guidelines  and  limitations  that  should  be  considered  when  

designing  IMS  TCP/IP  applications.  

Programs that are not started by the IMS Listener 

It is  expected  that,  in  most  cases,  IMS  server  applications  will  be  started  by  the  

IMS  Listener.  Such  programs  are  known  as  dependent  programs  because  the  

Listener  establishes  the  TCP/IP  connection.  

Under  some  circumstances,  application  design  considerations  require  that  an  

application  establish  its  own  connection  between  TCP/IP  and  IMS.  For  example,  

an  IMS  MPP  might  require  the  services  of a TCP/IP-connected  UNIX  processor.  

An  IMS  application  of  this  type  is known  as  an  independent  program  because  it is 

not  started  by  the  Listener.  Because  independent  programs  don’t  use  Listener  

services,  they  must  define  their  own  protocol.  

When the client is an IMS MPP 

In  this  manual,  the  underlying  assumption  is that  the  TCP/IP  host  acts  as  client  

and  the  IMS  MPP  acts  as server.  However,  this  is not  always  the  case.  

 

36 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



For  example,  consider  an  IMS  MPP  that  requires  the  services  of  a 

TCP/IP-connected  AIX*  host.  Such  an  MPP  (acting  as  a client)  initiates  a TCP/IP  

conversation  by  issuing  the  client  TCP/IP  call  sequence.  The  TCP/IP  host  would  

respond  with  the  server  TCP/IP  call  sequence.  This  application  design  is supported  

because  the  MPP  communicates  directly  with  MVS  TCP/IP.  The  IMS  TCP/IP  

feature  does  not  impose  any  unique  restrictions  on  the  type  and  usage  of socket  

calls  executed  by  such  a program;  however,  because  of  the  unique  and  

unstructured  communication  requirements  of this  application  design,  you  must  use  

explicit  mode  for  this  type  of  program.  

Abend processing 

When  a task  that  owns  a socket  fails,  MVS  TCP/IP  closes  the  socket.  Therefore,  

when  an  IMS  MPP  abends,  regardless  of the  reason,  the  socket  is no  longer  

available  and  communication  between  server  and  client  is no  longer  possible.  

True abends 

If  an  IMS  TCP/IP  server  program  abends  (for  example,  because  of an  S0Cx  

condition),  database  changes  in  progress  are  backed  out  and  the  transaction  task  is  

terminated.  This  breaks  the  TCP/IP  connection.  When  the  connection  is broken,  the  

client  receives  a negative  status  code  and  an  error  number  that  indicates  that  the  

connection  has  been  broken.  Upon  receipt  of this  indication,  the  client  should  

assume  that  the  transaction  did  not  complete  and  that  the  database  changes  have  

not  been  made.  The  client  could  reschedule  the  transaction,  but  the  IMS  TM  will  

have  probably  “stopped”  it from  further  execution  as  a result  of  the  abend.  

The  solution  is to  correct  the  reason  for  the  abend  and  restart  the  transaction.  

Pseudo abends 

Under  certain  situations  IMS  applications  cannot  complete.  Upon  such  a condition,  

IMS  abends  the  MPR  with  a status  code  (usually  U0777,  U02478,  U02479,  or  

U03303)  and  reschedules  it.  This  action  is not  apparent  to  the  conventional  

3270-type  user. 

However,  when  an  IMS  TCP/IP  transaction  is pseudo-abended,  the  action  is 

apparent  to  the  client  because  the  connection  between  client  and  server  is lost  

when  the  server  MPR  is abended.  In  this  case,  IMS  TM  reschedules  the  transaction  

and  places  the  input  message  (including  the  TIM)  back  on  the  message  queue.  

When  the  transaction  is rescheduled  and  issues  a GU  for  the  TIM,  the  socket  

described  in  the  TIM  no  longer  represents  a valid  connection.  and  the  associated  

TAKESOCKET  call  will  fail.  At  this  time,  the  Assist  module  will  detect  the  failure  

of  the  socket  call  and  return  a ZZ  status  code  to  the  server  program.  Upon  receipt  

of  this  status  code,  the  server  program  should  end  normally.  

Note:   At  the  time  of  the  pseudo-abend,  the  IMS  TM  backs  out  database  changes,  

so  the  client  should  restart  the  transaction.

Guideline:   For  deadlock  situations  it is suggested  that  you  define  the  transaction  

as  INIT  STATUS GROUP  B,  which  allows  the  application  program  to  

regain  control  after  a deadlock  with  a BC  status  code  (instead  of 

terminating  with  a U0777  abend).  This  allows  the  server  program  to  

regain  control  after  the  deadlock  and  notify  the  client  while  the  

connection  is still  available.

 

Chapter  3. Principles  of operation  37



Implicit-mode support for ROLB processing 

If a server  program  issues  the  IMS  ROLB  call,  all  database  changes  are  reversed,  

and  all  output  messages  are  erased  from  the  IMS  message  queue.  However,  the  

client  is  not  automatically  notified  of this  action  and  will  (when  the  transaction  

completes  normally)  receive  a CSMOKY  message,  indicating  normal  completion.  

As  a result,  for  transactions  that  conditionally  issue  the  ROLB  call,  it  is 

recommended  that  the  server  send  a message  to the  client  indicating  whether  the  

ROLB  command  was  executed.  Otherwise,  the  client  might  incorrectly  interpret  the  

CSMOKY  message  to  mean  that  database  changes  have  been  made  (when  in  fact,  

the  message  simply  denotes  successful  termination  of  the  transaction).  

Restrictions 

v   Transactions  must  be  defined  as  MODE=SNGL  in  the  IMS  TRANSACT  macro;  

this  will  ensure  that  the  database  buffers  are  emptied  (flushed)  to  direct  access  

storage  when  the  second  and  subsequent  GU  calls  are  issued.  

v   Transactions  must  not  reference  other  systems  (MSC  is not  supported).  

v   Transactions  must  not  be  conversational  (that  is,  they  must  not  use  the  IMS  

Scratch  Pad  Area  (SPA)).

 

38 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Chapter  4.  How  to write  an  IMS  TCP/IP  client  program  

When  writing  an  IMS  TCP/IP  client  program,  the  programmer  must  follow  

conventions  established  by  the  IMS  Listener  and  by  the  IMS  Assist  module  (if  

used).  This  chapter  describes  the  call  sequences  and  input/output  data  formats  to  

be  used  by  the  client  program.  For  server  programming,  see  Chapter  5,  “How  to 

write  an  IMS  TCP/IP  server  program,”  on  page  47.  

Note  that,  in  the  context  of this  chapter,  a “client”  is typically  a TCP/IP  host  that  is 

requesting  the  services  of an  IMS  message  processing  program  (MPP).  This  is 

considered  to  be  the  normal  case.  However,  in some  situations,  an  MPP  can  start  as  

a server  and  then  (because  it needs  the  services  of another  program)  switch  roles  

from  server  to  client.  

In  this  chapter,  the  client  will  be  assumed  to  be  the  TCP/IP  host  and  the  server,  

the  IMS  MPP.  

Client program logic flow — general 

For  both  explicit-  and  implicit-mode  clients  the  logic  flow  is essentially  the  same:  

The  client  initiates  the  request  for  a specific  IMS  MPP  server  by  communicating  

with  MVS  TCP/IP,  which  passes  the  request  on  to  the  IMS  Listener.  The  Listener  

schedules  the  transaction  and  the  client  then  exchanges  application  data  with  the  

server.  When  the  transaction  is complete,  the  connection  is closed;  each  client  

request  for  an  IMS  transaction  requires  a new  TCP/IP  connection.  

The  following  two  sections  provide  more  details  about  the  programming  

requirements  for  explicit-mode  and  implicit-mode  clients,  respectively.  

Explicit-mode client program logic flow 

When  the  client  requests  the  services  of an  explicit-mode  server,  the  only  protocol  

imposed  by  IMS  TCP/IP  is  that  the  client  must  begin  by  establishing  TCP/IP  

connectivity  and  sending  a transaction-request  message  (TRM).  

The  Listener  uses  contents  of  the  transaction-request  message  (TRM)  to  determine  

which  transaction  to  schedule.  If the  request  is  not  accepted  (for  example,  because  

of  failure  to  pass  the  security  exit,  or  because  the  transaction  was  stopped  by the  

IMS  master  terminal  operator),  the  Listener  returns  a request-status  message  (RSM)  

to  the  client  with  an  indication  of the  cause  of failure.  (See  “Request-status  

message  segment”  on  page  44  for  the  format  of  the  request-status  message).  

Once  an  explicit-mode  client  and  server  are  in  communication,  there  is no  

predefined  input/output  protocol.  Rules  of  the  conversation  are  established  by  

agreement  between  the  two  programs.  Any  number  of READ/WRITE  calls  can  be 

issued.  Upon  termination,  the  server  program  should  commit  any  database  

changes,  notify  the  server  of successful  completion,  and  close  the  socket.  

It  is  suggested  that,  when  all  database  updates  have  been  committed,  the  server  

notify  the  client  by  sending  a “success”  message  to the  client.  This  notifies  the  

client  that  the  transaction  has  completed  properly  and  that  all  database  updates  

 

© Copyright  IBM Corp. 1994, 2005 39



have  been  committed.  Unless  such  a message  is sent,  the  client  has  no  way  of  

knowing  that  the  transaction  completed  properly.  

Explicit-mode client call sequence 

The  call  sequence  to  be  used  by  an  explicit-mode  client  program  is:  

Call  Explanation  of  Function  

INITAPI  Open  the  interface.  (Only  required  for  client  programs  that  use  

MVS  TCP/IP  socket  calls).  

SOCKET  Obtain  a socket  descriptor.  

CONNECT  Request  connection  to the  IMS  Listener  port.  

WRITE  Send  a transaction-request  message  (TRM)  

READ  Test for  successful  transaction  initiation  

11 

WRITE/READ  Explicit-mode  transactions  can  issue  any  number  of READ  or  

WRITE  socket  call  sequences.  

READ  Ensure  that  the  server  ended  normally  and  that  the  database  

changes  are  committed.  

CLOSE  Terminate  the  connection  and  release  socket  resources.

Explicit-mode application data 

Format 

Explicit-mode  clients  must  initiate  the  connection  with  the  server  by  sending  the  

transaction-request  message  (TRM)  to the  IMS  host.  The  format  of  this  message  is 

defined  later  in  this  chapter.  Explicit-mode  application  data  is formatted  according  

to  agreement  between  client  and  server.  Explicit-mode  imposes  no  application  data  

format  requirements.  

Data translation 

In  explicit-mode,  application  data  translation  from  ASCII  to EBCDIC  (if  necessary)  

is the  responsibility  of  the  client  and  server  programs.  Data  is not  translated  by  the  

IMS  TCP/IP  feature.  

Network byte order 

Fixed-point  binary  integers  (used  for  segment  lengths  in  TRM  and  RSM)  are  

specified  using  the  TCP/IP  network  byte  ordering  convention  (big-endian  

notation).  This  means  that  if the  high-order  byte  is stored  at address  n,  the  

low-order  byte  is  stored  at address  n+1.  (Little-endian  notation  stores  the  other  

way  around).  

MVS  also  uses  the  big-endian  convention.  Because  this  is the  same  as the  network  

convention,  IMS  TCP/IP  MPP’s  should  not  need  to convert  data  from  little-endian  

to  big-endian  notation.  If  the  client  uses  little-endian  notation,  it is responsible  for  

the  conversion.  

11. If the Listener  is unable  to initiate the transaction,  it sends a request-status message  (RSM) to the client indicating  the reason for 

failure.  Therefore,  the client must be prepared  to receive that message. It is suggested  that a convention  be established  that the 

server initiate  the conversation  by sending  an opening  message. By following  this convention,  the client will receive either 

positive  or negative  notification  of transaction  status before initiating  application  data exchange.  

 

40 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



End-of-message indicator 

IMS  TCP/IP  does  not  define  an  End-of-message  indicator  for  explicit-mode  

messages.  

Implicit-mode client logic flow 

When  the  client  requests  the  services  of an  implicit-mode  client,  the  protocol  is 

predefined  by  IMS  TCP/IP.  

The  client  requests  an  IMS  MPP  by  sending  the  transaction-request  message  

(TRM).  (See  “Transaction-request  message  segment  (client  to  Listener)”  on  page  43  

for  the  format  of  the  TRM.)  The  TRM  includes  the  name  of the  transaction  the  

Listener  is  to  schedule.  

If  the  transaction  cannot  be  scheduled  (for  example,  because  of  failure  to  pass  the  

security  exit,  or  because  the  transaction  was  stopped  by  the  IMS  master  terminal  

operator),  the  Listener  returns  the  request-status  message  with  an  indication  of  the  

cause  of  failure.  (See  “Request-status  message  segment”  on  page  44  for  the  format  

of  the  request-status  message).  

For  implicit-mode  applications,  the  input  data  stream  consists  of  the  TRM,  

immediately  followed  by  all  segments  of  application  data  and  an  end-of  

message-segment.  The  Listener  uses  the  TRM  contents  to schedule  the  server  and  

then  places  the  TIM  and  all  of  the  application  data  on  the  IMS  message  queue  for  

retrieval  by  the  Assist  module.  

Implicit-mode  transactions  are  limited  to one  multisegment  input  message  and  one  

multisegment  output  message.  In  other  words,  implicit-mode  applications  cannot  

enter  into  conversations.  

When  the  transaction  is complete,  the  IMS  Assist  module  sends  a complete-status  

message  (CSMOKY)  segment  to  the  client.  If the  client  receives  this  message,  the  

client  can  safely  assume  that  the  database  changes  have  been  committed.  If the  

client  doesn’t  receive  this  message,  the  client  cannot  determine  what  has  happened.  

The  transaction  may  have  completed  normally  and  database  changes  committed,  

or  the  transaction  may  have  failed  with  database  changes  backed  out.  For  this  

reason,  clients  that  work  with  implicit  mode  servers  should  include  application  

logic  that,  upon  failure  to receive  the  CSMOKY  message  segment,  reestablishes  

contact  with  IMS  and  confirms  the  success  of the  previously  submitted  update.  

Implicit-mode client call sequence 

The  call  sequence  to  be  used  by  an  implicit-mode  client  program  is:  

Call  Explanation  of  Function  

INITAPI  Open  the  interface.  (Only  required  for  client  programs  that  use  

MVS  TCP/IP  Sockets  calls).  

SOCKET  Obtain  a socket  descriptor.  

CONNECT  Request  connection  to the  IMS  Listener  port.  

WRITE  Send  a transaction-request  message  (TRM).  

WRITE  Send  server  input  data  formatted  as  IMS  segments  

READ  Receive  response.  

 

Chapter 4. How to write an IMS TCP/IP  client program 41



v   If  the  request  was  rejected,  a request-status  message  (RSM)  will  

be  received.  

v   If  the  transaction  was  scheduled  and  executed  properly,  

application  data  will  be  received.

Thus,  logic  in  the  client  must  test  the  output  message  for  the  

characters  *REQSTS*  to distinguish  between  application  data  and  a 

request-status  message  (RSM).  

READ  Upon  successful  completion  of  the  database  updates,  the  Assist  

module  sends  a complete-status  message  (*CSMOKY*)  to the  client,  

indicating  that  the  transaction  has  completed  successfully.  

 If  this  message  is  not  received,  the  client  must  assume  that  the  

application  failed  to  complete  properly;  in  this  case,  a return  code  

of  –1  and  ERRNO  (typically  set  to  54)  will  indicate  that  application  

failed.  The  client  must  take  whatever  action  is appropriate  (for  

example,  reschedule  the  transaction,  resynchronize  data).  

CLOSE  Terminate  the  connection  and  release  the  socket  resources

Implicit mode application data stream 

Client-to-server data stream 

In  implicit  mode,  the  client  sends  the  following  data  stream:  

llzz  transaction-request  message  (TRM)  llzz  application  data  segment  1 llzz  

application  data  segment  2 (optional)  llzz  ... llzz  application  data  segment  n 

(optional)  04zz  end-of-message  segment  

WHERE:  

 ll  is  the  length  in  bytes  of this  data  segment  in  binary.

Server-to-client data stream 

Data  received  by  the  client  is formatted  (by  the  Assist  module)  as  above.  It consists  

of  n segments  of application  data  including  the  CSM  segment,  followed  by  an  

end-of-message  segment.  

Implicit-mode application data 

Format 

Data  exchanged  between  implicit-mode  client  and  server  is transmitted  in  a format  

that  resembles  an  IMS  message  segment.  These  segments  have  the  following  

format:  

12 

 Field  Format  Description  

Length  H Length  of the  data  segment  (including  this  

field)  

Reserved  (zz)  CL2  Reserved  field  

Data  CLn  Client-supplied  data
 

12. This example  uses Assembler  language  notation.  See Chapter 7, “Using  the CALL  instruction  application  programming interface  

(API),”  on page 61for COBOL  and PL/I equivalents.  

 

42 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



The  length  field  contains  the  total  length  of the  message  in  binary.  The  length  (ll)  

includes  the  length  of  the  ll and  zz fields.  

Data translation 

The  IMS  Listener  tests  the  initial  input  data  string  (the  TRM)  to  determine  whether  

the  terminal  is transmitting  in  ASCII.  If the  terminal  is transmitting  in  ASCII,  and  

the  transaction  is defined  as implicit-mode  in  the  TRANSACTION  configuration  

statement,  the  Listener  translates  the  ASCII  application  data  into  EBCDIC.  Note  

that  when  data  translation  takes  place,  the  entire  application  data  portion  of the  

segment  is  translated  from  ASCII  to  EBCDIC,  and  vice  versa;  therefore,  the  

segment  should  contain  only  printable  characters  that  are  common  to  both  

character  sets.  (For  example,  the  EBCDIC  cent  sign  and  the  ASCII  left  square  

bracket  are  both  printable  in  their  respective  native  environments,  but  they  are  not  

translated  because  they  do  not  have  an  equivalent  in  the  other  character  set.)  

End-of-message segment 

The  last  segment  in  a message  (either  sent  by  the  client,  or  received  from  the  

server)  is indicated  by  an  end-of-message  (EOM)  segment.  (See  “End-of-message  

segment  (EOM)”  on  page  45).  

v   Implicit-mode  messages  sent  by  the  client  are  received  by  the  Listener.  When  the  

client  program  sends  an  EOM  segment,  the  Listener  interprets  the  EOM  as  an  

indication  that  no  more  message  segments  are  to  be  received  and  inserts  the  

segments  onto  the  IMS  message  queue.  

v   Implicit-mode  messages  received  by  the  client  are  actually  written  by  the  Assist  

module  on  behalf  of the  server  program.  When  the  server  program  sends  

application  data  to  the  client  (using  the  ISRT  call),  the  Assist  module  intercepts  

the  output  data  and  accumulates  it in  an  output  buffer.  When  the  server  

program  issues  a subsequent  GU  to  the  I/O  PCB,  the  Assist  module  interprets  

the  GU  as an  indication  that  the  server  has  inserted  the  last  segment  for  that  

message.  The  Assist  module  then  adds  an  end-of-message  segment  to  the  output  

data  and  issues  WRITE  commands,  which  transmit  the  data  to  the  client.  (The  

client  program  should  test  for  the  EOM  segment  to  determine  when  the  last  

segment  of  the  message  has  been  sent  by  the  server  program.)

IMS TCP/IP message segment formats 

The  client  sends  or  receives  several  types  of  message  segments  whose  formats  are  

defined  by  the  Listener  and  the  Assist  module.  

v   Transaction-request  message  segment  (TRM)  

v   Request-status  message  segment  (RSM)  

v   Complete-status  message  segment  (CSMOKY)  

v   End-of-message  segment  (EOM)

The  following  paragraphs  describe  the  formats  for  each  of  these  segments:  

Transaction-request message segment (client to Listener) 

To initiate  a connection  with  an  IMS  server,  the  client  first  issues  a 

transaction-request  message  segment  (TRM),  which  tells  the  Listener  which  

transaction  to schedule.  

 

Chapter 4. How to write an IMS TCP/IP  client program 43



The  format  of  the  transaction-request  message  segment  (TRM)  is:  

 Field  Format  Meaning  

TRMLen  H Length  of the  segment  (in  binary)  including  

this  field.  This  field  is sent  in network  byte  

order.  

TRMRsv  CL2  Reserved  

TRMId  CL8  Identifying  string.  Always  *TRNREQ*.  If the 

client  data  stream  will  be sent  in ASCII,  the  

TRMId  field  should  also  be  transmitted  in 

ASCII  because  the  Listener  uses  this  field  to 

determine  whether  ASCII  to  EBCDIC  

translation  is required.  

TRMTrnCod  CL8  The  transaction  code  (TRANCODE)  of the  

IMS  transaction  to be started.  It must  not  

begin  with  a / character;  it must  follow  the 

naming  rules  for IMS  transactions.  If the 

Listener  has  determined  that  data  will  be 

transmitted  in ASCII,  it translates  the  

transaction  code  to EBCDIC  before  any  

further  processing  is done.  

TRMUsrDat  XLn  This  variable-length  field  contains  client  

data  that  is passed  directly  to the  security  

exit  without  translation.
  

Request-status message segment 

If a transaction  request  is  accepted,  the  IMS  Listener  does  not  send  the  

request-status  message  segment;  if the  transaction  request  is rejected,  the  IMS  

Listener  sends  a request-status  message  segment  (RSM)  to  the  client.  This  segment  

has  the  following  format:  

 Field  Format  Description  

RSMLen  H Length  of message  (in binary),  including  this  

field.  

RSMRsv  CL2  Reserved  

RSMId  CL8  Identifying  string.  Always  *REQSTS*.  This  

field  is translated  to ASCII  if the Listener  

has  determined  that  the  client  is 

transmitting  in ASCII.  

F Return  code,  sent  in 

network  byte  order.  

Set  to nonzero  (for  

example,  4, 8, 12) to  

indicate  an error.  The  

nonzero  value  is 

further  explained  by 

the  reason  code  

(RSMRsnCod).  

RSMRsnCod  F Reason  Code,  sent  in  network  byte  order. 

Reason  codes  0 — 100  are  reserved  for use  

by the IMS  Listener.  Codes  greater  than  100  

can  be assigned  by the  user-written  security  

exit.
 

 

44 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Request-status message reason codes 

If  the  IMS  Listener  sends  a request-status  message  (RSM)  segment  to the  client  

(indicating  that  it  is unable  to complete  the  processing  of  the  client’s  

transaction-request  message  (TRM),  it  sets  the  return  and  reason  code  in  the  RSM.  

v   If  the  security  exit  rejects  a transaction  request,  it sets  the  return  code  and  reason  

code,  and  returns  control  to  the  Listener,  which  sends  the  request-status  message  

segment  to  the  client.  

v   If  the  Listener  detects  other  errors  that  cause  a request  to be  rejected,  it sets  a 

return  code  of  8 and  a reason  code  from  the  following  list.  

1 The  transaction  was  not  defined  to  the  IMS  Listener.  

2 An  IMS  error  occurred  and  the  transaction  was  unable  to  be  started.  

3 The  transaction  failed  to  perform  the  TAKESOCKET  call  within  the  3 

minute  time  frame.  

4 The  input  buffer  is full  as  the  client  has  sent  more  than  32KB  of  data  for  

an  implicit  transaction.  

5 An  AIB  error  occurred  when  the  IMS  Listener  tried  to confirm  if the  

transaction  was  available  to  be  started.  

6 The  transaction  is  not  defined  to IMS  or  is unavailable  to be  started.  

7 The  transaction-request  message  (TRM)  segment  was  not  in  the  correct  

format.  

9 The  application  data  buffer  for  the  Client-to-Server  Data  Stream  contains  

an  invalid  value  for  the  data  segment  length.  

100  up  

Reason  codes  of 100  or  higher  are  defined  by  the  user-supplied  security  

exit.

Complete-status message segment 

The  complete-status  message  segment  is sent  by  the  Assist  module  to  indicate  the  

successful  completion  of  an  implicit-mode  transaction,  including  the  fact  that  

database  updates  have  been  committed.  The  format  of the  complete-status  message  

segment  is:  

 Field  Format  Description  

Length  H Length  of the  data  segment  (in binary)  

including  this  field  

CSMRsv  H Reserved  field;  must  be set to zero  

CSMId  CL8  *CSMOKY*  This  field  is translated  to ASCII  

if the  client  is transmitting  in ASCII.
  

End-of-message segment (EOM) 

The  end-of-message  segment  is defined  as  an  IMS-type  segment  (with  llzz  fields)  

but  no  application  data.  Thus,  the  EOM  segment  has  an  llzz  field  of '0400';  04 is the  

length  of  the  llzz  field.  

 

Chapter 4. How to write an IMS TCP/IP  client program 45



PL/I coding 

PL/I  programmers  should  note  that  (although  the  segments  exchanged  between  

the  Listener  and  implicit-mode  servers  resemble  IMS  segments)  the  segments  are  

actually  sent  by  TCP/IP  socket  calls  and  do  not  necessarily  follow  the  standard  

IMS  convention  for  the  PL/I  language  interface.  Specifically,  the  length  field  in  a 

segment  (TRM  or  RSM),  which  is passed  via  a TCP/IP  socket  call,  must  be  a 

halfword  (FIXED  BIN(15))  and  not  a fullword.  

 

46 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Chapter  5.  How  to write  an  IMS  TCP/IP  server  program  

When  writing  an  IMS  TCP/IP  server  program,  the  programmer  must  follow  

conventions  established  by  the  IMS  Listener;  by  the  IMS  Assist  module  (if  the  

server  program  uses  it);  and  by  the  TCP/IP  client.  This  chapter  describes  the  call  

sequences  and  input/output  formats  necessary  for  communication  between  a 

TCP/IP  client  program  and  an  IMS  server  program.  (See  Chapter  4,  “How  to  write  

an  IMS  TCP/IP  client  program,”  on  page  39  for  a discussion  of  client  

programming).  

Server program logic flow —general 

An  IMS  TCP/IP  server  program  is executed  in  response  to  a transaction  request  

from  a TCP/IP  host.  The  server  program  can  either  explicitly  issue  TCP/IP  socket  

calls,  or  implicitly  issue  them  through  the  IMS  Assist  module.  However,  the  same  

TCP/IP  functions  are  completed  in  either  case.  

The  following  sections  describe  the  server  logic  flow  for  each  mode.  

Explicit-mode server program logic flow 

When  an  explicit-mode  server  begins  execution,  the  Listener  has  received  the  

transaction-request  message  (TRM)  from  the  client  and  has  inserted  the  

transaction-initiation  message  (TIM)  to the  IMS  message  queue.  The  Listener  has  

also  issued  a GIVESOCKET  call  to  pass  the  connection  to the  server.  

The  server’s  first  action  is to  obtain  the  TIM  from  the  IMS  message  queue.  This  

message  contains  the  information  needed  to  issue  the  INITAPI  and  TAKESOCKET  

calls.  

Once  the  server  has  issued  the  TAKESOCKET  call,  the  connection  is between  client  

and  server;  the  two  can  now  communicate  directly  using  socket  READ/WRITE  

calls.  The  number  of reads/writes,  and  the  format  of  the  data  exchanged,  is  

determined  by  agreement  between  the  two  programs.  

At  the  end  of  processing  a client’s  request,  the  application  program  should  follow  

the  IMS  DC  programming  standard  of  issuing  another  GU  to the  IO/PCB.  This  

informs  IMS  that  the  database  changes  should  be  committed,  and  that  the  database  

buffers  should  be  emptied  (flushed).  

Note:   For  this  reason,  a transaction  invoked  by  a TCP/IP  client  should  be  defined  

(by  the  IMS-gen  TRANSACT  macro)  as  MODE=SNGL.  

Explicit-mode call sequence 

The  suggested  call  sequence  for  an  explicit-mode  server  follows.  See  Chapter  7, 

“Using  the  CALL  instruction  application  programming  interface  (API),”  on  page  61  

for  the  call  syntax  of  the  socket  calls.  

Server  call  Explanation  of  Function  

CALL  CBLTDLI  (GU)  I/O  PCB  

Obtain  transaction-initiation  message  (TIM)  from  

IMS  message  queue.  

 

© Copyright  IBM Corp. 1994, 2005 47



INITAPI  Initialize  the  connection  with  TCP/IP.  

Parameter  Meaning  

ADSNAME  Server  address  space  

(TIMSrvAddrSpc  from  the  TIM)  

SUBTASK  Server  task  ID  (TIMSrvTaskID  from  

the  TIM)  

TCPNAME  TCP  address  space  

(TIMTCPAddrSpc  from  the  TIM)

TAKESOCKET  Accept  the  socket  from  the  Listener.  

 Parameter  Meaning  

CLIENT.name  Listener  address  space  

(TIMLstAddrSpc  from  the  TIM)  

CLIENT.task  Listener  task  ID  (TIMLstTaskID  

from  the  TIM)  

SOCRECV  Socket  descriptor  (TIMSktDesc  

from  the  TIM)

 Note  that  the  TAKESOCKET  call  returns  a new  

socket  descriptor  which  must  be  used  for  the  rest  

of  the  process.  (Do  not  continue  to  use  the  

descriptor  passed  by  the  Listener  in  TIMSktDesc.)  

READ/WRITE  Exchange  application  data  with  the  client.  

Database  calls  Read/write  database  records.  

Note:   TCP/IP  and  database  calls  can  be  

intermixed.

GU  Force  IMS  synchronization  point;  update  the  

database  from  the  buffers.  

WRITE  Send  complete-status  message  to  the  client.  

CLOSE  Shut  down  the  socket  and  release  resources  

associated  with  it. 

TERMAPI  End  processing  on  the  call  interface.

Explicit-mode application data 

Format 

Other  than  the  initial  transaction-initiation  message,  explicit-mode  imposes  no  

restrictions  on  the  format  of  application  data  exchanged  between  client  and  server.  

EBCDIC/ASCII data translation 

If the  TCP/IP  host  is  transmitting  ASCII  data,  explicit-mode  servers  are  responsible  

for  data  translation  from  EBCDIC  to ASCII  and  from  ASCII  to  EBCDIC.  Data  

translation  is not  performed  by  IMS  TCP/IP.  You can  use  the  data  translation  

subroutines  (EZACIC04  and  EZACIC05  or  EZACIC14  and  EZACIC15)  described  in 

Chapter  7, “Using  the  CALL  instruction  application  programming  interface  (API),”  

on  page  61  for  this  purpose.  

 

48 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|
|
|
|
|
|



When  the  conversation  is complete,  the  server  should  force  an  IMS  commit  and  

close  the  connection.  This  causes  IMS  to  complete  the  database  updates.  

Explicit-mode  server  logic  is responsible  for  notifying  the  client  of the  success  or  

failure  of  the  commit  process.  

Transaction-initiation  message segment 

Once  the  server  has  been  started,  the  first  segment  it receives  from  the  message  

queue  is  the  transaction-initiation  message  (TIM)  segment,  which  was  created  by  

the  IMS  Listener.  

 Field  Format  Explanation  

TIMLen  

13 H The  length  of the  

transaction-initiation  message  

segment  (in  binary),  

including  the  length  of this  

field.  (X'0038')  

TIMRsv  H Reserved  field  set to zero.  

(X'0000').  

TIMId  CL8  Identifies  the  message  as 

having  been  created  by the  

IMS  Listener.  Always  

contains  the  characters  

*LISTNR*.  

TIMLstAddrSpc  CL8  Listener  address  space  name.  

Used  in server  

TAKESOCKET.  

TIMLstTaskId  CL8  Listener  task  ID. Used  in  

server  TAKESOCKET. 

TIMSrvAddrSpc  CL8  Server  address  space  name.  

Used  in server  INITAPI. 

Server  address  space  IDs  are  

generated  by the  Listener  and  

consist  of the  2-character  

prefix  specified  in the  

Listener  configuration  file  

(Listener  statement)  followed  

by a unique  6-character  

hexadecimal  number.  

TIMSrvTaskID  CL8  Server  task  ID. Used  in 

server  INITAPI. 

TIMSktDesc  H Contains  the descriptor  of the  

socket  given  by Listener.  

Used  in server  

TAKESOCKET.  

TIMTCPAddrSpc  CL8  The  TCP/IP  address  space  

name  of TCP/IP.  Used  in 

INITAPI.  

TIMDataType  H Indicates  the data  type  of the 

client  messages:  ASCII(0)  or 

EBCDIC(1).
 

 

Chapter  5. How to write an IMS TCP/IP server program 49



Program design considerations 

v   Because  MVS  TCP/IP  ends  the  connection  when  a server  MPP  completes,  the  

client  has  no  way  of  knowing  that  the  database  changes  have  been  committed.  

Therefore,  it is suggested  that  explicit-mode  servers  send  a message  to  the  client  

confirming  the  COMMIT  before  terminating.  (Implicit-mode  servers  send  the  

CSMOKY  segment  when  the  database  changes  have  been  committed.)  

v   When  an  explicit-mode  server  issues  a ROLB  command,  the  client  has  no  

automatic  way  of  knowing  that  the  database  updates  have  been  rolled  back.  It is 

suggested,  therefore,  that  the  server  send  a message  to the  client  when  a rollback  

call  completes.

I/O PCB — explicit-mode server 

When  an  IMS  MPP  issues  a call  for  IMS  TM  services  (like  a GU  or  an  ISRT),  IMS  

returns  information  about  the  results  of the  call  in  a control  block  called  the  I/O  

program  control  block  (I/O  PCB).  The  contents  of the  I/O  PCB  are:  

LTERM  NAME  Blanks  (8 bytes)  

RESERVED  X'00'  (2 bytes)  

STATUS CODE  See  “Status  codes”(2  bytes)  

DATE/TIME  Undefined  (8 bytes)  

INPUT  MSG.  SEQ.  # Undefined  (4 bytes)  

MESSAGE  OUTPUT  DESC.  NAME  

Blanks  (8 bytes)  

USERID  PSBname  of Listener  (8 bytes)

Status codes 

The  I/O  PCB  status  code  is set  by  IMS  in response  to the  server  GU  for  the  TIM.  A  

status  code  of  bb  indicates  successful  completion  of  the  GU  call.  Since  the  only  

data  explicit-mode  servers  receive  from  the  message  queue  is the  TIM,  the  only  call  

issued  by  the  server  is a GU,  requesting  a new  TIM.  Thus,  the  only  status  codes  an  

explicit-mode  server  should  receive  are  bb,  which  indicates  successful  completion  

of  the  GU;  and  QC,  which  indicates  that  there  are  no  more  messages  on  the  

message  queue  for  that  transaction.  In  response  to  the  QC  status  code,  the  server  

program  should  end  normally.  

Explicit-mode server — PL/I programming considerations 

PL/I  programmers  should  note  that  I/O  areas  used  to retrieve  IMS  segments  must  

follow  standard  IMS  conventions.  That  is,  the  length  field  for  the  TIM  segment  

must  be  defined  as  a fullword  (FIXED  BIN(31)).  

Implicit-mode server program logic flow 

An  implicit-mode  server  must  perform  all  of  the  functions  previously  described  for  

an  explicit-mode  server  (see  “Explicit-mode  server  program  logic  flow”  on  page  

47).  However,  the  IMS  Assist  module  issues  the  TCP/IP  calls  on  behalf  of the  

server  program;  consequently,  the  implicit-mode  application  programmer  need  

only  issue  standard  IMS  Input/Output  calls.  

13. If you use PL/I, you must define  the LLLL field as a binary fullword. 

 

50 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Implicit-mode server call sequence 

When  writing  an  implicit-mode  program,  you  must  call  the  IMS  Assist  module  

(CBLADLI,  PLIADLI,  ASMADLI,  CADLI,  as  appropriate  for  the  language  you  are  

using)  instead  of  the  conventional  IMS  equivalent  (CBLTDLI,  PLITDLI,  ASMTDLI,  

CTDLI).  This  will  cause  the  I/O  PCB  calls  to  be  intercepted  and  processed  (if  

necessary)  by  the  Assist  module.  The  Assist  module  will  pass  database  calls  

directly  to  IMS  for  processing;  it will  intercept  I/O  PCB  calls  and  issue  the  

appropriate  sockets  calls.  A sample  call  sequence  (using  COBOL  syntax)  for  an  

implicit-mode  server  follows:  

IMS  Server  Call  Resulting  Assist  Module  Function  

CALL  CBLADLI  (GU)  I/O  PCB  

Issue  CALL  CBLTDLI  (GU)  to  obtain  the  (TIM).  

CALL  CBLADLI  (GN)  I/O  PCB  

(optional)  Issue  CALL  CBLTDLI  (GN),  which  

returns  a subsequent  segment  of client  input  data  

for  each  call.  

CALL  CBLADLI  

14 Read/write  database  records.  

15 

CALL  CBLADLI  (ISRT)  I/O  PCB  

Store  segments  in  the  sockets  output  buffer.  

CALL  CBLADLI  (GU)  I/O  PCB  

Issue  WRITE  to empty  output  buffers.

Implicit-mode application data 

Format 

All  data  exchanged  between  the  client  and  an  implicit-mode  server  is formatted  

into  IMS  segments.  Each  data  segment  has  the  following  format:  

 Field  Format  Description  

Length  H Length  of the data  segment  

(in binary)  including  this  

field.  

Reserved  H Reserved  field;  must  be set to 

zero.  

Data  CLn  Application  data.
  

Data translation 

Translation  of  input  data  (when  necessary)  is done  by  the  Listener.  As  a result,  all 

data  on  the  IMS  message  queue  is in  EBCDIC;  output  data  is translated  (when  

necessary)  by  the  Assist  module.  

Note  that  when  data  translation  takes  place,  the  entire  application  data  portion  of  

the  segment  is translated  from  ASCII  to  EBCDIC,  and  vice  versa;  therefore,  the  

segment  should  contain  only  printable  characters  common  to  both  character  sets.  

(For  example,  the  EBCDIC  cent  sign  and  the  ASCII  left  bracket  are  both  printable  

in  their  respective  environments  but  are  not  translated  because  they  do  not  have  

an  equivalent  in  the  other  character  set.)  

14. For  database  I/O, you can use either  CBLTDLI  or CBLADLI.  The Assist module simply converts database calls from CBLADLI  

to CBLTDLI.  

15. Database  PCB and I/O PCB calls can be intermixed.  

 

Chapter  5. How to write an IMS TCP/IP server program 51



End-of-message segment 

The  last  segment  in  a message  (either  sent  by  the  client,  or  received  from  the  

server)  is  indicated  by  an  end-of-message  (EOM)  segment.  (See  “End-of-message  

segment  (EOM)”  on  page  45).  

v   Implicit-mode  messages  sent  by  the  client  are  received  by  the  Listener  and  

inserted  onto  the  IMS  message  queue.  The  end-of-message  segment  (defined  

above)  indicates  to  the  Listener  that  there  are  no  more  segments  to  be  inserted  

for  this  message.  (Note  that  the  server  program  will  not  receive  the  EOM  

segment;  it  will  receive  a QD  status  code,  indicating  that  there  are  no  more  

segments  for  this  message.)  

v   Implicit-mode  messages  to  be  sent  by  the  server  are  actually  written  by  the  

Assist  module  on  behalf  of the  server  program.  When  the  server  program  sends  

application  data  to  the  client  (using  the  ISRT  call),  the  Assist  module  intercepts  

the  output  data  and  accumulates  it in  an  output  buffer.  When  the  server  

program  issues  a subsequent  GU  to  the  I/O  PCB,  the  Assist  module  interprets  

the  GU  as  an  indication  that  the  server  has  inserted  the  last  segment  for  that  

message.  The  Assist  module  then  adds  an  end-of-message  segment  to the  output  

data  and  issues  WRITE  commands,  which  transmit  the  data  to the  client.  (Note  

that  the  server  program  should  not  attempt  to  insert  an  EOM  segment  to the  

I/O  PCB.)

Programming to the Assist module interface 

Programs  written  to  the  Assist  module  interface  are  very  similar  (in  terms  of  I/O  

calls)  to  conventional  IMS  Transaction  Manager  (TM)  MPPs.  

v   To communicate  with  IMS  TM,  use  the  following  calls  (depending  upon  

programming  language)  —  CBLADLI,  PLIADLI,  ASMADLI,  or  CADLI  —  

instead  of  CBLTDLI,  PLITDLI,  ASMTDLI,  and  CADLI,  respectively.  

v   Use  the  same  parameters  as with  the  IMS  TM  counterparts.  

v   The  first  IMS  call  to the  I/O  PCB  must  be  GU.  Subsequent  IMS  calls  to the  I/O  

PCB  can  be  GN  and/or  ISRT  (with  intervening  database  calls,  as  appropriate).  

v   When  the  transaction  is  complete,  the  server  program  should  issue  another  GU  

to  the  I/O  PCB  to  finalize  processing  of the  present  message.  If  the  server  

program  receives  a bb  status  code,  (indicating  another  message  has  been  

received  for  that  program),  it should  loop  back  and  process  that  message.  Note  

that  the  Assist  module  will  have  closed  the  previous  connection  and  opened  a 

new  connection  associated  with  the  new  message.  When  the  GU  returns  a QC  

status  code,  no  more  messages  have  been  received  for  that  program  and  the  

program  should  end.  

A  set  of one  GU,  one  or  more  GN  calls,  and  one  or  more  ISRT  calls  to  the  I/O  

PCB  (with  intervening  database  calls,  as  required)  constitute  a transaction.  The  

Assist  module  interprets  each  GU  as  the  start  of  a new  transaction.  

v   The  PURG  call  cannot  be  used  to indicate  end-of-message;  the  server  should  not  

issue  PURG  calls  to  the  I/O  PCB.  

v   The  Assist  module  GU  reads  the  TIM  into  the  I/O  area  defined  in  the  server  

program;  consequently,  the  I/O  area  you  define  in  the  server  must  be  at least  56 

bytes  in  length  (the  length  of the  TIM).  

v   If  the  server  program  attempts  to  insert  more  than  32KB,  the  Assist  module  flags  

this  as  an  error  by  terminating  processing  and  returning  a status  code  of ZZ.

Implicit-mode server PL/I programming considerations 

PL/I  programmers  should  note  that  I/O  areas  passed  to  the  Assist  module  must  

follow  standard  IMS  conventions.  That  is,  the  length  field  for  a segment  must  be  

 

52 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



defined  as  a fullword  (FIXED  BIN(31)).  This  applies  to both  input  and  output  data  

segments;  however,  the  actual  segment  that  is  received  from  and  sent  to  the  client  

uses  a halfword  (FIXED  BIN(15))  length  field.  Thus,  the  messages  exchanged  

between  the  client  and  server  are  programming-language  independent.  

Implicit-mode server C language programming considerations 

The  following  statements  are  required  in IMS  implicit-mode  servers  written  in  C 

language:  

   #pragma  runopts(env(IMS),plist(IMS))  

   #pragma  linkage(cadli,  OS)  

This  is  in  addition  to the  standard  requirements  for  using  C language  programs  in  

IMS.  

I/O PCB implicit-mode server 

When  an  IMS  MPP  issues  a call  for  IMS  TM  services  (like  a GU  or  an  ISRT),  IMS  

returns  information  about  the  results  of  the  call  in  a control  block  called  the  I/O  

program  control  block  (I/O  PCB).  When  using  the  Assist  module,  the  contents  of  

the  I/O  PCB  are:  

LTERM  NAME  Blanks  (8  bytes)  

RESERVED  See  “Status  codes”(2  bytes)  

STATUS  CODE  See  “Status  codes”(2  bytes)  

DATE/TIME  Undefined  (8  bytes)  

INPUT  MSG.  SEQ.  # Undefined  (4  bytes)  

MESSAGE  OUTPUT  DESC.  NAME  

Blanks  (8  bytes)  

USERID  PSBname  of  Listener  (8 bytes)

Status codes 

The  I/O  PCB  status  code  is set  by  IMS  in  response  to the  IMS  calls  that  the  Assist  

module  makes  on  behalf  of the  server.  For  example,  GU  and  GN  calls  usually  

result  in  bb,  QC,  or  QD  status  codes.  However,  when  the  Assist  module  detects  a 

TCP/IP  error, it  sets  the  status  code  field  of  the  I/O  PCB  to  ZZ  with  further  

information  about  the  error  in  the  reserved  field  of  the  I/O  PCB.  This  field  should  

be  initially  tested  as  a signed,  fixed  binary  halfword:  

v   If  the  halfword  is positive,  then  a socket  error  has  occurred,  and  the  field  should  

continue  to  be  treated  as  a signed  fixed  binary  halfword.  The  field  contains  the  2 

low-order  bytes  from  the  ERRNO  resulting  from  the  socket  call.  (See  

Appendix  A,  “Return  codes,”  on  page  295).  

v   If  the  halfword  is negative,  then  an  IMS  or  other  type  of error  has  occurred,  and  

the  field  should  be  treated  as  a fixed-length,  2-byte  character  string  containing  

one  of  the  following:  

Code  Meaning  

EA  A  call  that  used  the  AIB  interface  to  determine  the  I/O  PCB  address  

failed.  

EB  The  output  buffer  is full.  An  attempt  was  made  to insert  (ISRT)  more  

than  32KB  (including  the  segment  length  and  reserved  bytes)  to  be sent  

to  the  client.  

EC  A  QD  status  code  was  received  in  response  to  a GU  or  ROLB  call  when  

 

Chapter  5. How to write an IMS TCP/IP server program 53



attempting  to  retrieve  the  first  segment  of  data  after  the  

transaction-initiation  message  (TIM)  segment.  This  implies  that  the  client  

sent  only  the  TIM  segment  followed  by  an  end-of-message  segment  with  

no  actual  data  segments.

 

54 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Chapter  6.  How  to customize  and  operate  the  IMS  Listener  

The  IMS  Listener  is an  IMS  batch  message  program  (BMP)  whose  main  purpose  is 

to  validate  connection  requests  from  TCP/IP  clients  and  to  schedule  IMS  message  

processing  programs  (MPP)  servers.  

This  chapter  describes  the  IMS  Listener  and  the  user-written  security  exit  that  can  

be  used  to  validate  incoming  transaction  requests.  

How to start the IMS Listener 

The  IMS  Listener  is executed  as  an  MVS  'started  task'  using  job  control  language  

(JCL)  statements.  Copy  the  sample  job  in  the  hlq.SEZAINST(EZAIMSJL)  to  your  

system  or  recognized  PROCLIB  and  modify  it  to  suit  your  conditions.  Below  is  a 

sample  of  the  JCL  needed  for  the  Listener  BMP.  Note  the  STEPLIB  statements  

pointing  to  MVS  TCP/IP.  Also  note  the  EZAIMSJL  G.LSTNCFG  DD  statement  points  to  

the  Listener  configuration  file.  For  more  information  on  configuring  the  IMS  

Listener,  see  “The  IMS  Listener  configuration  file”  on  page  56.  

 

Once  you  have  configured  your  JCL,  you  can  start  the  Listener  using  the  MVS  

START command.  The  basic  syntax  and  parameters  of this  command  are  given  

below.  

�� START procname 

.identifier
 ��

 

procname  

The  name  of the  cataloged  procedure  that  defines  the  IMS  Listener  job  to be  

started.  

identifier  

A user-determined  name  which,  with  the  procedure  name,  (procname) uniquely  

identifies  the  started  job.  This  name  can  be  up  to  8 characters  long  with  the  

first  character  being  alphabetic.  If  the  identifier  is omitted,  MVS  automatically  

uses  the  procedure  name  as the  identifier.

//EZAIMSJL    PROC  MBR=EZAIMSLN,PSB=EZAIMSLN,IMSID=IMS,CFG=TCPIMS,SOUT=A  

//*  

//LISTENER    EXEC  PROC=IMSBATCH,MBR=&MBR.,SOUT=&SOUT.,IMSID=&IMSID.,  

//            PSB=&PSB.,CPUTIME=1440  

//G.STEPLIB   DD DSN=IMSVS31.&SYS2.RESLIB,DISP=SHR  

//            DD DSN=IMSVS31.&SYS2.PGMLIB,DISP=SHR  

//            DD DSN=TCPIP.SEZALOAD,DISP=SHR  

//            DD DSN=TCPIP.SEZATCP,DISP=SHR  

//G.LSTNCFG   DD DSN=TCPIP.LSTNCFG(&CFG.),DISP=SHR  

//G.SYSPRINT  DD SYSOUT=&SOUT,DCB=(LRECL=137,RECFM=VBA,BLKSIZE=1374),  

//              SPACE=(141,(2500,100),RLSE,,ROUND)  

Figure  11. JCL:  Sample  run  Listener  procedure

 

© Copyright  IBM Corp. 1994, 2005 55



How to stop the IMS Listener 

The  Listener  is normally  ended  by  issuing  an  MVS  MODIFY  command.  The  syntax  

of  this  command  and  a description  of the  parameters  is given  below.  

�� MODIFY identifier 

procname.
 , STOP ��

 

procname  

The  name  of  the  cataloged  procedure  that  was  used  to start  the  Listener.  This  

is only  required  if an  identifier  that  was  different  from  procname  was  specified  

with  the  START command  when  the  Listener  was  started.  

identifier  

The  user-determined  identifier  used  on  the  START command  when  the  

Listener  was  started.  If an  explicit  identifier  was  not  specified  (on  the  START 

command),  MVS  automatically  uses  the  procedure  name  (procname) on  the  

START command  as  the  default  identifier.  

stop  

Stops  the  Listener.

 On  receipt  of a MODIFY  command,  the  Listener  closes  the  socket  bound  to the  

listening  port  so  that  no  new  requests  can  be  accepted.  It  ends  once  all  other  

sockets  have  been  closed  following  acceptance  of each  socket  by  the  corresponding  

server.  

As  a BMP,  the  Listener  can  be  forcibly  ended  by  issuing  the  IMS  STOP  REGION  

command  with  the  ABDUMP  option.  

The IMS Listener configuration file 

The  IMS  Listener  obtains  startup  parameters  from  a configuration  file.  In  Figure  11 

on  page  55  the  EZAIMSJL  G.LSTNCFG  DD  statement  points  to the  Listener  

configuration  file.  This  statement  will  be  in  the  JCL  sample  you  customize.  

The  configuration  file  contains  three  types  of  statements  which  must  appear  in the  

following  order:  

1.   TCPIP  statement  

2.   LISTENER  statement  

3.   TRANSACTION  statements

The  following  describes  each  of the  configuration  statements  and  their  respective  

parameters.  

TCPIP statement 

Description:    This  statement  is  required  and  is used  to specify  the  name  of  the  

TCP/IP  address  space.  

�� TCPIP ADDRSPC=name ��

 

ADDRSPC=  name  

Specifies  the  name  of  the  TCP/IP  address  space.  The  name  can  be  1 to 8 

characters  long,  consisting  of the  numbers  0–9,  the  letters  A–Z,  and  the  

characters  $,  @,  and  #.

 

56 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



LISTENER statement 

Description:    This  statement  is required.  It is  used  to specify  configuration  

information  used  by  the  IMS  Listener.  

�� LISTENER PORT=port MAXTRANS=maxtrans MAXACTSKT=maxskt �

�
 

ADDRSPCPFX=prefix
 BACKLOG=10 

BACKLOG=backlog

 

��

 

PORT=  port  

Port  number  that  the  Listener  binds  to for  connection  requests.  Use  an  integer  

between  0 and  65   535,  inclusive.  

MAXTRANS=  maxtrans  

The  maximum  number  of  TRANSACTION  statements  to be  processed  in the  

configuration  file.  Use  an  integer  between  1 and  32   767,  inclusive.  

MAXACTSKT=  maxskt  

The  maximum  number  of  sockets  the  Listener  can  have  open  awaiting  an  MPP  

TAKESOCKET  at one  time.  This  value  is an  integer  from  1 to 2000,  inclusive.  

The  number  includes  the  socket  bound  to  the  port  through  which  it accepts  

incoming  requests.  

ADDRSPCPFX=  prefix  

One  or  two  characters  (consisting  of the  numbers  0–9,  the  letters  A–Z,  and  the  

characters  $,  @,  and  #)  used  in  generating  unique  identifiers  for  started  IMS  

transactions.  

BACKLOG=  backlog  

This  parameter  is optional  and  is used  to  specify  the  length  of  the  backlog  

queue  maintained  in TCP/IP  for  connection  requests  that  have  not  yet  been  

assigned  sockets  by  the  Listener.  Use  an  unsigned  number  from  1 to  32   767  

inclusive.  The  default  value  is 10.

TRANSACTION statement 

Description:    This  statement  specifies  which  transactions  can  be  started  by  the  

Listener.  One  statement  is required  for  each  transaction  that  can  be  initiated  by  a 

TCP/IP-connected  client.  

Note  that  the  transactions  named  here  are  subject  to  limitations:  

v   They  must  be  defined  to IMS  as  MODE=SNGL  in  the  IMS  TRANSACT  macro;  

this  will  ensure  that  the  database  buffers  are  emptied  (flushed)  to direct  access  

storage  when  the  second  and  subsequent  GU  calls  are  issued.  

v   They  must  not  be  IMS  conversational  transactions.  

v   They  cannot  name  transactions  that  are  executed  in  a remote  Multiple  Systems  

Coupling  (MSC)  environment.  

v   They  must  not  use  Message  Format  Services  for  messages  to  the  client.

�� TRANSACTION NAME=transid TYPE= EXPLICIT 

IMPLICIT
 ��

 

NAME=  transid  

The  name  of an  IMS  transaction  that  is designed  to  interact  with  a 

 

Chapter  6. How to customize  and operate  the IMS Listener  57



TCP/IP-connected  program.  This  parameter  must  be  1 to 8 characters  long,  

containing  alphanumeric  characters,  or  the  characters  @,  $, and  #. 

TYPE=   

This  parameter  specifies  whether  the  transaction  uses  the  IMS  Assist  module.  It 

must  specify  either  EXPLICIT  or  IMPLICIT.

The IMS Listener security exit 

The  IMS  Listener  includes  an  exit  (IMSLSECX),  which  can  be  programmed  by  the  

user  to  perform  a security  check  on  the  incoming  transaction-request.  This  Listener  

exit  can  be  designed  to validate  the  contents  of the  UserData  field  in  the  

transaction  request  message.  

To use  the  user-supplied  security  exit,  you  must  define  an  entry  point  named  

IMSLSECX.  If a module  with  this  name  is link-edited  with  the  Listener  

(EZAIMSLN)  load  module,  the  security  exit  is called  as  part  of  transaction  

verification.  The  security  exit  is called  using  standard  MVS  linkage  with  register  1 

(R1)  pointing  to  the  parameter  list  (described  below).  Note  that  the  security  exit  

must  have  the  attribute  AMODE(31).  

The  exit  returns  2 indicators:  a return  code  and  a reason  code.  The  Listener  uses  

the  return  code  to  determine  whether  to honor  the  request.  Both  the  return  code  

and  the  reason  code  are  passed  back  to  the  client.  Data  passed  in  the  UserData  

field  is not  translated  from  ASCII  to  EBCDIC;  this  translation  is the  responsibility  

of  the  security  exit.  (EZACIC05  and  EZACIC04  can  be  used  to  accomplish  

translation  between  ASCII  and  EBCDIC.  Refer  to  the  chapter  on  CALL  instructions  

in  z/OS  Communications  Server:  IP  Sockets  Application  Programming  Interface  Guide  and  

Reference  for  a description  of  these  utilities.)  

The  format  of  the  data  passed  to  the  security  exit  is:  

 Field  Format  Description  

IpAddr  F The  address  of a fullword  containing  the  

client’s  IP address.  

Port  H The  address  of a halfword  containing  the 

client’s  port  number.  

TransNam  CL8  The  address  of an 8-character  string  defining  

the  name  of the  requested  transaction.  

DataType  H The  address  of a halfword  containing  the 

data  type  (0 if ASCII  or 1 if EBCDIC).  

DataLen  F The  address  of a fullword  containing  the  

length  of the  user  data.  

Userdata  XLn  The  address  of the  user-supplied  data.  

RetnCode  F The  address  of a fullword  set by the security  

exit  to indicate  the  return  status.  Set to 

nonzero  (4, 8, 12, ...) to indicate  an error.  

ReasnCode  F The  address  of a fullword  set by the security  

exit  as a reason  code  associated  with  the 

value  of the  return  code.  Reason  codes  0–100  

are  reserved  for use  by the Listener.  The  

security  exit  can  use  reason  codes  greater  

than  100.
 

 

58 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



TCP/IP services definitions 

To run IMS,  you  need  to modify  the  tcpip.PROFILE.TCPIP  data  set  and  the  

hlq.TCPIP.DATA  data  set  that  are  part  of  the  TCP/IP  Services  configuration  file.  

Guideline:  In  this  document,  the  abbreviation  hlq  stands  for  an  

installation-dependent  high  level  qualifier  which  you  must  supply.  

The hlq.PROFILE.TCPIP data set 

You define  the  IMS  socket  Listener  to  TCP/IP  on  MVS  in  the  hlq.PROFILE.TCPIP  

data  set.  In  it,  you  must  provide  entries  for  the  IMS  socket  Listener  started  task  

name  in  the  PORT  statement,  as  shown  in  Figure  12.  

The  format  for  the  PORT  statement  is:  

�� port_number TCP IMS_socket_Listener_jobname ��

 

As  an  example,  assume  you  want  to  define  two  different  IMS  control  regions.  

Create  a different  line  for  each  port  that  you  want  to  reserve.  Figure  12  shows  2 

entries,  allocating  port  number  4000  for  SERVA,  and  port  number  4001  for  SERVB.  

SERVA  and  SERVB  are  the  names  of  the  IMS  socket  Listener  started  task  names.  

These  2 entries  reserve  port  4000  for  exclusive  use  by  SERVA  and  port  4001  for  

exclusive  use  by  SERVB.  The  Listener  transactions  for  SERVA  and  SERVB  should  

be  bound  to  ports  4000  and  4001  respectively.  Other  applications  that  want  to  

access  TCP/IP  on  MVS  are  prevented  from  using  these  ports.  

Ports  that  are  not  defined  in  the  PORT  statement  can  be  used  by  any  application,  

including  SERVA  and  SERVB  if they  need  other  ports.  

   

 ; 

 ; hlq.PROFILE.TCPIP  

 ; ===================  

 ; 

 ; This  is a sample  configuration  file  for the  TCPIP  address  space.  

 ; For  more  information  about  this  file,  see "Configuring  the TCPIP  

 ; Address  Space"  and  "Configuring  the Telnet  Server"  in  the  Planning  and 

 ; Customization  Manual.  

        ..........  

        ..........  

 ; ----------------------------------------------------------------------  

 ; Reserve  PORTs  for  the  following  servers.  

 ; 

 ; NOTE:   A port  that  is not reserved  in this  list  can  be used  by 

 ;        any  user.   If you have  TCP/IP  hosts  in your  network  that  

 ;        reserve  ports  in the  range  1-1023  for  privileged  

 ;        applications,  you should  reserve  them  here  to prevent  users  

 ;        from  using  them.  

 PORT  

        ..........  

        ..........  

   4000  TCP  SERVA             ; IMS  Port  for  SERVA  

   4001  TCP  SERVB             ; IMS  Port  for  SERVB  

Figure  12.  Definition  of the  TCP/IP  profile

 

Chapter  6. How to customize  and operate  the IMS Listener  59



The hlq.TCPIP.DATA  data set 

For  IMS,  you  do  not  have  to make  any  extra  entries  in  hlq.TCPIP.DATA.  However,  

you  need  to  check  the  TCPIPJOBNAME  parameter  that  was  entered  during  

TCP/IP  Services  setup.  This  parameter  is the  name  of  the  started  procedure  used  

to  start  the  TCP/IP  MVS  address  space.  This  must  match  the  job  name  in the  

Listener  configuration  file  TCPIP  statement,  as  described  in  “TCPIP  statement”  on  

page  56.  In the  example  below,  TCPIPJOBNAME  is set  to  TCPV3.  The  default  

name  is  TCPIP.  

   

 ;***********************************************************************  

 ;                                                                      * 

 ;   Name  of Data  Set:       hlq.TCPIP.DATA                               * 

 ;                                                                      * 

 ;   This  data,  TCPIP.DATA,  is  used  to specify  configuration             * 

 ;   information  required  by TCP/IP  client  programs.                     * 

 ;                                                                      * 

 ;***********************************************************************  

 ; TCPIPJOBNAME  specifies  the name  of the started  procedure  which  was  

 ; used  to start  the  TCP/IP  address  space.     TCPIP  is the  default.  

 ; 

 TCPIPJOBNAME  TCPV3  

        ..........  

        ..........  

        ..........  

Figure  13. The  TCPIPJOBNAME  Parameter  in the DATA data  set

 

60 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Chapter  7.  Using  the  CALL  instruction  application  

programming  interface  (API)  

This  chapter  describes  the  CALL  instruction  API  for  IPv4  or  IPv6  socket  

applications.  The  following  topics  are  included:  

v   “Environmental  restrictions  and  programming  requirements”  

v   “CALL  instruction  application  programming  interface  (API)”  on  page  63  

v   “Understanding  COBOL,  Assembler,  and  PL/I  call  formats”  on  page  63  

v   “Converting  parameter  descriptions”  on  page  64 

v   “Diagnosing  problems  in  applications  using  the  CALL  instruction  API”  on  page  

65  

v   “Error  messages  and  return  codes”  on  page  65  

v   “Code  CALL  instructions”  on  page  65  

v   “Using  data  translation  programs  for  socket  call  interface”  on  page  181  

v   “Call  interface  sample  programs”  on  page  201

Environmental restrictions and programming requirements 

The  following  restrictions  apply  to  both  the  Macro  Socket  API  and  the  Callable  

Socket  API:  

 Function  Restriction  

SRB  mode  These  APIs  can  only  be invoked  in TCB  mode  (task  

mode).  

Cross-memory  mode  These  APIs  can  only  be invoked  in a 

non-cross-memory  environment  

(PASN=SASN=HASN).  

Functional  Recovery  Routine  (FRR)  Do not  invoke  these  APIs  with  an  FRR  set. This  

causes  system  recovery  routines  to be bypassed  and  

severely  damage  the system.  

Locks  No locks  should  be held  when  issuing  these  calls.  

INITAPI/TERMAPI  macros  The  INITAPI/TERMAPI  macros  must  be issued  under  

the  same  task.  

Storage  Storage  acquired  for  the purpose  of containing  data  

returned  from  a socket  call  must  be obtained  in the 

same  key  as the application  program  status  word  

(PSW)  at the  time  of the socket  call.  This  includes  the  

ECB  that  is posted  upon  completion  of an 

asynchronous  EZASOKET  macro  call  that  is issued  

after  an EZASOKET  TYPE=INITAPI  with  the  

ASYNC=('ECB')  option  has  been  issued.  

Nested  socket  API  calls  You cannot  issue  nested  API  calls  within  the  same  

task.  That  is, if a request  block  (RB)  issues  a socket  

API  call  and  is interrupted  by an interrupt  request  

block  (IRB)  in an STIMER  exit,  any  additional  socket  

API  calls  that  the  IRB  attempts  to issue  are  detected  

and  flagged  as errors.  

 

© Copyright  IBM Corp. 1994, 2005 61



Function  Restriction  

Addressability  mode  (Amode)  

considerations  

The  EZASOKET  API  can  be invoked  while  the  caller  

is in either  31-bit  or 24-bit  Amode.  However,  if the 

application  is running  in 24-bit  addressability  mode  at 

the  time  of the call,  all addresses  of parameters  

passed  by  the  application  must  be addressable  in 

31-bit  Amode.  This  implies  that  even  if the  addresses  

being  passed  reside  in storage  below  the  16 MB  line  

(and  therefore  addressable  by 24-bit  Amode  

programs)  the  high-order  byte  of these  addresses  

needs  to be 0. 

Use  of z/OS  UNIX  System  Services  Address  spaces  using  the  EZASOKET  API  should  not 

use  any  z/OS  UNIX  System  Services  socket  API  

facilities  such  as  z/OS  UNIX  Assembler  Callable  

Services  or Language  Environment  for  z/OS  C/C++.  

Doing  so can  yield  unpredictable  results.
  

Linkage conventions for the CALL instruction API 

Output register information 

When  control  returns  to  the  caller,  the  general  purpose  registers  (GPRs)  contain:  

Register  

Contents  

0-1  Used  as  work  registers  by  the  system  

2-13  Unchanged  

14  Used  as  a work  register  by  the  system  

15  For  synchronous  calls,  it contains  the  entry  point  address  of EZBSOH03

When  control  returns  to  the  caller,  the  access  registers  (ARs)  contain:  

Register  

Contents  

0-1  Used  as  work  registers  by  the  system  

2-14  Unchanged  

15  Used  as  a work  register  by  the  system

If  a caller  depends  on  register  contents  to remain  the  same  before  and  after  issuing  

a service,  the  caller  must  save  the  contents  of a register  before  issuing  the  service  

and  restore  them  after  the  system  returns  control.  

Compatibility considerations 

Unless  noted  in  z/OS  Communications  Server:  New  Function  Summary, an  application  

program  compiled  and  link  edited  on  a release  of  z/OS  Communications  Server  IP 

can  be  used  on  higher  level  releases.  That  is,  the  API  is upward  compatible.  

Application  programs  that  are  compiled  and  link  edited  on  a release  of z/OS  

Communications  Server  IP  cannot  be  used  on  older  releases.  That  is,  the  API  is not  

downward  compatible.  

 

62 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



CALL instruction application programming interface (API) 

This  section  describes  the  CALL  instruction  API  for  TCP/IP  application  programs  

written  in  the  COBOL,  PL/I,  or  System/370  Assembler  language.  The  format  and  

parameters  are  described  for  each  socket  call.

Notes:   

1.   Unless  your  program  is running  in  a CICS® environment,  reentrant  code  and  

multithread  applications  are  not  supported  by  this  interface.  

2.   Only  one  copy  of  an  interface  can  exist  in  a single  address  space.  

3.   For  a PL/I  program,  include  the  following  statement  before  your  first  call  

instruction.  

  DCL  EZASOKET  ENTRY  OPTIONS(RETCODE,ASM,INTER)  EXT;  

4.   The  entry  point  for  the  CICS  Sockets  Extended  module  (EZASOKET)  is within  

the  EZACICAL  module.  Therefore  EZACICAL  should  be  included  explicitly  in  

your  link-edit  JCL.  If  not  included,  you  could  experience  problems,  such  as the  

CICS  region  waiting  for  the  socket  calls  to  complete.

Understanding COBOL, Assembler, and PL/I call formats 

This  API  is invoked  by  calling  the  EZASOKET  program  and  performs  the  same  

functions  as the  C language  calls.  The  parameters  look  different  because  of the  

differences  in  the  programming  languages.  

COBOL language call format 

The  following  is the  ’EZASOKET’  call  format  for  COBOL  language  programs:  

�� CALL  ‘EZASOKET’  USING  SOC-FUNCTION parm1,  parm2,  .. ERRNO,RETCODE. ��

 

SOC-FUNCTION  

A 16-byte  character  field,  left-justified  and  padded  on  the  right  with  

blanks.  Set  to the  name  of  the  call.  SOC-FUNCTION  is case  specific.  It 

must  be  in  uppercase.  

parmn A variable  number  of parameters  depending  on  the  type  call.  

ERRNO  

If  RETCODE  is negative,  there  is an  error  number  in  ERRNO.  This  field  is 

used  in  most,  but  not  all,  of  the  calls.  It corresponds  to  the  value  returned  

by  the  tcperror()  function  in  C.  

RETCODE  

A fullword  binary  variable  containing  a code  returned  by  the  EZASOKET  

call.  This  value  corresponds  to the  normal  return  value  of a C  function.

Assembler language call format 

The  following  is the  EZASOKET  call  format  for  assembler  language  programs.  

�� CALL  EZASOKET,(SOC-FUNCTION, parm1,  parm2,  .. ERRNO,RETCODE),VL ��

 

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 63



PL/I language call format 

The  following  is the  EZASOKET  call  format  for  PL/I  language  programs:  

�� CALL  EZASOKET  (SOC-FUNCTION parm1,  parm2,  ... ERRNO,RETCODE); ��

 

SOC-FUNCTION  

A  16-byte  character  field,  left-justified  and  padded  on  the  right  with  

blanks.  Set  to  the  name  of the  call.  

parmn A  variable  number  of  parameters  depending  on  the  type  call.  

ERRNO  

If  RETCODE  is negative,  there  is an  error  number  in  ERRNO.  This  field  is 

used  in  most,  but  not  all,  of the  calls.  It corresponds  to  the  value  returned  

by  the  tcperror()  function  in  C.  

RETCODE  

A  fullword  binary  variable  containing  a code  returned  by  the  EZASOKET  

call.  This  value  corresponds  to the  normal  return  value  of  a C function.

Converting parameter descriptions 

The  parameter  descriptions  in  this  chapter  are  written  using  the  VS  COBOL  II PIC  

language  syntax  and  conventions,  but  you  should  use  the  syntax  and  conventions  

that  are  appropriate  for  the  language  you  want  to  use.  

Figure  14  shows  examples  of storage  definition  statements  for  COBOL,  PL/I,  and  

assembler  language  programs.  

   

VS COBOL  II PIC  

  

  PIC  S9(4)  BINARY                    HALFWORD  BINARY  VALUE  

  PIC  S9(8)  BINARY                    FULLWORD  BINARY  VALUE  

  PIC    X(n)                          CHARACTER  FIELD  OF N BYTES  

  

COBOL  PIC  

  

  PIC  S9(4)  COMP                      HALFWORD  BINARY  VALUE  

  PIC  S9(4)  BINARY                    HALFWORD  BINARY  VALUE  

  PIC  S9(8)  COMP                      FULLWORD  BINARY  VALUE  

  PIC  S9(8)  BINARY                    FULLWORD  BINARY  VALUE  

  PIC    X(n)                          CHARACTER  FIELD  OF N BYTES  

  

PL/I  DECLARE  STATEMENT  

  

  DCL    HALF        FIXED  BIN(15),     HALFWORD  BINARY  VALUE  

  DCL    FULL        FIXED  BIN(31),     FULLWORD  BINARY  VALUE  

  DCL    CHARACTER   CHAR(n)            CHARACTER  FIELD  OF n BYTES  

  

ASSEMBLER  DECLARATION  

  

  DS    H                            HALFWORD  BINARY  VALUE  

  DS    F                            FULLWORD  BINARY  VALUE  

  DS    CLn                           CHARACTER  FIELD  OF n BYTES  

Figure  14. Storage  definition  statement  examples

 

64 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Diagnosing problems in applications using the CALL instruction API 

TCP/IP  provides  a trace  facility  that  can  be  helpful  in  diagnosing  problems  in 

applications  using  the  CALL  instruction  API.  The  trace  is implemented  using  the  

TCP/IP  Component  Trace (CTRACE)  SOCKAPI  trace  option.  The  SOCKAPI  trace  

option  allows  all  Call  instruction  socket  API  calls  issued  by  an  application  to  be  

traced  in  the  TCP/IP  CTRACE.  The  SOCKAPI  trace  records  include  information  

such  as the  type  of  socket  call,  input,  and  output  parameters  and  return  codes.  

This  trace  can  be  helpful  in  isolating  failing  socket  API  calls  and  in  determining  

the  nature  of  the  error  or  the  history  of socket  API  calls  that  may  be  the  cause  of  

an  error. For  more  information  on  the  SOCKAPI  trace  option,  refer  to  z/OS  

Communications  Server:  IP  Diagnosis  Guide. 

Error messages and return codes 

For  information  about  error  messages,  refer  to  z/OS  Communications  Server:  IP  

Messages  Volume  1 (EZA). 

For  information  about  error  codes  that  are  returned  by  TCP/IP,  see  Appendix  A. 

Return  codes  on  page  295.  

Code CALL instructions 

This  section  contains  the  description,  syntax,  parameters  , and  other  related  

information  for  each  call  instruction  included  in  this  API.  

ACCEPT 

A  server  issues  the  ACCEPT  call  to  accept  a connection  request  from  a client.  The  

call  points  to  a socket  that  was  previously  created  with  a SOCKET  call  and  marked  

by  a LISTEN  call.  

The  ACCEPT  call  is a blocking  call.  When  issued,  the  ACCEPT  call:  

1.   Accepts  the  first  connection  on  a queue  of pending  connections.  

2.   Creates  a new  socket  with  the  same  properties  as  s, and  returns  its  descriptor  

in RETCODE.  The  original  sockets  remain  available  to  the  calling  program  to 

accept  more  connection  requests.  

3.   The  address  of  the  client  is returned  in  NAME  for  use  by  subsequent  server  

calls.

Notes:   

1.   The  blocking  or  nonblocking  mode  of a socket  affects  the  operation  of  certain  

commands.  The  default  is blocking;  nonblocking  mode  can  be  established  by  

use  of  the  FCNTL  and  IOCTL  calls.  When  a socket  is in  blocking  mode,  an  I/O  

call  waits  for  the  completion  of  certain  events.  For  example,  a READ  call  will  

block  until  the  buffer  contains  input  data.  When  an  I/O  call  is issued:  

v   If  the  socket  is blocking,  program  processing  is suspended  until  the  event  

completes.  

v   If  the  socket  is nonblocking,  program  processing  continues.
2.   If the  queue  has  no  pending  connection  requests,  ACCEPT  blocks  the  socket  

unless  the  socket  is in  nonblocking  mode.  The  socket  can  be  set  to  nonblocking  

by  calling  FCNTL  or  IOCTL.  

3.   When  multiple  socket  calls  are  issued,  a SELECT  call  can  be  issued  prior  to the  

ACCEPT  to  ensure  that  a connection  request  is pending.  Using  this  technique  

ensures  that  subsequent  ACCEPT  calls  will  not  block.  

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 65



4.   TCP/IP  does  not  provide  a function  for  screening  clients.  As  a result,  it is up  to  

the  application  program  to  control  which  connection  requests  it accepts,  but  it 

can  close  a connection  immediately  after  discovering  the  identity  of the  client.

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  15  shows  an  example  of  ACCEPT  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  ACCEPT.  Left-justify  the  field  and  pad  

it  on  the  right  with  blanks.  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’ACCEPT’.  

        01   S               PIC  9(4)  BINARY.  

    * IPv4  socket  address  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   IP-ADDRESS   PIC  9(8)  BINARY.  

            03   RESERVED     PIC  X(8).  

    * IPv6  socket  address  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   FLOWINFO     PIC  9(8)  BINARY.  

            03   IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            03   SCOPE-ID     PIC  X(8)  BINARY.  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S NAME  ERRNO  RETCODE.  

Figure  15. ACCEPT  call  instructions  example

 

66 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



S  A halfword  binary  number  specifying  the  descriptor  of  a socket  that  was  

previously  created  with  a SOCKET  call.  In a concurrent  server,  this  is the  

socket  upon  which  the  server  listens.

Parameter values returned to the application 

NAME  

An  IPv4  socket  address  structure  that  contains  the  client’s  socket  address.  

FAMILY  

A  halfword  binary  field  specifying  the  IPv4  addressing  family.  The  

call  returns  the  value  decimal  2 for  AF_INET.  

PORT  A  halfword  binary  field  that  is set  to  the  client’s  port  number.  

IP-ADDRESS  

A  fullword  binary  field  that  is set  to the  32-bit  IPv4  Internet  

address,  in  network  byte  order, of  the  client’s  host  machine.  

RESERVED  

Specifies  8 bytes  of  binary  zeros.  This  field  is required,  but  not  

used.

An  IPv6  socket  address  structure  that  contains  the  client’s  socket  address.  

FAMILY  

A  halfword  binary  field  specifying  the  IPv6  addressing  family.  For  

TCP/IP  the  value  is decimal  19,  indicating  AF_INET6.  

PORT  A  halfword  binary  field  that  is set  to  the  client’s  port  number.  

FLOWINFO  

A  fullword  binary  field  specifying  the  traffic  class  and  flow  label.  

This  value  of  this  field  is undefined.  

IP-ADDRESS  

A  16-byte  binary  field  that  is set  to  the  128-bit  IPv6  Internet  

address,  in  network-byte-order,  of the  client’s  host  machine.  

SCOPE-ID  

A  fullword  binary  field  which  identifies  a set  of interfaces  as  

appropriate  for  the  scope  of  the  address  carried  in  the  

IPv6-ADDRESS  field.  For  a link  scope  IPv6-ADDRESS,  SCOPE-ID  

contains  the  link  index  for  the  IPv6-ADDRESS.  For  all  other  

address  scopes,  SCOPE-ID  is undefined.

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

If  the  RETCODE  value  is positive,  the  RETCODE  value  is  the  new  socket  

number.  

 If  the  RETCODE  value  is negative,  check  the  ERRNO  field  for  an  error  

number.  

Value  Description  

> 0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 67



BIND 

In  a typical  server  program,  the  BIND  call  follows  a SOCKET  call  and  completes  

the  process  of  creating  a new  socket.  

The  BIND  macro  can  specify  the  port  or  let  the  system  choose  the  port.  A listener  

program  should  always  bind  to  the  same  well-known  port  so that  clients  know  the  

socket  address  to  use  when  issuing  a CONNECT,  SENDTO,  or  SENDMSG  request.  

In  addition  to  the  port,  the  application  also  specifies  an  IP  address  on  the  BIND  

macro.  Most  applications  typically  specify  a value  of 0 for  the  IP  address,  which  

allows  these  applications  to accept  new  TCP  connections  or  receive  UDP  

datagrams  that  arrive  over  any  of  the  network  interfaces  of the  local  host.  This  

enables  client  applications  to  contact  the  application  using  any  of  the  IP  addresses  

associated  with  the  local  host.  

Alternatively,  an  application  can  indicate  that  it is only  interested  in  receiving  new  

TCP  connections  or  UDP  datagrams  that  are  targeted  towards  a specific  IP  address  

associated  with  the  local  host.  This  can  be  accomplished  by  specifying  the  IP  

address  in  the  appropriate  field  of  the  socket  address  structure  passed  on  the  

NAME  parameter.

Note:   Even  if an  application  specifies  a value  of  0 for  the  IP  address  on  the  BIND,  

the  system  administrator  can  override  that  value  by  specifying  the  BIND  

parameter  on  the  PORT  reservation  statement  in the  TCP/IP  profile.  This  

has  a similar  effect  to  the  application  specifying  an  explicit  IP address  on  the  

BIND  CALL.  For  more  information,  refer  to the  z/OS  Communications  Server:  

IP  Configuration  Reference. 

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  16  on  page  69  shows  an  example  of  BIND  call  instructions.  

 

 

68 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  BIND.  The  field  is left-justified  and  

padded  to  the  right  with  blanks.  

S  A halfword  binary  number  specifying  the  socket  descriptor  for  the  socket  

to  be  bound.  

NAME  

 Specifies  the  IPv4  socket  address  structure  for  the  socket  that  is to  be  

bound.  

FAMILY  

A  halfword  binary  field  specifying  the  IPv4  addressing  family.  The  

value  is always  set  to  decimal  2,  indicating  AF_INET.  

PORT  A  halfword  binary  field  that  is set  to  the  port  number  to  which  

you  want  the  socket  to be  bound.  

Note:   The  application  can  call  the  GETSOCKNAME  macro  after  

the  BIND  macro  to  discover  the  assigned  port  number.

IP-ADDRESS  

A  fullword  binary  field  that  is set  to the  32-bit  IPv4  Internet  

address  (network  byte  order)  of  the  socket  to  be  bound.  

RESERVED  

Specifies  an  8-byte  character  field  that  is required  but  not  used.

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’BIND’.  

        01  S               PIC  9(4)  BINARY.  

  

     * IPv4  socket  address  structure.  

        01  NAME.  

            03  FAMILY       PIC  9(4)  BINARY.  

            03  PORT         PIC  9(4)  BINARY.  

            03  IP-ADDRESS   PIC  9(8)  BINARY.  

            03  RESERVED     PIC X(8).  

  

     * IPv6  socket  address  structure.  

        01  NAME.  

            03  FAMILY       PIC  9(4)  BINARY.  

            03  PORT         PIC  9(4)  BINARY.  

            03  FLOWINFO     PIC 9(8)  BINARY.  

            03  IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            03  SCOPE-ID     PIC 9(8)  BINARY.  

  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S NAME  ERRNO  RETCODE.  

Figure  16.  BIND  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 69



Specifies  the  IPv6  socket  address  structure  for  the  socket  that  is to  be  

bound.  

FAMILY  

A  halfword  binary  field  specifying  the  IPv6  addressing  family.  For  

TCP/IP  the  value  is decimal  19,  indicating  AF_INET6.  

PORT  A  halfword  binary  field  that  is  set  to  the  port  number  to  which  

you  want  the  socket  to  be  bound.  

Note:   The  application  can  call  the  GETSOCKNAME  macro  after  

the  BIND  macro  to  discover  the  assigned  port  number.

FLOWINFO  

A  fullword  binary  field  specifying  the  traffic  class  and  flow  label.  

This  field  must  be  set  to 0.  

IP-ADDRESS  

A  16-byte  binary  field  that  is set  to the  128-bit  IPv6  Internet  

address  (network  byte  order)  of the  socket  to  be  bound.  

SCOPE-ID  

A  fullword  binary  field  which  identifies  a set  of  interfaces  as  

appropriate  for  the  scope  of the  address  carried  in  the  

IPv6-ADDRESS  field.  A value  of  0 indicates  the  SCOPE-ID  field  

does  not  identify  the  set  of interfaces  to  be  used,  and  may  be  

specified  for  any  address  types  and  scopes.  For  a link  scope  

IPv6-ADDRESS,  SCOPE-ID  may  specify  a link  index  which  

identifies  a set  of  interfaces.  For  all  other  address  scopes,  

SCOPE-ID  must  be  set  to  0.

Parameter values returned to the application 

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  this  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

CLOSE 

The  CLOSE  call  performs  the  following  functions:  

v   The  CLOSE  call  shuts  down  a socket  and  frees  all  resources  allocated  to  it. If the  

socket  refers  to  an  open  TCP  connection,  the  connection  is closed.  

v   The  CLOSE  call  is  also  issued  by  a concurrent  server  after  it gives  a socket  to  a 

child  server  program.  After  issuing  the  GIVESOCKET  and  receiving  notification  

that  the  client  child  has  successfully  issued  a TAKESOCKET,  the  concurrent  

server  issues  the  close  command  to  complete  the  passing  of  ownership.  In  

high-performance,  transaction-based  systems  the  timeout  associated  with  the  

CLOSE  call  can  cause  performance  problems.  In  such  systems  you  should  

consider  the  use  of  a SHUTDOWN  call  before  you  issue  the  CLOSE  call.  See  

“SHUTDOWN”  on  page  172  for  more  information.  

 

70 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Notes:   

1.   If  a stream  socket  is closed  while  input  or  output  data  is queued,  the  TCP  

connection  is reset  and  data  transmission  may  be  incomplete.  The  

SETSOCKOPT  call  can  be  used  to  set  a linger  condition,  in  which  TCP/IP  

will  continue  to  attempt  to  complete  data  transmission  for  a specified  period  

of  time  after  the  CLOSE  call  is issued.  See  SO-LINGER  in  the  description  of 

“SETSOCKOPT”  on  page  163.  

2.   A concurrent  server  differs  from  an  iterative  server.  An  iterative  server  

provides  services  for  one  client  at a time;  a concurrent  server  receives  

connection  requests  from  multiple  clients  and  creates  child  servers  that  

actually  serve  the  clients.  When  a child  server  is created,  the  concurrent  

server  obtains  a new  socket,  passes  the  new  socket  to  the  child  server,  and  

then  dissociates  itself  from  the  connection.  The  CICS  Listener  is  an  example  

of  a concurrent  server.  

3.   After  an  unsuccessful  socket  call,  a close  should  be  issued  and  a new  socket  

should  be  opened.  An  attempt  to  use  the  same  socket  with  another  call  

results  in  a nonzero  return  code.

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  17  shows  an  example  of CLOSE  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’CLOSE’.  

        01  S               PIC  9(4)  BINARY.  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

  

    PROCEDURE  DIVISION.  

        CALL  ’EZASOKET’  USING  SOC-FUNCTION  S ERRNO  RETCODE.  

Figure  17.  CLOSE  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 71



Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  field  containing  CLOSE.  Left-justify  the  field  and  pad  it on  the  

right  with  blanks.  

S A  halfword  binary  field  containing  the  descriptor  of the  socket  to  be  

closed.

Parameter values returned to the application 

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  this  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

CONNECT 

The  CONNECT  call  is issued  by  a client  to  establish  a connection  between  a local  

socket  and  a remote  socket.  

Stream sockets 

For  stream  sockets,  the  CONNECT  call  is issued  by  a client  to establish  connection  

with  a server.  The  call  performs  two  tasks:  

v   It completes  the  binding  process  for  a stream  socket  if a BIND  call  has  not  been  

previously  issued.  

v   It attempts  to  make  a connection  to a remote  socket.  This  connection  is necessary  

before  data  can  be  transferred.

UDP sockets 

For  UDP  sockets,  a CONNECT  call  need  not  precede  an  I/O  call,  but  if issued,  it 

allows  you  to  send  messages  without  specifying  the  destination.  

 The  call  sequence  issued  by  the  client  and  server  for  stream  sockets  is:  

1.   The  server  issues  BIND  and  LISTEN  to create  a passive  open  socket.  

2.   The  client  issues  CONNECT  to  request  the  connection.  

3.   The  server  accepts  the  connection  on  the  passive  open  socket,  creating  a new  

connected  socket.

The  blocking  mode  of  the  CONNECT  call  conditions  its  operation.  

v   If  the  socket  is in  blocking  mode,  the  CONNECT  call  blocks  the  calling  program  

until  the  connection  is established,  or  until  an  error  is received.  

v   If  the  socket  is in  nonblocking  mode,  the  return  code  indicates  whether  the  

connection  request  was  successful.  

–   A 0 RETCODE  indicates  that  the  connection  was  completed.  

–   A nonzero  RETCODE  with  an  ERRNO  of 36  (EINPROGRESS)  indicates  that  

the  connection  is  not  completed,  but  since  the  socket  is nonblocking,  the  

CONNECT  call  returns  normally.
The  caller  must  test  the  completion  of the  connection  setup  by  calling  SELECT  

and  testing  for  the  ability  to  write  to  the  socket.

 

72 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



The  completion  cannot  be  checked  by  issuing  a second  CONNECT.  For  more  

information,  see  “SELECT”  on  page  144.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  18  shows  an  example  of CONNECT  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’CONNECT’.  

        01  S               PIC  9(4)  BINARY.  

  

    * IPv4  socket  address  structure.  

        01  NAME.  

            03  FAMILY       PIC  9(4)  BINARY.  

            03  PORT         PIC  9(4)  BINARY.  

            03  IP-ADDRESS   PIC  9(8)  BINARY.  

            03  RESERVED     PIC X(8).  

  

    * IPv6  socket  address  structure.  

        01  NAME.  

            03  FAMILY       PIC  9(4)  BINARY.  

            03  PORT         PIC  9(4)  BINARY.  

            03  IP-ADDRESS   PIC  9(8)  BINARY.  

            03  FLOWINFO     PIC 9(8)  BINARY.  

            03  IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            03  SCOPE-ID     PIC 9(8)  BINARY.  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

  

   PROCEDURE  DIVISION.  

  

    CALL  ’EZASOKET’  USING  SOC-FUNCTION  S NAME  ERRNO  RETCODE.  

Figure  18.  CONNECT  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 73



Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  field  containing  CONNECT.  Left-justify  the  field  and  pad  it on  

the  right  with  blanks.  

S A  halfword  binary  number  specifying  the  socket  descriptor  of  the  socket  

that  is  to  be  used  to establish  a connection.  

NAME  

 An  IPv4  socket  address  structure  that  contains  the  IPv4  socket  address  of  

the  target  to  which  the  local,  client  socket  is to be  connected.  

FAMILY  

A  halfword  binary  field  specifying  the  IPv4  addressing  family.  The  

value  must  be  decimal  2 for  AF_INET.  

PORT  A  halfword  binary  field  that  is  set  to  the  server’s  port  number  in 

network  byte  order.  For  example,  if the  port  number  is  5000  in  

decimal,  it is  stored  as  X'1388'  in  hex.  

IP-ADDRESS  

A  fullword  binary  field  that  is set  to the  32-bit  IPv4  Internet  

address  of  the  server’s  host  machine  in  network  byte  order.  For  

example,  if the  Internet  address  is 129.4.5.12  in  dotted  decimal  

notation,  it would  be  represented  as X'8104050C'  in  hex.  

RESERVED  

Specifies  an  8-byte  reserved  field.  This  field  is  required,  but  is not  

used.

 

 An  IPv6  socket  address  structure  that  contains  the  IPv6  socket  address  of  

the  target  to  which  the  local,  client  socket  is to be  connected.  

FAMILY  

A  halfword  binary  field  specifying  the  IPv6  addressing  family.  For  

TCP/IP  the  value  is decimal  19  for  AF_INET6.  

PORT  A  halfword  binary  field  that  is  set  to  the  server’s  port  number  in 

network  byte  order.  For  example,  if the  port  number  is  5000  in  

decimal,  it is  stored  as  X'1388'  in  hex.  

FLOWINFO  

A  fullword  binary  field  specifying  the  traffic  class  and  flow  label.  

This  field  must  be  set  to 0.  

IP-ADDRESS  

A  16-byte  binary  field  that  is set  to the  128-bit  IPv6  Internet  

address  of  the  server’s  host  machine  in  network  byte  order.  For  

example,  if the  IPv6  Internet  address  is 

12ab:0:0:cd30:123:4567:89ab:cedf  in  colon  hex  notation,  it is set  to  

X'12AB00000000CD300123456789ABCDEF'.  

SCOPE-ID  

A  fullword  binary  field  which  identifies  a set  of  interfaces  as  

appropriate  for  the  scope  of the  address  carried  in  the  

IPv6-ADDRESS  field.  A value  of  0 indicates  the  SCOPE-ID  field  

does  not  identify  the  set  of interfaces  to  be  used,  and  may  be  

specified  for  any  address  types  and  scopes.  For  a link  scope  

 

74 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



IPv6-ADDRESS,  SCOPE-ID  may  specify  a link  index  which  

identifies  a set  of interfaces.  For  all  other  address  scopes,  

SCOPE-ID  must  be  set  to  0.

Parameter values returned to the application 

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  this  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

FCNTL 

The  blocking  mode  of a socket  can  either  be  queried  or  set  to  nonblocking  using  

the  FNDELAY  flag  described  in  the  FCNTL  call.  You can  query  or  set  the  

FNDELAY  flag  even  though  it  is not  defined  in  your  program.  

See  “IOCTL”  on  page  119  for  another  way  to control  a socket’s  blocking  mode.  

Values  for  commands  that  are  supported  by  the  z/OS  UNIX  Systems  Services  fcntl  

callable  service  will  also  be  accepted.  Refer  to  z/OS  UNIX  System  Services  Assembler  

Callable  Services  Reference  for  more  information.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  19  on  page  76  shows  an  example  of FCNTL  call  instructions.  

 

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 75



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  FCNTL.  The  field  is left-justified  and  

padded  on  the  right  with  blanks.  

S A  halfword  binary  number  specifying  the  socket  descriptor  for  the  socket  

that  you  want  to  unblock  or  query.  

COMMAND  

A  fullword  binary  number  with  the  following  values:  

Value  Description  

3 Query  the  blocking  mode  of  the  socket.  

4 Set  the  mode  to blocking  or  nonblocking  for  the  socket.

REQARG  

A  fullword  binary  field  containing  a mask  that  TCP/IP  uses  to set  the  

FNDELAY  flag.  

v   If  COMMAND  is set  to  3 ('query')  the  REQARG  field  should  be  set  to  0. 

v   If  COMMAND  is set  to  4 ('set')  

–    Set  REQARG  to 4 to  turn  the  FNDELAY  flag  on.  This  places  the  

socket  in  nonblocking  mode.  

–    Set  REQARG  to 0 to  turn  the  FNDELAY  flag  off.  This  places  the  

socket  in  blocking  mode.

Parameter values returned to the application 

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following.  

v   If  COMMAND  was  set  to  3 (query),  a bit  string  is returned.  

–   If  RETCODE  contains  X'00000004',  the  socket  is nonblocking.  (The  

FNDELAY  flag  is on.)  

–   If  RETCODE  contains  X'00000000',  the  socket  is blocking.  (The  

FNDELAY  flag  is off.)

    WORKING-STORAGE  SECTION  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’FCNTL’.  

        01   S               PIC  9(4)  BINARY.  

        01   COMMAND          PIC  9(8)  BINARY.  

        01   REQARG           PIC  9(8)  BINARY.  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

  

    PROCEDURE  DIVISION  

    CALL  ’EZASOKET’  USING  SOC-FUNCTION  S COMMAND  REQARG  

                    ERRNO  RETCODE.  

Figure  19. FCNTL  call  instruction  example

 

76 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



v   If COMMAND  was  set  to 4 (set),  a successful  call  is indicated  by  0 in  

this  field.  In  both  cases,  a RETCODE  of −1  indicates  an  error  (check  the  

ERRNO  field  for  the  error  number).

FREEADDRINFO 

The  FREEADDRINFO  call  frees  all  the  address  information  structures  returned  by  

GETADDRINFO  in  the  RES  parameter.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  20  shows  an  example  of FREEADDRINFO  call  instructions.  

   

Parameter values set by the application 

Keyword  Description  

SOC-FUNCTION  

A  16-byte  character  field  containing  FREEADDRINFO.  The  field  is 

left-justified  and  padded  on  the  right  with  blanks.  

ADDRINFO  Input  parameter.  The  address  of  a set  of  address  information  

structures  returned  by  the  GETADDRINFO  RES  argument.

Parameter values returned to the application 

Keyword  Description  

ERRNO  Output  parameter.  A  fullword  binary  field.  If  RETCODE  is 

negative,  ERRNO  contains  a valid  error  number.  Otherwise,  ignore  

the  ERRNO  field.  

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’FREEADDRINFO’.  

        01  ADDRINFO         PIC 9(8)  BINARY.  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

  

    PROCEDURE  DIVISION.  

    CALL  ’EZASOKET’  USING  SOC-FUNCTION  ADDRINFO  

                    ERRNO  RETCODE.  

Figure  20.  FREEADDRINFO  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 77



See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

RETCODE  Output  parameter.  A fullword  binary  field  that  returns  one  of  the  

following:  

Value  Description  

0 Successful  call.  

–1  Check  ERRNO  for  an  error  code.

GETADDRINFO  

The  GETADDRINFO  call  translates  either  the  name  of a service  location  (for  

example,  a host  name),  a service  name,  or  both,  and  returns  a set  of  socket  

addresses  and  associated  information  to  be  used  in  creating  a socket  with  which  to  

address  the  specified  service  or  sending  a datagram  to the  specified  service.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  21  on  page  79  shows  an  example  of  GETADDRINFO  call  instructions.  

 

 

78 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Parameter values set by the application 

Keyword  Description  

SOC-FUNCTION  

A  16-byte  character  field  containing  GETADDRINFO.  The  field  is  

left-justified  and  padded  on  the  right  with  blanks.  

NODE  An  input  parameter.  Storage  up  to  255  bytes  long  that  contains  the  

host  name  being  queried.  If  the  AI-NUMERICHOST  flag  is 

specified  in the  storage  pointed  to  by  the  HINTS  field,  then  NODE  

should  contain  the  queried  host’s  IP  address  in presentation  form.  

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GETADDRINFO’.  

        01  NODE             PIC  X(255).  

        01  NODELEN          PIC  9(8)  BINARY.  

        01  SERVICE          PIC  X(32).  

        01  SERVLEN          PIC  9(8)  BINARY.  

        01  AI-PASSIVE       PIC  9(8)  BINARY  VALUE  1. 

        01  AI-CANONNAMEOK   PIC 9(8)  BINARY  VALUE  2. 

        01  AI-NUMERICHOST   PIC 9(8)  BINARY  VALUE  4. 

        01  AI-NUMERICSERV   PIC 9(8)  BINARY  VALUE  8. 

        01  AI-V4MAPPED      PIC 9(8)  BINARY  VALUE  16. 

        01  AI-ALL           PIC  9(8)  BINARY  VALUE  32. 

        01  AI-ADDRCONFIG    PIC  9(8)  BINARY  VALUE  64.  

        01  HINTS            USAGE  IS POINTER.  

        01  RES              USAGE  IS POINTER.  

        01  CANNLEN          PIC  9(8)  BINARY.  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

  

    LINKAGE  SECTION.  

        01  HINTS-ADDRINFO.  

            03  FLAGS            PIC  9(8)  BINARY.  

            03  AF              PIC 9(8)  BINARY.  

            03  SOCTYPE          PIC  9(8)  BINARY.  

            03  PROTO            PIC  9(8)  BINARY.  

            03  FILLER           PIC  9(8)  BINARY.  

            03  FILLER           PIC  9(8)  BINARY.  

            03  FILLER           PIC  9(8)  BINARY.  

            03  FILLER           PIC  9(8)  BINARY.  

        01  RES-ADDRINFO.  

            03  FLAGS            PIC  9(8)  BINARY.  

            03  AF              PIC 9(8)  BINARY.  

            03  SOCTYPE          PIC  9(8)  BINARY.  

            03  PROTO            PIC  9(8)  BINARY.  

            03  NAMELEN          PIC  9(8)  BINARY.  

            03  CANONNAME        USAGE  IS POINTER.  

            03  NAME             USAGE  IS POINTER.  

            03  NEXT             USAGE  IS POINTER.  

  

    PROCEDURE  DIVISION.  

            MOVE  ’www.hostname.com’  TO NODE.  

            MOVE  16 TO HOSTLEN.  

            MOVE  ’TELNET’  TO SERVICE.  

            MOVE  6 TO SERVLEN.  

            SET  HINTS  TO ADDRESS  OF HINTS-ADDRINFO.  

            CALL  ’EZASOKET’  USING  SOC-FUNCTION  NODE  NODELEN  SERVICE  SERVLEN  HINTS  

                  RES CANNLEN  ERRNO  RETCODE.  

Figure  21.  GETADDRINFO  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 79



This  is an  optional  field  but  if specified  you  must  also  code  

NODELEN.  The  NODE  name  being  queried  will  consist  of  up  to  

NODELEN  or  up  to  the  first  binary  0. 

NODELEN  An  input  parameter.  A  fullword  binary  field  set  to  the  length  of  the  

host  name  specified  in  the  NODE  field  and  should  not  include  

extraneous  blanks.  This  is an  optional  field  but  if specified  you  

must  also  code  NODE.  

SERVICE  An  input  parameter.  Storage  up  to 32  bytes  long  that  contains  the  

service  name  being  queried.  If  the  AI-NUMERICSERV  flag  is 

specified  in  the  storage  pointed  to  by  the  HINTS  field,  then  

SERVICE  should  contain  the  queried  port  number  in  presentation  

form.  This  is an  optional  field  but  if specified  you  must  also  code  

SERVLEN.  The  SERVICE  name  being  queried  will  consist  of up  to  

SERVLEN  or  up  to  the  first  binary  0. 

SERVLEN  An  input  parameter.  A  fullword  binary  field  set  to  the  length  of  the  

service  name  specified  in  the  SERVICE  field  and  should  not  

include  extraneous  blanks.  This  is an  optional  field  but  if specified  

you  must  also  code  SERVICE.  

HINTS  An  input  parameter.  If the  HINTS  argument  is specified,  it contains  

the  address  of an  addrinfo  structure  containing  input  values  that  

may  direct  the  operation  by  providing  options  and  limiting  the  

returned  information  to  a specific  socket  type,  address  family,  or  

protocol.  If  the  HINTS  argument  is not  specified,  then  the  

information  returned  will  be  as  if it referred  to a structure  

containing  the  value  0 for  the  FLAGS,  SOCTYPE  and  PROTO  

fields,  and  AF_UNSPEC  for  the  AF  field.  Include  the  EZBREHST  

Resolver  macro  to  enable  your  assembler  program  to  contain  the  

assembler  mappings  for  the  ADDR_INFO  structure.  

 This  is an  optional  field.  

 The  address  information  structure  has  the  following  fields:  

Field  Description  

FLAGS  

A fullword  binary  field.  Must  have  the  value  of  0 of  the  

bitwise,  OR  of one  or  more  of the  following:  

AI-PASSIVE  (X'00000001')  or  a decimal  value  of  1. 

v   Specifies  how  to  fill  in the  NAME  pointed  to by  

the  returned  RES.  

v   If this  flag  is specified,  then  the  returned  address  

information  will  be  suitable  for  use  in  binding  a 

socket  for  accepting  incoming  connections  for  

the  specified  service  (for  example,  the  BIND  

call).  In  this  case,  if  the  NODE  argument  is  not  

specified,  then  the  IP  address  portion  of  the  

socket  address  structure  pointed  to by  the  

returned  RES  will  be  set  to  INADDR_ANY  for  

an  IPv4  address  or  IN6ADDR_ANY  for  an  IPv6  

address.  

v   If this  flag  is not  set,  the  returned  address  

information  will  be  suitable  for  the  CONNECT  

call  (for  a connection-mode  protocol)  or  for  a 

CONNECT,  SENDTO,  or  SENDMSG  call  (for  a 

 

80 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



connectionless  protocol).  In  this  case,  if the  

NODE  argument  is  not  specified,  then  the  IP 

address  portion  of the  socket  address  structure  

pointed  to  by  the  returned  RES  will  be  set  to the  

default  loopback  address  for  an  IPv4  address  

(127.0.0.0)  or  the  default  loopback  address  for  an  

IPv6  address  (::1).  

v   This  flag  is ignored  if the  NODE  argument  is 

specified.

AI-CANONNAMEOK  (X'00000002')  or  a decimal  value  of 

2.  

v    If this  flag  is specified  and  the  NODE  argument  

is specified,  then  the  GETADDRINFO  call  

attempts  to  determine  the  canonical  name  

corresponding  to  the  NODE  argument.

AI-NUMERICHOST  (X'00000004')  or  a decimal  value  of 

4.  

v   If this  flag  is specified  then  the  NODE  argument  

must  be  a numeric  host  address  in  presentation  

form.  Otherwise,  an  error  of host  not  found  

[EAI_NONAME]  is returned.

AI-NUMERICSERV  (X'00000008')  or  a decimal  value  of 8. 

v   If this  flag  is specified,  the  SERVICE  argument  

must  be  a numeric  port  in  presentation  form.  

Otherwise,  an  error  [EAI_NONAME]  is returned.

AI-V4MAPPED  (X'00000010')  or  a decimal  value  of  16.  

v   If this  flag  is specified  along  with  the  AF  field  

with  the  value  of AF_INET6  or  a value  of  

AF_UNSPEC  when  IPv6  is supported,  the  caller  

will  accept  IPv4-mapped  IPv6  addresses.  When  

the  AI-ALL  flag  is not  also  specified,  if no  IPv6  

addresses  are  found,  a query  is made  for  IPv4  

addresses.  If IPv4  addresses  are  found,  they  are  

returned  as IPv4-mapped  IPv6  addresses.  

v   If the  AF  field  does  not  have  the  value  of 

AF_INET6  or  the  AF  field  contains  AF_UNSPEC  

but  IPv6  is not  supported  on  the  system,  this  

flag  is ignored.

AI-ALL  (X'00000020')  or  a decimal  value  of  32.  

v   When  the  AF  field  has  a value  of  AF_INET6  and  

AI-ALL  is set,  the  AI-V4MAPPED  flag  must  also  

be  set  to indicate  that  the  caller  will  accept  all  

addresses  (IPv6  and  IPv4-mapped  IPv6  

addresses).  When  the  AF  field  has  a value  of 

AF_UNSPEC  when  the  system  supports  IPv6  

and  AI-ALL  is set,  the  caller  accepts  IPv6  

addreses  and  either  IPv4  address  (if  

AI-V4MAPPED  is not  set),  or  IPv4-mapped  IPv6  

addresses  (if  AI-V4MAPPED  is  set).  A query  is  

first  made  for  IPv6  addresses  and  if successful,  

the  IPv6  addresses  are  returned.  Another  query  

is then  made  for  IPv4  addresses,  and  any  IPv4  

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 81



addresses  found  are  returned  as either  

IPv4-mapped  IPv6  addresses  (if  AI-V4MAPPED  

is  also  specified),  or  as  IPv4  addresses  (if  

AI-V4MAPPED  is not  specified).  

v   If the  AF  field  does  not  have  the  value  of  

AF_INET6  or  does  not  have  the  value  of  

AF_UNSPEC  when  the  system  supports  IPv6,  

this  flag  is ignored.

AI-ADDRCONFIG  (X'00000040')  or  a decimal  value  of 64.  

If  this  flag  is specified,  then  a query  on  the  name  

in  NODE  will  occur  if the  Resolver  determines  

whether  either  of the  following  is true: 

v   If the  system  is IPv6  enabled  and  has  at least  

one  IPv6  interface,  then  the  Resolver  will  make  a 

query  for  IPv6  (AAAA  or  A6  DNS)  records.  

v   If the  system  is IPv4  enabled  and  has  at least  

one  IPv4  interface,  then  the  Resolver  will  make  a 

query  for  IPv4  (A  DNS)  records.

The  loopback  address  is not  considered  in  this  case  

as  a valid  interface.  

Note:   To perform  the  binary  OR’ing  of  the  flags  

above  in  a COBOL  program,  simply  add  the  

necessary  COBOL  statements  as  in  the  

example  below.  Note  that  the  value  of the  

FLAGS  field  after  the  COBOL  ADD  is a 

decimal  80  or  a X'00000050',  which  is the  

sum  of  OR’ing  AI_V4MAPPED  and  

AI_ADDRCONFIG  or  X'00000010'  and  

X'00000040':  

  01 AI-V4MAPPED    PIC  9(8)  BINARY  VALUE  16.  

  01 AI-ADDRCONFIG  PIC  9(8)  BINARY  VALUE  64. 

  

  ADD  AI-V4MAPPED  TO FLAGS.  

  ADD  AI-ADDRCONFG  TO FLAGS.  

AF  A fullword  binary  field.  Used  to limit  the  returned  

information  to a specific  address  family.  The  value  of 

AF_UNSPEC  means  that  the  caller  will  accept  any  protocol  

family.  The  value  of  a decimal  0 indicates  AF_UNSPEC.  

The  value  of  a decimal  2 indicates  AF_INET,  and  the  value  

of a decimal  19  indicates  AF_INET6.  

SOCTYPE  

 A fullword  binary  field.  Used  to limit  the  returned  

information  to a specific  socket  type.  A value  of  0 means  

that  the  caller  will  accept  any  socket  type.  If a specific  

socket  type  is not  given  (for  example,  a value  of  0) then  

information  on  all  supported  socket  types  will  be  returned.  

 The  following  are  the  acceptable  socket  types:  

 Type name  Decimal  value  Description  

SOCK_STREAM  1 for stream  socket  

SOCK_DGRAM  2 for datagram  socket  

 

82 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Type name  Decimal  value  Description  

SOCK_RAW  3 for raw-protocol  interface
  

Anything  else  will  fail  with  return  code  EAI_SOCTYPE.  

Note  that  although  SOCK_RAW  will  be  accepted,  it will  

only  be  valid  when  SERVICE  is numeric  (for  example,  

SERVICE=23).  A lookup  for  a SERVICE  name  will  never  

occur  in  the  appropriate  services  file  (for  example,  

hlq.ETC.SERVICES)  using  any  protocol  value  other  than  

SOCK_STREAM  or  SOCK_DGRAM.  

 If PROTO  is not  0 and  SOCTYPE  is 0,  then  the  only  

acceptable  input  values  for  PROTO  are  IPPROTO_TCP  and  

IPPROTO_UDP.  Otherwise,  the  GETADDRINFO  call  will  

be  failed  with  return  code  of  EAI_BADFLAGS.  

 If SOCTYPE  and  PROTO  are  both  specified  as  0, then  

GETADDRINFO  will  proceed  as follows:  

v   If SERVICE  is null,  or  if SERVICE  is numeric,  then  any  

returned  addrinfos  will  default  to  a specification  of  

SOCTYPE  as SOCK_STREAM.  

v   If SERVICE  is specified  as a service  name  (for  example,  

SERVICE=FTP),  the  GETADDRINFO  call  will  search  the  

appropriate  services  file  (for  example,  

hlq.ETC.SERVICES)  twice.  The  first  search  will  use  

SOCK_STREAM  as  the  protocol,  and  the  second  search  

will  use  SOCK_DGRAM  as  the  protocol.  No  default  

socket  type  provision  exists  in  this  case.  

If both  SOCTYPE  and  PROTO  are  specified  as nonzero,  

then  they  should  be  compatible,  regardless  of  the  value  

specified  by  SERVICE.  In this  context,  compatible  means  one  

of  the  following:  

v   SOCTYPE=SOCK_STREAM  and  PROTO=IPPROTO_TCP  

v   SOCTYPE=SOCK_DGRAM  and  PROTO=IPPROTO_UDP  

v   SOCTYPE  is specified  as SOCK_RAW,  in  which  case  

PROTO  can  be  anything

PROTO  

A  fullword  binary  field.  Used  to limit  the  returned  

information  to a specific  protocol.  A  value  of 0 means  that  

the  caller  will  accept  any  protocol.  

 The  following  are  the  acceptable  protocols:  

 Protocol  name  Decimal  value  Description  

IPPROTO_TCP  6 TCP  

IPPROTO_UDP  17 user  datagram
  

If SOCTYPE  is 0 and  PROTO  is  nonzero,  the  only  

acceptable  input  values  for  PROTO  are  IPPROTO_TCP  and  

IPPROTO_UDP.  Otherwise,  the  GETADDRINFO  call  will  

be  failed  with  return  code  of  EAI_BADFLAGS.  

 If PROTO  and  SOCTYPE  are  both  specified  as 0, then  

GETADDRINFO  will  proceed  as follows:  

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 83



v   If SERVICE  is null,  or if SERVICE  is numeric,  then  any  

returned  addrinfos  will  default  to  a specification  of  

SOCTYPE  as  SOCK_STREAM.  

v   If SERVICE  is specified  as  a service  name  (for  example,  

SERVICE=FTP),  the  GETADDRINFO  will  search  the  

appropriate  services  file  (for  example,  hlq.ETC.SERVICE)  

twice.  The  first  search  will  use  SOCK_STREAM  as  the  

protocol,  and  the  second  search  will  use  SOCK_DGRAM  

as  the  protocol.  No  default  socket  type  provision  exists  

in  this  case.  

If  both  PROTO  and  SOCTYPE  are  specified  as  nonzero,  

they  should  be  compatible,  regardless  of  the  value  

specified  by  SERVICE.  In  this  context,  compatible  means  one  

of the  following:  

v   SOCTYPE=SOCK_STREAM  and  PROTO=IPPROTO_TCP  

v   SOCTYPE=SOCK_DGRAM  and  PROTO=IPPROTO_UDP  

v   SOCTYPE=SOCK_RAW,  in  which  case  PROTO  can  be  

anything  

If  the  lookup  for  the  value  specified  in  SERVICE  fails  [for  

example,  the  service  name  does  not  appear  in  an  

appropriate  service  file  (such  as,  hlq.ETC.SERVICES)  using  

the  input  protocol],  then  the  GETADDRINFO  call  will  be  

failed  with  return  code  of  EAI_SERVICE.

NAMELEN  A  fullword  binary  field.  On  input,  this  field  must  be  0.  

CANONNAME  

A  fullword  binary  field.  On  input,  this  field  must  be  0.  

NAME  A  fullword  binary  field.  On  input,  this  field  must  be  0.  

NEXT  A  fullword  binary  field.  On  input,  this  field  must  be  0.  

RES  

 Initially  a fullword  binary  field.  On  a successful  return,  this  field  

will  contain  a pointer  to  an  addrinfo  structure.  The  addrinfo  

storage  will  be  allocated  in  the  caller’s  key.  This  pointer  will  also  

be  used  as  input  to  the  FREEADDRINFO  call  which  must  be  used  

to  free  storage  obtained  by  this  call.  

 The  address  information  structure  contains  the  following  fields:  

Field  Description  

FLAGS  

A fullword  binary  field  that  is  not  used  as  output.  

AF  A fullword  binary  field.  The  value  returned  in  this  field  

may  be  used  as the  AF  argument  on  the  SOCKET  call  to 

create  a socket  suitable  for  use  with  the  returned  address  

NAME.  

SOCTYPE  

A fullword  binary  field.  The  value  returned  in  this  field  

may  be  used  as the  SOCTYPE  argument  on  the  SOCKET  

call  to  create  a socket  suitable  for  use  with  the  returned  

address  NAME.  

 

84 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



PROTO  

A  fullword  binary  field.  The  value  returned  in  this  field  

may  be  used  as  the  PROTO  argument  on  the  SOCKET  call  

to  create  a socket  suitable  for  use  with  the  returned  

address  ADDR.  

NAMELEN  

A  fullword  binary  field.  The  length  of  the  NAME  socket  

address  structure.  The  value  returned  in  this  field  may  be  

used  as  the  arguments  for  the  CONNECT  or  BIND  call  

with  such  a socket,  according  to the  AI-PASSIVE  flag.  

CANONNAME  

A  fullword  binary  field.  The  canonical  name  for  the  value  

specified  by  NODE.  If  the  NODE  argument  is specified,  

and  if the  AI-CANONNAMEOK  flag  was  specified  by the  

HINTS  argument,  then  the  CANONNAME  field  in  the  first  

returned  address  information  structure  will  contain  the  

address  of  storage  containing  the  canonical  name  

corresponding  to  the  input  NODE  argument.  If the  

canonical  name  is not  available,  then  the  CANONNAME  

field  will  refer  to  the  NODE  argument  or  a string  with  the  

same  contents.  The  CANNLEN  field  will  contain  the  length  

of  the  returned  canonical  name.  

NAME  

A  fullword  binary  field.  The  address  of  the  returned  socket  

address  structure.  The  value  returned  in  this  field  may  be  

used  as  the  arguments  for  the  CONNECT  or  BIND  call  

with  such  a socket,  according  to the  AI-PASSIVE  flag.  

NEXT  A  fullword  binary  field.  Contains  the  address  of  the  next  

address  information  structure  on  the  list,  or  0’s  if it is the  

last  structure  on  the  list.

CANNLEN  Initially  an  input  parameter.  A fullword  binary  field  used  to  

contain  the  length  of  the  canonical  name  returned  by  the  RES  

CANONNAME  field.  This  is an  optional  field.  

ERRNO  Output  parameter.  A  fullword  binary  field.  If  RETCODE  is 

negative,  ERRNO  contains  a valid  error  number.  Otherwise,  ignore  

the  ERRNO  field.  

 See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

RETCODE  Output  parameter.  A  fullword  binary  field  that  returns  one  of the  

following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

 The  ADDRINFO  structure  uses  indirect  addressing  to  return  a variable  number  of  

NAMES.  If  you  are  coding  in  PL/I  or  assembler  language,  this  structure  can  be 

processed  in  a relatively  straight-forward  manner.  If you  are  coding  in  COBOL,  

this  structure  may  be  difficult  to interpret.  You can  use  the  subroutine  EZACIC09  

to  simplify  interpretation  of  the  information  returned  by  the  GETADDRINFO  calls.  

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 85



GETCLIENTID 

GETCLIENTID  call  returns  the  identifier  by  which  the  calling  application  is known  

to  the  TCP/IP  address  space  in  the  calling  program.  The  CLIENT  parameter  is 

used  in  the  GIVESOCKET  and  TAKESOCKET  calls.  See  “GIVESOCKET”  on  page  

115 for  a discussion  of the  use  of GIVESOCKET  and  TAKESOCKET  calls.  

Do  not  be  confused  by  the  terminology;  when  GETCLIENTID  is called  by  a server,  

the  identifier  of  the  caller  (not  necessarily  the  client) is  returned.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  22  shows  an  example  of  GETCLIENTID  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  GETCLIENTID.  The  field  is  

left-justified  and  padded  to the  right  with  blanks.

Parameter values returned to the application 

CLIENT  

A  client-ID  structure  that  describes  the  application  that  issued  the  call.  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GETCLIENTID’.  

        01   CLIENT.  

            03   DOMAIN       PIC  9(8)  BINARY.  

            03   NAME         PIC X(8).  

            03   TASK         PIC X(8).  

            03   RESERVED     PIC  X(20).  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  CLIENT  ERRNO  RETCODE.  

Figure  22. GETCLIENTID  call  instruction  example

 

86 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



DOMAIN  

This  is a fullword  binary  number  specifying  the  domain  of the  

client.  On  input  this  is  an  optional  parameter  for  AF_INET,  and  

required  parameter  for  AF_INET6  to  specify  the  domain  of  the  

client.  For  TCP/IP  the  value  is a decimal  2, indicating  AF_INET,  or  

a decimal  19,  indicating  AF_INET6.  On  output,  this  is the  returned  

domain  of the  client.  

NAME  

An  8-byte  character  field  set  to  the  caller’s  address  space  name.  

TASK  An  8-byte  field  set  to the  task  identifier  of  the  caller.  

RESERVED  

Specifies  20-byte  character  reserved  field.  This  field  is  required,  but  

not  used.

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

GETHOSTBYADDR 

The  GETHOSTBYADDR  call  returns  the  domain  name  and  alias  name  of a host  

whose  IPv4  Internet  address  is specified  in  the  call.  A given  TCP/IP  host  can  have  

multiple  alias  names  and  multiple  host  IPv4  Internet  addresses.  The  address  

resolution  attempted  depends  on  how  the  resolver  is configured  and  if any  local  

host  tables  exist.  Refer  to  the  z/OS  Communications  Server:  IP  Configuration  Guide  for  

information  about  configuring  the  resolver  and  how  local  host  tables  can  be  used.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state.  The  PSW  key  must  match  

the  key  in which  the  MVS  application  task  was  attached  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  23  on  page  88  shows  an  example  of GETHOSTBYADDR  call  instructions.  

 

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 87



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  GETHOSTBYADDR.  The  field  is 

left-justified  and  padded  on  the  right  with  blanks.  

HOSTADDR  

A  fullword  binary  field  set  to  the  Internet  address  (specified  in  network  

byte  order)  of  the  host  whose  name  is being  sought.  See  Appendix  A.  

Return  codes  on  page  295  for  information  about  ERRNO  return  codes.

Parameter values returned to the application 

HOSTENT  

A  fullword  containing  the  address  of the  HOSTENT  structure.

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

GETHOSTBYADDR  returns  the  HOSTENT  structure  shown  in  Figure  24  on  page  

89.  

 

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GETHOSTBYADDR’.  

        01   HOSTADDR         PIC  9(8)  BINARY.  

        01   HOSTENT          PIC  9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  HOSTADDR  HOSTENT  RETCODE.  

Figure  23. GETHOSTBYADDR  call  instruction  example

 

88 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



GETHOSTBYADDR  returns  the  HOSTENT  structure  shown  in figure  Figure  24.  The  

HOSTENT  structure  is a tasks’s  serially  reusable  storage  area.  It should  not  be  

used  or  referenced  between  MVS  tasks.  The  storage  is freed  when  the  task  

terminates.  The  assembler  mapping  of the  structure  is defined  in  macro  

EZBREHST,  which  is installed  in  the  data  set  specified  on  your  SMP/E  DDDEF  for  

MACLIB.  This  structure  contains:  

v   The  address  of  the  host  name  that  is returned  by  the  call.  The  name  length  is 

variable  and  is  ended  by  X'00'.  

v   The  address  of  a list  of  addresses  that  point  to  the  alias  names  returned  by  the  

call.  This  list  is  ended  by  the  pointer  X'00000000'.  Each  alias  name  is a variable  

length  field  ended  by  X'00'.  

v   The  value  returned  in  the  FAMILY field  is always  2 for  AF_INET.  

v   The  length  of  the  host  Internet  address  returned  in the  HOSTADDR_LEN  field  is 

always  4 for  AF_INET.  

v   The  address  of  a list  of  addresses  that  point  to  the  host  Internet  addresses  

returned  by  the  call.  The  list  is ended  by  the  pointer  X'00000000'.  If  the  call  

cannot  be  resolved,  the  HOSTENT  structure  contains  the  ERRNO  10214.

The  HOSTENT  structure  uses  indirect  addressing  to  return  a variable  number  of 

alias  names  and  Internet  addresses.  If you  are  coding  in  PL/I  or assembler  

language,  this  structure  can  be  processed  in  a relatively  straight-forward  manner.  If 

you  are  coding  in  COBOL,  this  structure  may  be  difficult  to  interpret.  You can  use  

the  subroutine  EZACIC08  to  simplify  interpretation  of  the  information  returned  by  

the  GETHOSTBYADDR  and  GETHOSTBYNAME  calls.  For  more  information  about  

EZACIC08,  see  “EZACIC08”  on  page  189.  

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

  

Figure  24.  HOSTENT  structure  returned  by the GETHOSTBYADDR  call

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 89

|
|
|
|



GETHOSTBYNAME 

The  GETHOSTBYNAME  call  returns  the  alias  name  and  the  IPv4  Internet  address  

of  a host  whose  domain  name  is specified  in the  call.  A  given  TCP/IP  host  can  

have  multiple  alias  names  and  multiple  host  IPv4  Internet  addresses.  

The  name  resolution  attempted  depends  on  how  the  resolver  is configured  and  if 

any  local  host  tables  exist.  Refer  to  the  z/OS  Communications  Server:  IP  Configuration  

Guide  for  information  about  configuring  the  resolver  and  how  local  host  tables  can  

be  used.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state.  The  PSW  key  must  match  

the  key  in which  the MVS  application  task  was  attached.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  25  shows  an  example  of  GETHOSTBYNAME  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  GETHOSTBYNAME.  The  field  is  

left-justified  and  padded  on  the  right  with  blanks.  

NAMELEN  

A  value  set  to  the  length  of  the  host  name.  The  maximum  length  is 255.  

NAME  

A  character  string,  up  to 255  characters,  set  to  a host  name.  Any  trailing  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GETHOSTBYNAME’.  

        01   NAMELEN          PIC  9(8)   BINARY.  

        01   NAME             PIC X(255).  

        01   HOSTENT          PIC  9(8)   BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  NAMELEN  NAME  

                         HOSTENT  RETCODE.  

Figure  25. GETHOSTBYNAME  call  instruction  example

 

90 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



blanks  will  be  removed  from  the  specified  name  prior  to  trying  to resolve  

it to  an  IP  address.  This  call  returns  the  address  of  the  HOSTENT  structure  

for  this  name.

Parameter values returned to the application 

HOSTENT  

A fullword  binary  field  that  contains  the  address  of  the  HOSTENT  

structure.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  An  error  occurred.

 

 GETHOSTBYNAME  returns  the  HOSTENT  structure  shown  in  Figure  26.  The  

HOSTENT  structure  is a tasks’s  serially  reusable  storage  area.  It should  not  be  

used  or  referenced  between  MVS  tasks.  The  storage  is freed  when  the  task  

terminates.  The  assembler  mapping  of the  structure  is defined  in  macro  

EZBREHST,  which  is installed  in  the  data  set  specified  on  your  SMP/E  DDDEF  for  

MACLIB.  This  structure  contains:  

v   The  address  of  the  host  name  that  is returned  by  the  call.  The  name  length  is 

variable  and  is  ended  by  X'00'.  

v   The  address  of  a list  of  addresses  that  point  to  the  alias  names  returned  by  the  

call.  This  list  is  ended  by  the  pointer  X'00000000'.  Each  alias  name  is a variable  

length  field  ended  by  X'00'.  

v   The  value  returned  in  the  FAMILY field  is always  2 for  AF_INET.  

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

  

Figure  26.  HOSTENT  structure  returned  by the GETHOSTYBYNAME  call

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 91

|
|
|
|



v   The  length  of  the  host  Internet  address  returned  in  the  HOSTADDR_LEN  field  is  

always  4 for  AF_INET.  

v   The  address  of  a list  of addresses  that  point  to the  host  Internet  addresses  

returned  by  the  call.  The  list  is ended  by  the  pointer  X'00000000'.  If  the  call  

cannot  be  resolved,  the  HOSTENT  structure  contains  the  ERRNO  10214.

The  HOSTENT  structure  uses  indirect  addressing  to return  a variable  number  of 

alias  names  and  Internet  addresses.  If  you  are  coding  in PL/I  or  assembler  

language,  this  structure  can  be  processed  in  a relatively  straight-forward  manner.  If 

you  are  coding  in  COBOL,  this  structure  may  be  difficult  to  interpret.  You can  use  

the  subroutine  EZACIC08  to simplify  interpretation  of the  information  returned  by  

the  GETHOSTBYADDR  and  GETHOSTBYNAME  calls.  For  more  information  about  

EZACIC08,  see  “EZACIC08”  on  page  189.  

GETHOSTID 

The  GETHOSTID  call  returns  the  32-bit  Internet  address  for  the  current  host.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  27  shows  an  example  of  GETHOSTID  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  GETHOSTID.  The  field  is left-justified  

and  padded  on  the  right  with  blanks.

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GETHOSTID’.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  RETCODE.  

Figure  27. GETHOSTID  call  instruction  example

 

92 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



RETCODE  

Returns  a fullword  binary  field  containing  the  32-bit  Internet  address  of the  

host.  There  is no  ERRNO  parameter  for  this  call.

GETHOSTNAME 

The  GETHOSTNAME  call  returns  the  domain  name  of  the  local  host.

Note:   The  host  name  returned  is the  host  name  the  TCPIP  stack  learned  at startup  

from  the  TCPIP.DATA  file  that  was  found.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  28  shows  an  example  of GETHOSTNAME  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  GETHOSTNAME.  The  field  is 

left-justified  and  padded  on  the  right  with  blanks.  

NAMELEN  

A fullword  binary  field  set  to  the  length  of the  NAME  field.

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GETHOSTNAME’.  

        01  NAMELEN          PIC  9(8)  BINARY.  

        01  NAME             PIC  X(24).  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  NAMELEN  NAME  

                         ERRNO  RETCODE.  

Figure  28.  GETHOSTNAME  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 93



Parameter values returned to the application 

NAME  

Indicates  the  receiving  field  for  the  host  name.  TCP/IP  Services  allows  a 

maximum  length  of  24  characters.  The  Internet  standard  is a maximum  

name  length  of 255  characters.  The  actual  length  of the  NAME  field  is 

found  in  NAMELEN.  

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

GETIBMOPT 

The  GETIBMOPT  call  returns  the  number  of  TCP/IP  images  installed  on  a given  

MVS  system  and  their  status,  versions,  and  names.  

Note:   Images  from  pre-V3R2  releases  of  TCP/IP  Services  are  excluded.  The  

GETIBMOPT  call  is  not  meaningful  for  pre-V3R2  releases.  With  this  

information,  the  caller  can  dynamically  choose  the  TCP/IP  image  with  

which  to  connect  by  using  the  INITAPI  call.  The  GETIBMOPT  call  is 

optional.  If  it is not  used,  follow  the  standard  method  to determine  the  

connecting  TCP/IP  image:  

v   Connect  to  the  TCP/IP  specified  by  TCPIPJOBNAME  in the  active  

TCPIP.DATA  file.  

v   Locate  TCPIP.DATA  using  the  search  order  described  in  the  z/OS  

Communications  Server:  IP  Configuration  Reference.

For  detailed  information  about  the  standard  method,  refer  to  z/OS  Communications  

Server:  New  Function  Summary. 

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
 

 

94 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Figure  29  shows  an  example  of GETIBMOPT  call  instructions.  

 

 Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  GETIBMOPT.  The  field  is 

left-justified  and  padded  on  the  right  with  blanks.  

COMMAND  A  value  or  the  address  of  a fullword  binary  number  specifying  the  

command  to  be  processed.  The  only  valid  value  is 1.

Parameter values returned to the application 

BUF  A 100-byte  buffer  into  which  each  active  TCP/IP  image  status,  version,  and  

name  are  placed.

On  successful  return,  these  buffer  entries  contain  the  status,  names,  and  versions  of  

up  to  eight  active  TCP/IP  images.  The  following  layout  shows  the  BUF  field  upon  

completion  of the  call.  

The  NUM_IMAGES  field  indicates  how  many  entries  of TCP_IMAGE  are  included  

in  the  total  BUF  field.  If the  NUM_IMAGES  returned  is 0,  there  are  no  TCP/IP  

images  present.  

The  status  field  can  have  a combination  of the  following  information:  

Status  field  Meaning  

X'8xxx'  Active  

X'4xxx'  Terminating  

X'2xxx'  Down  

X'1xxx'  Stopped  or  stopping

Note:   In  the  above  status  fields,  xxx  is reserved  for  IBM  use  and  can  contain  any  

value.  

When  the  status  field  is returned  with  a combination  of  Down  and  Stopped,  

TCP/IP  abended.  Stopped,  when  returned  alone,  indicates  that  TCP/IP  was  

stopped.  

        WORKING-STORAGE  SECTION.  

            01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GETIBMOPT’.  

            01  COMMAND          PIC  9(8)    BINARY  VALUE  IS  1. 

            01  BUF.  

                03  NUM-IMAGES   PIC 9(8)  COMP.  

                03  TCP-IMAGE    OCCURS  8 TIMES.  

                    05  TCP-IMAGE-STATUS   PIC 9(4)  BINARY.  

                    05  TCP-IMAGE-VERSION  PIC  9(4)  BINARY.  

                    05  TCP-IMAGE-NAME     PIC  X(8)  

            01  ERRNO            PIC  9(8)    BINARY.  

            01  RETCODE          PIC  S9(8)   BINARY.  

  

       PROCEDURE  DIVISION.  

  

           CALL  ’EZASOKET’  USING  SOC-FUNCTION  COMMAND  BUF  ERRNO  RETCODE.  

Figure  29.  GETIBMOPT  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 95



The  version  field  is:  

 Version  Field  

TCP/IP  z/OS  Communications  Server  V1R2  X'0612'  

TCP/IP  z/OS  Communications  Server  V1R4  X'0614'  

TCP/IP  z/OS  Communications  Server  V1R5  X'0615'  

TCP/IP  z/OS  Communications  Server  V1R6  X'0616'  

TCP/IP  z/OS  Communications  Server  V1R7  X'0617'
  

The  name  field  is the  PROC  name,  left-justified,  and  padded  with  blanks.  

 

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  this  contains  an  error  

number.  See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  with  the  following  values:  

Value  Description  

−1  Call  returned  error. See  ERRNO  field.  

0 Successful  call.

GETNAMEINFO 

The  GETNAMEINFO  call  returns  the  node  name  and  service  location  of a socket  

address  that  is specified  in  the  call.  On  successful  completion,  GETNAMEINFO  

returns  the  node  and  service  named,  if requested,  in  the  buffers  provided.  

NUM_IMAGES

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

(4 bytes)

  

Figure  30. Example  of name  field

 

96 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

||



The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

 

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 97



Parameter values set by the application 

Keyword  Description  

SOC-FUNCTION  

A  16-byte  character  field  containing  GETNAMEINFO.  The  field  is 

left-justified  and  padded  on  the  right  with  blanks.  

NAME  

 An  input  parameter.  A  socket  address  structure  to be  translated  

which  has  the  following  fields:  

 The  IPv4  socket  address  structure  must  specify  the  following  fields:  

Field  Description  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION       PIC  X(16)   VALUE  IS ’GETNAMEINFO’.  

        01   NAMELEN            PIC 9(8)  BINARY.  

        01   HOST               PIC  X(255).  

        01   HOSTLEN            PIC 9(8)  BINARY.  

        01   SERVICE            PIC X(32).  

        01   SERVLEN            PIC 9(8)  BINARY.  

        01   FLAGS              PIC  9(8)  BINARY  VALUE  0. 

        01   NI-NOFQDN          PIC  9(8)  BINARY  VALUE  1. 

        01   NI-NUMERICHOST     PIC  9(8)  BINARY  VALUE  2. 

        01   NI-NAMEREQD        PIC  9(8)  BINARY  VALUE  4. 

        01   NI-NUMERICSERVER   PIC 9(8)  BINARY  VALUE  8. 

        01   NI-DGRAM           PIC 9(8)  BINARY  VALUE  16.  

  

  

    * IPv4  socket  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   IP-ADDRESS   PIC  9(8)  BINARY.  

            03   RESERVED     PIC  X(8).  

  

    * IPv6  socket  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   FLOWINFO     PIC  9(8)  BINARY.  

            03   IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            03   SCOPE-ID     PIC  9(8)  BINARY.  

  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

  

         MOVE  28 TO NAMELEN.  

         MOVE  255  TO HOSTLEN.  

         MOVE  32 TO SERVLEN.  

         MOVE  NI-NAMEREQD  TO FLAGS.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  NAME  NAMELEN  HOST  

               HOSTLEN  SERVICE  SERVLEN  FLAGS  ERRNO  RETCODE.  

Figure  31. GETNAMEINFO  call  instruction  example

 

98 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



FAMILY  

A  halfword  binary  number  specifying  the  IPv4  addressing  

family.  For  TCP/IP  the  value  is a decimal  2,  indicating  

AF_INET. 

PORT  A  halfword  binary  number  specifying  the  port  number.  

IP-ADDRESS  

A  fullword  binary  number  specifying  the  32-bit  IPv4  

Internet  address.  

RESERVED  

An  8-byte  reserved  field.  This  field  is required,  but  is not  

used.

The  IPv6  socket  address  structure  specifies  the  following  fields:  

Field  Description  

FAMILY  

A  halfword  binary  field  specifying  the  IPv6  addressing  

family.  For  TCP/IP  the  value  is a decimal  19,  indicating  

AF_INET6.  

PORT  A  halfword  binary  number  specifying  the  port  number.  

FLOWINFO  

A  fullword  binary  field  specifying  the  traffic  class  and  flow  

label.  This  value  of  this  field  is undefined.  

IP-ADDRESS  

A  16-byte  binary  field  specifying  the  128-bit  IPv6  Internet  

address,  in  network  byte  order.  

SCOPE-ID  

A  fullword  binary  field  which  identifies  a set  of interfaces  

as  appropriate  for  the  scope  of the  address  carried  in  the  

IPv6-ADDRESS  field.  For  a link  scope  IPv6-ADDRESS,  

SCOPE-ID  contains  the  link  index  for  the  IPv6-ADDRESS.  

For  all  other  address  scopes,  SCOPE-ID  is undefined.

NAMELEN  An  input  parameter.  A fullword  binary  field.  The  length  of  the  

socket  address  structure  pointed  to  by  the  NAME  argument.  

HOST  On  input,  storage  capable  of  holding  the  returned  resolved  host  

name,  which  may  be  up  to 255  bytes  long,  for  the  input  socket  

address.  If inadequate  storage  is specified  to  contain  the  resolved  

host  name,  then  the  resolver  will  return  the  host  name  up  to  the  

storage  specified  and  truncation  may  occur. If the  host’s  name  

cannot  be  located,  the  numeric  form  of the  host’s  address  is 

returned  instead  of its  name.  However,  if the  NI_NAMEREQD  

option  is  specified  and  no  host  name  is located  then  an  error  is 

returned.  This  is an  optional  field  but  if specified  you  must  also  

code  HOSTLEN.  Either  HOST/HOSTLEN  or  SERVICE/SERVLEN  

parameters,  or  both  parameters,  are  required.  An  error  occurs  if 

both  are  omitted.  

HOSTLEN  An  output  parameter.  A fullword  binary  field  that  contains  the  

length  of the  HOST  storage  used  to contain  the  returned  resolved  

host  name.  HOSTLEN  must  be  equal  to  or  greater  than  the  length  

of  the  longest  host  name  to  be  returned.  GETNAMEINFO  will  

return  the  host  name  up  to  the  length  specified  by  HOSTLEN.  On  

 

Chapter  7. Using the CALL  instruction  application  programming interface  (API) 99



output,  HOSTLEN  will  contain  the  length  of  the  returned  resolved  

host  name.  If  HOSTLEN  is 0 on  input,  then  the  resolved  host  name  

will  not  be  returned.  This  is an  optional  field  but  if specified  you  

must  also  code  HOST.  Either  HOST/HOSTLEN  or  

SERVICE/SERVLEN  parameters,  or  both  parameters,  are  required.  

An  error  occurs  if both  are  omitted.  

SERVICE  On  input,  storage  capable  of holding  the  returned  resolved  service  

name,  which  may  be  up  to 32  bytes  long,  for  the  input  socket  

address.  If inadequate  storage  is specified  to  contain  the  resolved  

service  name,  then  the  resolver  will  return  the  service  name  up  to  

the  storage  specified  and  truncation  may  occur. If the  service  name  

cannot  be  located,  or if NI_NUMERICSERV  was  specified  in  the  

FLAGS  operand,  then  the  numeric  form  of  the  service  address  is 

returned  instead  of  its  name.  This  is an  optional  field  but  if 

specified  you  must  also  code  SERVLEN.  Either  HOST/HOSTLEN  

or  SERVICE/SERVLEN  parameters,  or  both  parameters,  are  

required.  An  error  occurs  if both  are  omitted.  

SERVLEN  An  output  parameter.  A fullword  binary  field.  The  length  of the  

SERVICE  storage  used  to contain  the  returned  resolved  service  

name.  SERVLEN  must  be  equal  to  or  greater  than  the  length  of  the  

longest  service  name  to  be  returned.  GETNAMEINFO  will  return  

the  service  name  up  to  the  length  specified  by  SERVLEN.  On  

output,  SERVLEN  will  contain  the  length  of the  returned  resolved  

service  name.  If SERVLEN  is 0 on  input,  then  the  service  name  

information  will  not  be  returned.  This  is an  optional  field  but  if 

specified  you  must  also  code  SERVICE.  Either  HOST/HOSTLEN  or  

SERVICE/SERVLEN  parameters,  or  both  parameters,  are  required.  

An  error  occurs  if both  are  omitted.  

FLAGS  An  input  parameter.  A  fullword  binary  field.  This  is an  optional  

field.  The  FLAGS  field  must  contain  either  a binary  or  decimal  

value,  depending  on  the  programming  language  used:  

 Flag  name  Binary  

value  

Decimal  

value  

Description  

'NI_NOFQDN'  X'00000001'  1 Return  the  NAME  portion  of the  fully  

qualified  domain  name.  

'NI_NUMERICHOST'  X'00000002'  2 Only  return  the  numeric  form  of host’s  

address.  

'NI_NAMEREQD'  X'00000004'  4 Return  an error  if the  host’s  name  cannot  

be located.  

'NI_NUMERICSERV'  X'00000008'  8 Only  return  the  numeric  form  of the service  

address.  

'NI_DGRAM'  X'00000010'  16  Indicates  that  the  service  is a datagram  

service.  The  default  behavior  is to assume  

that  the service  is a stream  service.
  

ERRNO  Output  parameter.  A fullword  binary  field.  If  RETCODE  is 

negative,  ERRNO  contains  a valid  error  number.  Otherwise,  ignore  

the  ERRNO  field.  

 See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

 

100 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



RETCODE  Output  parameter.  A  fullword  binary  field  that  returns  one  of the  

following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

GETPEERNAME 

The  GETPEERNAME  call  returns  the  name  of the  remote  socket  to  which  the  local  

socket  is connected.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  32  on  page  102  shows  an  example  of  GETPEERNAME  call  instructions.  

 

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 101



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  GETPEERNAME.  The  field  is 

left-justified  and  padded  on  the  right  with  blanks.  

S A  halfword  binary  number  set  to the  socket  descriptor  of  the  local  socket  

connected  to  the  remote  peer  whose  address  is required.

Parameter Values Returned to the Application 

NAME  

An  IPv4  socket  address  structure  to contain  the  peer  name.  The  structure  

that  is  returned  is  the  socket  address  structure  for  the  remote  socket  

connected  to  the  local  socket  specified  in  field  S.  

FAMILY  

A  halfword  binary  field  containing  the  connection  peer’s  IPv4  

addressing  family.  The  call  always  returns  the  value  decimal  2,  

indicating  AF_INET.  

PORT  A  halfword  binary  field  set  to  the  connection  peer’s  port  number.  

IP-ADDRESS  

A  fullword  binary  field  set  to the  32-bit  IPv4  Internet  address  of 

the  connection  peer’s  host  machine.  

RESERVED  

Specifies  an  8-byte  reserved  field.  This  field  is  required,  but  not  

used.

 An  IPv6  socket  address  structure  to contain  the  peer  name.  The  structure  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GETPEERNAME’.  

        01   S               PIC  9(4)  BINARY.  

  

    * IPv4  socket  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   IP-ADDRESS   PIC  9(8)  BINARY.  

            03   RESERVED     PIC  X(8).  

  

    * IPv6  socket  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   FLOWINFO     PIC  9(8)  BINARY.  

            03   IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            03   SCOPE-ID     PIC  9(8)  BINARY.  

  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S NAME  ERRNO  RETCODE.  

Figure  32. GETPEERNAME  call  instruction  example

 

102 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



that  is returned  is the  socket  address  structure  for  the  remote  socket  that  is 

connected  to  the  local  socket  specified  in field  S. 

FAMILY  

A  halfword  binary  field  containing  the  connection  peer’s  IPv6  

addressing  family.  The  call  always  returns  the  value  decimal  19,  

indicating  AF_INET6.  

PORT  A  halfword  binary  field  set  to the  connection  peer’s  port  number.  

FLOWINFO  

A  fullword  binary  field  specifying  the  traffic  class  and  flow  label.  

This  value  of  this  field  is undefined.  

IP-ADDRESS  

A  16-byte  binary  field  set  to  the  128-bit  IPv6  Internet  address  of the  

connection  peer’s  host  machine.  

SCOPE-ID  

A  fullword  binary  field  which  identifies  a set  of interfaces  as  

appropriate  for  the  scope  of  the  address  carried  in  the  

IPv6-ADDRESS  field.  For  a link  scope  IPv6-ADDRESS,  SCOPE-ID  

contains  the  link  index  for  the  IPv6-ADDRESS.  For  all  other  

address  scopes,  SCOPE-ID  is undefined.

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

GETSOCKNAME 

The  GETSOCKNAME  call  returns  the  address  currently  bound  to  a specified  

socket.  If  the  socket  is  not  currently  bound  to  an  address,  the  call  returns  with  the  

FAMILY field  set,  and  the  rest  of  the  structure  set  to  0.  

Since  a stream  socket  is not  assigned  a name  until  after  a successful  call  to  either  

BIND,  CONNECT,  or  ACCEPT,  the  GETSOCKNAME  call  can  be  used  after  an  

implicit  bind  to  discover  which  port  was  assigned  to the  socket.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 103



Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  33  shows  an  example  of  GETSOCKNAME  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  GETSOCKNAME.  The  field  is  

left-justified  and  padded  on  the  right  with  blanks.  

S A  halfword  binary  number  set  to the  descriptor  of  a local  socket  whose  

address  is required.

Parameter values returned to the application 

NAME  

Specifies  the  IPv4  socket  address  structure  returned  by  the  call.  

FAMILY  

A  halfword  binary  field  containing  the  IPv4  addressing  family.  The  

call  always  returns  the  value  decimal  2,  indicating  AF_INET.  

PORT  A  halfword  binary  field  set  to  the  port  number  bound  to  this  

socket.  If  the  socket  is not  bound,  0 is returned.  

IP-ADDRESS  

A  fullword  binary  field  set  to the  32-bit  Internet  address  of  the  

local  host  machine.  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GETSOCKNAME’.  

        01   S               PIC  9(4)  BINARY.  

  

    * IPv4  socket  address  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   IP-ADDRESS   PIC  9(8)  BINARY.  

            03   RESERVED     PIC  X(8).  

  

    * IPv6  socket  address  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   FLOWINFO     PIC  9(8)  BINARY.  

            03   IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            03   SCOPE-ID     PIC  9(8)  BINARY.  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S NAME  ERRNO  RETCODE.  

Figure  33. GETSOCKNAME  call  instruction  example

 

104 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



RESERVED  

Specifies  8 bytes  of  binary  0s.  This  field  is required  but  not  used.

NAME  

Specifies  the  IPv6  socket  address  structure  returned  by  the  call.  

FAMILY  

A  halfword  binary  field  containing  the  IPv6  addressing  family.  The  

call  always  returns  the  value  decimal  19,  indicating  AF_INET6.  

PORT  A  halfword  binary  field  set  to the  port  number  bound  to  this  

socket.  If the  socket  is not  bound,  0 is  returned.  

FLOWINFO  

A  fullword  binary  field  specifying  the  traffic  class  and  flow  label.  

This  value  of  this  field  is undefined.  

IP-ADDRESS  

A  16  byte  binary  field  set  to  the  128-bit  IPv6  Internet  address  in 

network  byte  order,  of  the  local  host  machine.  

SCOPE-ID  

A  fullword  binary  field  which  identifies  a set  of interfaces  as  

appropriate  for  the  scope  of  the  address  carried  in  the  

IPv6-ADDRESS  field.  For  a link  scope  IPv6-ADDRESS,  SCOPE-ID  

contains  the  link  index  for  the  IPv6-ADDRESS.  For  all  other  

address  scopes,  SCOPE-ID  is undefined.

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

GETSOCKOPT 

The  GETSOCKOPT  call  queries  the  options  that  are  set  by  the  SETSOCKOPT  call.  

Several  options  are  associated  with  each  socket.  These  options  are  described  below. 

You must  specify  the  option  to  be  queried  when  you  issue  the  GETSOCKOPT  call.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 105



Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  34  shows  an  example  of  GETSOCKOPT  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  GETSOCKOPT.  The  field  is  

left-justified  and  padded  on  the  right  with  blanks.  

S A  halfword  binary  number  specifying  the  socket  descriptor  for  the  socket  

requiring  options.  

OPTNAME  

Set  OPTNAME  to the  required  option  before  you  issue  GETSOCKOPT.  See  

the  following  table  for  a list  of  the  options  and  their  unique  requirements.  

Note:   COBOL  programs  cannot  contain  field  names  with  the  underbar  

character.  Fields  representing  the  option  name  should  contain  dashes  

instead.

OPTLEN  

Input  parameter.  A fullword  binary  field  containing  the  length  of  the  data  

returned  in  OPTVAL. See  the  following  table  for  determining  on  what  to  

base  the  value  of OPTLEN.

Parameter values returned to the application 

OPTVAL  

For  the  GETSOCKOPT  API,  OPTVAL  will  be  an  output  parameter.  See  the  

following  table  for  a list  of the  options  and  their  unique  requirements.  

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GETSOCKOPT’.  

        01   S               PIC  9(4)  BINARY.  

        01   OPTNAME          PIC  9(8)  BINARY.  

  

        01   OPTVAL           PIC  9(8)  BINARY.  

        If  OPNAME  = SO-LINGER  then  

        01   OPTVAL           PIC  X(16).  

  

        01   OPTLEN           PIC  9(8)  BINARY.  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S OPTNAME  

                        OPTVAL  OPTLEN  ERRNO  RETCODE.  

Figure  34. GETSOCKOPT  call  instruction  example

 

106 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

  Table 3. OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

IP_ADD_MEMBERSHIP  

Use  this  option  to enable  an application  to join  

a multicast  group  on  a specific  interface.  An 

interface  has  to  be specified  with  this  option.  

Only  applications  that  want  to  receive  multicast  

datagrams  need  to  join  multicast  groups.  

This  is an IPv4-only  socket  option.  

Contains  the  IP_MREQ  structure  as 

defined  in 

SYS1.MACLIB(BPXYSOCK).  The  

IP_MREQ  structure  contains  a 

4-byte  IPv4  multicast  address  

followed  by a 4-byte  IPv4  interface  

address.  

See  SEZAINST(CBLOCK)  for  the 

PL/I  example  of IP_MREQ.  

The  IP_MREQ  definition  for 

COBOL:  

01 IP-MREQ.  

  05  IMR-MULTIADDR  

       PIC  9(8)  BINARY.  

  05  IMR-INTERFACE  

       PIC  9(8)  BINARY.  

N/A  

IP_DROP_MEMBERSHIP  

Use  this  option  to enable  an application  to exit  

a multicast  group.  

This  is an IPv4-only  socket  option.  

Contains  the  IP_MREQ  structure  as 

defined  in 

SYS1.MACLIB(BPXYSOCK).  The  

IP_MREQ  structure  contains  a 

4-byte  IPv4  multicast  address  

followed  by a 4-byte  IPv4  interface  

address.  

See  SEZAINST(CBLOCK)  for  the 

PL/I  example  of IP_MREQ.  

The  IP_MREQ  definition  for 

COBOL:  

01 IP-MREQ.  

  05  IMR-MULTIADDR  

       PIC  9(8)  BINARY.  

  05  IMR-INTERFACE  

       PIC  9(8)  BINARY.  

N/A  

IP_MULTICAST_IF  

Use  this  option  to set  or obtain  the  IPv4  

interface  address  used  for  sending  outbound  

multicast  datagrams  from  the  socket  

application.  

This  is an IPv4-only  socket  option.  

Note:  Multicast  datagrams  can  be transmitted  

only  on one  interface  at a time.  

A 4-byte  binary  field  containing  an 

IPv4  interface  address.  

A 4-byte  binary  field 

containing  an IPv4  interface  

address.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 107



Table 3. OPTNAME  options  for  GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

IP_MULTICAST_LOOP  

Use  this  option  to control  or determine  whether  

a copy  of multicast  datagrams  are  looped  back  

for multicast  datagrams  sent  to a group  to 

which  the  sending  host  itself  belongs.  The  

default  is to loop  the  datagrams  back.  

This  is an IPv4-only  socket  option.  

A 1-byte  binary  field.  

To enable,  set to 1. 

To disable,  set to 0. 

A 1-byte  binary  field.  

If enabled,  will  contain  a 1. 

If disabled,  will  contain  a 0. 

IP_MULTICAST_TTL  

Use  this  option  to set  or obtain  the  IP  

time-to-live  of outgoing  multicast  datagrams.  

The  default  value  is ’01’x  meaning  that  

multicast  is available  only  to the  local  subnet.  

This  is an IPv4-only  socket  option.  

A 1-byte  binary  field  containing  the 

value  of ’00’x  to ’FF’x.  

A 1-byte  binary  field  

containing  the  value  of ’00’x  

to ’FF’x.  

IPV6_JOIN_GROUP  

Use  this  option  to control  the  reception  of 

multicast  packets  and  specify  that  the  socket  

join  a multicast  group.  

This  is an IPv6-only  socket  option.  

Contains  the  IPV6_MREQ  structure  

as defined  in 

SYS1.MACLIB(BPXYSOCK).  The  

IPV6_MREQ  structure  contains  a 

16-byte  IPv6  multicast  address  

followed  by a 4-byte  IPv6  interface  

index  number.  

If the  interface  index  number  is 0, 

then  the  stack  chooses  the  local  

interface.  

See  the  SEZAINST(CBLOCK)  for  

the  PL/I  example  of IPV6_MREQ.  

The  IPV6_MREQ  definition  for 

COBOL:  

01  IPV6-MREQ.  

   05 IPV6MR-MULTIADDR.  

     10  FILLER  PIC 9(16)  

           BINARY.  

     10  FILLER  PIC 9(16)  

           BINARY.  

   05 IPV6MR-INTERFACE  PIC 

        9(8)     BINARY.  

N/A  

 

108 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Table 3. OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

IPV6_LEAVE_GROUP  

Use  this  option  to control  the  reception  of 

multicast  packets  and  specify  that  the  socket  

leave  a multicast  group.  

This  is an IPv6-only  socket  option.  

Contains  the  IPV6_MREQ  structure  

as defined  in 

SYS1.MACLIB(BPXYSOCK).  The  

IPV6_MREQ  structure  contains  a 

16-byte  IPv6  multicast  address  

followed  by a 4-byte  IPv6  interface  

index  number. 

If the interface  index  number  is 0, 

then  the  stack  chooses  the  local  

interface.  

See  the  SEZAINST(CBLOCK)  for 

the  PL/I  example  of IPV6_MREQ.  

The  IPV6_MREQ  definition  for  

COBOL:  

01  IPV6-MREQ.  

  05 IPV6MR-MULTIADDR.  

    10  FILLER  PIC 9(16)  

          BINARY.  

    10  FILLER  PIC 9(16)  

          BINARY.  

  05 IPV6MR-INTERFACE  PIC  

       9(8)     BINARY.  

N/A  

IPV6_MULTICAST_HOPS  

Use  to set  or obtain  the  hop  limit  used  for 

outgoing  multicast  packets.  

This  is an IPv6-only  socket  option.  

Contains  a 4-byte  binary  value  

specifying  the  multicast  hops.  If not  

specified,  then  the  default  is 1 hop.  

-1 indicates  use  stack  default.  

0 – 255  is the valid  hop  limit  range.  

Note:  An application  must  be APF  

authorized  to enable  it to set  the  

hop  limit  value  above  the  system  

defined  hop  limit  value.  CICS  

applications  cannot  execute  as APF  

authorized.  

Contains  a 4-byte  binary  

value  in the  range  0 – 255 

indicating  the  number  of 

multicast  hops.  

IPV6_MULTICAST_IF  

Use  this  option  to set  or obtain  the  index  of the  

IPv6  interface  used  for sending  outbound  

multicast  datagrams  from  the  socket  

application.  

This  is an IPv6-only  socket  option.  

Contains  a 4-byte  binary  field  

containing  an IPv6  interface  index  

number.  

Contains  a 4-byte  binary  field  

containing  an IPv6  interface  

index  number.  

IPV6_MULTICAST_LOOP  

Use  this  option  to control  or  determine  whether  

a multicast  datagram  is looped  back  on  the  

outgoing  interface  by the  IP  layer  for  local  

delivery  when  datagrams  are  sent  to a group  to 

which  the  sending  host  itself  belongs.  The  

default  is to loop  multicast  datagrams  back.  

This  is an IPv6-only  socket  option.  

A 4-byte  binary  field.  

To enable,  set to 1. 

To disable,  set to 0. 

A 4-byte  binary  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 109



Table 3. OPTNAME  options  for  GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

IPV6_UNICAST_HOPS  

Use  this  option  to set  or obtain  the  hop  limit  

used  for  outgoing  unicast  IPv6  packets.  

This  is an IPv6-only  socket  option.  

Contains  a 4-byte  binary  value  

specifying  the  unicast  hops.  If not  

specified,  then  the  default  is 1 hop.  

-1 indicates  use  stack  default.  

0 – 255  is the valid  hop  limit  range.  

Note:  APF  authorized  applications  

are permitted  to set a hop  limit  that  

exceeds  the  system  configured  

default.  CICS  applications  cannot  

execute  as APF  authorized.  

Contains  a 4-byte  binary  

value  in the  range  0 – 255  

indicating  the  number  of 

unicast  hops.  

IPV6_V6ONLY  

Use  this  option  to set  or determine  whether  the  

socket  is restricted  to send  and  receive  only  

IPv6  packets.  The  default  is to not  restrict  the  

sending  and  receiving  of only  IPv6  packets.  

This  is an IPv6-only  socket  option.  

A 4-byte  binary  field.  

To enable,  set to 1. 

To disable,  set to 0. 

A 4-byte  binary  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

SO_ASCII  

Use  this  option  to set  or determine  the  

translation  to ASCII  data  option.  When  

SO_ASCII  is set,  data  is translated  to  ASCII.  

When  SO_ASCII  is not  set,  data  is not  

translated  to or from  ASCII.  

Note:  This  is a REXX-only  socket  option.  

To enable,  set to ON.  

To disable,  set to OFF. 

Note:  The  optvalue  is returned  and  

is optionally  followed  by the  name  

of the  translation  table  that  is used  

if translation  is applied  to the  data.  

If enabled,  contains  ON.  

If disabled,  contains  OFF. 

Note:  The  optvalue  is 

returned  and  is optionally  

followed  by the  name  of the  

translation  table  that  is used  

if translation  is applied  to the  

data.  

SO_BROADCAST  

Use  this  option  to set  or determine  whether  a 

program  can  send  broadcast  messages  over  the  

socket  to destinations  that  can  receive  datagram  

messages.  The  default  is disabled.  

Note:  This  option  has  no  meaning  for  stream  

sockets.  

A 4-byte  binary  field.  

To enable,  set to 1 or a positive  

value.  

To disable,  set to 0. 

A 4-byte  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

SO_DEBUG  

Use  SO_DEBUG  to set or determine  the  status  

of the  debug  option.  The  default  is disabled. The  

debug  option  controls  the  recording  of debug  

information.  

Notes:   

1.   This  is a REXX-only  socket  option.  

2.   This  option  has  meaning  only  for stream  

sockets.  

To enable,  set to ON.  

To disable,  set to OFF. 

If enabled,  contains  ON.  

If disabled,  contains  OFF. 

 

110  z/OS V1R7.0  Comm  Svr: IP IMS Sockets Guide



Table 3. OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

SO_EBCDIC  

Use  this  option  to set  or determine  the  

translation  to  EBCDIC  data  option.  When  

SO_EBCDIC  is set,  data  is translated  to 

EBCDIC.  When  SO_EBCDIC  is not  set,  data  is 

not  translated  to or from  EBCDIC.  This  option  

is ignored  by  EBCDIC  hosts.  

Note:  This  is a REXX-only  socket  option.  

To enable,  set to ON.  

To disable,  set to OFF. 

Note:  The  optvalue  is returned  and  

is optionally  followed  by the  name  

of the  translation  table  that  is used  

if translation  is applied  to the  data.  

If enabled,  contains  ON.  

If disabled,  contains  OFF. 

Note:  The  optvalue  is 

returned  and  is optionally  

followed  by the  name  of the  

translation  table  that  is used  

if translation  is applied  to the 

data.  

SO_ERROR  

Use  this  option  to request  pending  errors  on  the  

socket  or to check  for  asynchronous  errors  on 

connected  datagram  sockets  or  for  other  errors  

that  are  not  explicitly  returned  by  one  of the  

socket  calls.  The  error  status  is clear  afterwards.  

N/A  A 4-byte  binary  field 

containing  the most  recent  

ERRNO  for the  socket.  

SO_KEEPALIVE  

Use  this  option  to set  or determine  whether  the  

keep  alive  mechanism  periodically  sends  a 

packet  on an otherwise  idle  connection  for  a 

stream  socket.  

The  default  is disabled.  

When  activated,  the  keep  alive  mechanism  

periodically  sends  a packet  on  an otherwise  idle  

connection.  If the  remote  TCP  does  not  respond  

to  the  packet  or to retransmissions  of the  

packet,  the  connection  is terminated  with  the  

error  ETIMEDOUT.  

A 4-byte  binary  field.  

To enable,  set to 1 or a positive  

value.  

To disable,  set to 0. 

A 4-byte  binary  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

 

Chapter  7. Using the CALL instruction  application  programming interface (API)  111



Table 3. OPTNAME  options  for  GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

SO_LINGER  

Use  this  option  to control  or determine  how  

TCP/IP  processes  data  that  has  not  been  

transmitted  when  a CLOSE  is issued  for the  

socket.  The  default  is disabled.  

Notes:   

1.   This  option  has  meaning  only  for stream  

sockets.  

2.   If you  set  a zero  linger  time,  the  connection  

cannot  close  in  an orderly  manner,  but  

stops,  resulting  in a RESET  segment  being  

sent  to the  connection  partner.  Also,  if the  

aborting  socket  is in nonblocking  mode,  the  

close  call  is treated  as though  no  linger  

option  had  been  set.

When  SO_LINGER  is set and  CLOSE  is called,  

the  calling  program  is blocked  until  the  data  is 

successfully  transmitted  or  the  connection  has  

timed  out.  

When  SO_LINGER  is not  set,  the  CLOSE  

returns  without  blocking  the  caller,  and  TCP/IP  

continues  to attempt  to send  data  for a 

specified  time.  This  usually  allows  sufficient  

time  to complete  the  data  transfer.  

Use  of the  SO_LINGER  option  does  not  

guarantee  successful  completion  because  

TCP/IP  only  waits  the  amount  of time  specified  

in OPTVAL  for SO_LINGER.  

Contains  an 8-byte  field  containing  

two  4-byte  binary  fields.  

Assembler  coding:  

ONOFF    DS F 

LINGER   DS F 

COBOL  coding:  

ONOFF   PIC 9(8)  BINARY.  

LINGER  PIC  9(8)  BINARY.  

Set ONOFF  to a nonzero  value  to 

enable  and  set to 0 to disable  this  

option.  Set  LINGER  to the  number  

of seconds  that  TCP/IP  lingers  after  

the  CLOSE  is issued.  

Contains  an 8-byte  field  

containing  two  4-byte  binary  

fields.  

Assembler  coding:  

ONOFF    DS F 

LINGER   DS F 

COBOL  coding:  

ONOFF   PIC 9(8)  BINARY.  

LINGER  PIC  9(8)  BINARY.  

A nonzero  value  returned  in 

ONOFF  indicates  enabled,  a 0 

indicates  disabled.  LINGER  

indicates  the number  of 

seconds  that  TCP/IP  will  try 

to send  data  after  the  CLOSE  

is issued.  

SO_OOBINLINE  

Use  this  option  to control  or determine  whether  

out-of-band  data  is received.  

Note:  This  option  has  meaning  only  for  stream  

sockets.  

When  this  option  is set,  out-of-band  data  is 

placed  in the  normal  data  input  queue  as it is 

received  and  is available  to a RECV  or  a 

RECVFROM  even  if the  OOB  flag  is not  set in 

the  RECV  or the  RECVFROM.  

When  this  option  is disabled,  out-of-band  data  

is placed  in the  priority  data  input  queue  as it 

is received  and  is available  to a RECV  or  a 

RECVFROM  only  when  the  OOB  flag  is set  in 

the  RECV  or the  RECVFROM.  

A 4-byte  binary  field.  

To enable,  set to 1 or a positive  

value.  

To disable,  set to 0. 

A 4-byte  binary  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

 

112  z/OS V1R7.0  Comm  Svr: IP IMS Sockets Guide



Table 3. OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

SO_RCVBUF  

Use  this  option  to control  or  determine  the  size  

of the  data  portion  of the  TCP/IP  receive  buffer.  

The  size  of the  data  portion  of the  receive  

buffer  is protocol-specific,  based  on  the  

following  values  prior  to any  SETSOCKOPT  

call:  

v   TCPRCVBufrsize  keyword  on  the  

TCPCONFIG  statement  in the  

PROFILE.TCPIP  data  set for a TCP  Socket  

v   UDPRCVBufrsize  keyword  on  the  

UDPCONFIG  statement  in the  

PROFILE.TCPIP  data  set for a UDP  Socket  

v   The  default  of 65 535  for a raw  socket  

A 4-byte  binary  field.  

To enable,  set to a positive  value  

specifying  the  size  of the data  

portion  of the  TCP/IP  receive  

buffer.  

To disable,  set to a 0. 

A 4-byte  binary  field.  

If enabled,  contains  a positive  

value  indicating  the  size  of 

the  data  portion  of the 

TCP/IP  receive  buffer.  

If disabled,  contains  a 0. 

SO_REUSEADDR  

Use  this  option  to control  or  determine  whether  

local  addresses  are  reused.  The  default  is 

disabled.  This  alters  the  normal  algorithm  used  

with  BIND.  The  normal  BIND  algorithm  allows  

each  Internet  address  and  port  combination  to 

be bound  only  once.  If the  address  and  port  

have  been  already  bound,  then  a subsequent  

BIND  will  fail  and  result  error  will  be 

EADDRINUSE.  

When  this  option  is enabled,  the  following  

situations  are  supported:  

v   A server  can  BIND  the  same  port  multiple  

times  as long  as every  invocation  uses  a 

different  local  IP address  and  the  wildcard  

address  INADDR_ANY  is used  only  one  time  

per  port.  

v   A server  with  active  client  connections  can  be 

restarted  and  can  bind  to its port  without  

having  to close  all  of the  client  connections.  

v   For  datagram  sockets,  multicasting  is 

supported  so multiple  bind()  calls  can  be 

made  to  the  same  class  D  address  and  port  

number.  

v   If you  require  multiple  servers  to BIND  to 

the  same  port  and  listen  on  INADDR_ANY,  

refer  to the  SHAREPORT  option  on  the  PORT 

statement  in TCPIP.PROFILE.  

A 4-byte  binary  field.  

To enable,  set to 1 or a positive  

value.  

To disable,  set to 0. 

A 4-byte  binary  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

 

Chapter  7. Using the CALL instruction  application  programming  interface  (API) 113



Table 3. OPTNAME  options  for  GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

SO_SNDBUF  

Use  this  option  to control  or determine  the  size  

of the  data  portion  of the  TCP/IP  send  buffer.  

The  size  is of the  TCP/IP  send  buffer  is 

protocol  specific  and  is based  on  the  following:  

v   The  TCPSENDBufrsize  keyword  on  the  

TCPCONFIG  statement  in  the  

PROFILE.TCPIP  data  set for  a TCP  socket  

v   The  UDPSENDBufrsize  keyword  on  the  

UDPCONFIG  statement  in the  

PROFILE.TCPIP  data  set for  a UDP  socket  

v   The  default  of 65 535  for  a raw  socket  

A 4-byte  binary  field.  

To enable,  set to a positive  value  

specifying  the  size  of the  data  

portion  of the TCP/IP  send  buffer. 

To disable,  set to a 0. 

A 4-byte  binary  field.  

If enabled,  contains  a positive  

value  indicating  the  size  of 

the  data  portion  of the 

TCP/IP  send  buffer.  

If disabled,  contains  a 0. 

SO_TYPE  

Use  this  option  to return  the  socket  type.  

N/A  A 4-byte  binary  field  

indicating  the  socket  type:  

X’1’  indicates  

SOCK_STREAM.  

X’2’  indicates  

SOCK_DGRAM.  

X’3’  indicates  SOCK_RAW. 

TCP_KEEPALIVE  

Use  this  option  to set  or determine  whether  a 

socket-specific  timeout  value  (in  seconds)  is to 

be used  in place  of a configuration-specific  

value  whenever  keep  alive  timing  is active  for 

that  socket.  

When  activated,  the  socket-specified  timer  value  

remains  in effect  until  respecified  by  

SETSOCKOPT  or  until  the  socket  is closed.  

Refer  to the  z/OS  Communications  Server:  IP 

Programmer’s  Guide  and  Reference  for more  

information  on the  socket  option  parameters.  

A 4-byte  binary  field.  

To enable,  set to a value  in the 

range  of 1 – 2 147 460.  

To disable,  set to a value  of 0. 

A 4-byte  binary  field.  

If enabled,  contains  the 

specific  timer  value  (in 

seconds)  that  is in effect  for 

the  given  socket.  

If disabled,  contains  a 0 

indicating  keep  alive  timing  

is not  active.  

 

114  z/OS V1R7.0  Comm  Svr: IP IMS Sockets Guide

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|

|

|

|
|
|
|

|
|
|



Table 3. OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

TCP_NODELAY  

Use  this  option  to set  or determine  whether  

data  sent  over  the  socket  is subject  to  the  Nagle  

algorithm  (RFC  896).  

Under  most  circumstances,  TCP  sends  data  

when  it is presented.  When  this  option  is 

enabled,  TCP  will  wait  to  send  small  amounts  

of data  until  the  acknowledgment  for  the  

previous  data  sent  is received.  When  this  option  

is disabled,  TCP  will  send  small  amounts  of 

data  even  before  the  acknowledgment  for the  

previous  data  sent  is received.  

Note:  Use  the  following  to set TCP_NODELAY  

OPTNAME  value  for  COBOL  programs:  

01  TCP-NODELAY-VAL  PIC  9(10)  COMP  

     VALUE  2147483649.  

01  TCP-NODELAY-REDEF  REDEFINES  

     TCP-NODELAY-VAL.  

 05 FILLER  PIC  9(6)  BINARY.  

 05 TCP-NODELAY  PIC  9(8)  BINARY.  

A 4-byte  binary  field.  

To enable,  set to a 0. 

To disable,  set to a 1 or nonzero.  

A 4-byte  binary  field.  

If enabled,  contains  a 0. 

If disabled,  contains  a 1.

  

GIVESOCKET 

The  GIVESOCKET  call  is used  to pass  a socket  from  one  process  to  another.  

UNIX-based  platforms  use  a command  called  FORK  to create  a new  child  process  

that  has  the  same  descriptors  as  the  parent  process.  You can  use  this  new  child  

process  in  the  same  way  that  you  used  the  parent  process.  

TCP/IP  normally  uses  GETCLIENTID,  GIVESOCKET,  and  TAKESOCKET  calls  in 

the  following  sequence:  

1.   A  process  issues  a GETCLIENTID  call  to  get  the  job  name  of its  region  and  its  

MVS  subtask  identifier.  This  information  is used  in  a GIVESOCKET  call.  

2.   The  process  issues  a GIVESOCKET  call  to  prepare  a socket  for  use  by  a child  

process.  

3.   The  child  process  issues  a TAKESOCKET  call  to  get  the  socket.  The  socket  now  

belongs  to  the  child  process,  and  can  be  used  by  TCP/IP  to communicate  with  

another  process.  

Note:   The  TAKESOCKET  call  returns  a new  socket  descriptor  in  RETCODE.  

The  child  process  must  use  this  new  socket  descriptor  for  all  calls  that  

use  this  socket.  The  socket  descriptor  that  was  passed  to  the  

TAKESOCKET  call  must  not  be  used.  

4.   After  issuing  the  GIVESOCKET  command,  the  parent  process  issues  a SELECT  

command  that  waits  for  the  child  to  get  the  socket.  

5.   When  the  child  gets  the  socket,  the  parent  receives  an  exception  condition  that  

releases  the  SELECT  command.  

6.   The  parent  process  closes  the  socket.

 

Chapter  7. Using the CALL instruction  application  programming  interface  (API) 115



The  original  socket  descriptor  can  now  be  reused  by  the  parent.  

Sockets  that  have  been  given,  but  not  taken  for  a period  of four  days,  will  be  

closed  and  will  no  longer  be  available  for  taking.  If a select  for  the  socket  is 

outstanding,  it will  be  posted.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  35  shows  an  example  of  GIVESOCKET  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  GIVESOCKET.  The  field  is left-justified  

and  padded  on  the  right  with  blanks.  

S A  halfword  binary  number  set  to the  socket  descriptor  of  the  socket  to be  

given.  

CLIENT  

A  structure  containing  the  identifier  of the  application  to  which  the  socket  

should  be  given.  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’GIVESOCKET’.  

        01   S               PIC  9(4)  BINARY.  

        01   CLIENT.  

            03   DOMAIN       PIC  9(8)  BINARY.  

            03   NAME         PIC X(8).  

            03   TASK         PIC X(8).  

            03   RESERVED     PIC  X(20).  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S CLIENT  ERRNO  RETCODE.  

Figure  35. GIVESOCKET  call  instruction  example

 

116  z/OS V1R7.0  Comm  Svr: IP IMS Sockets Guide



DOMAIN  

A  fullword  binary  number  that  must  be  set  to  decimal  2, indicating  

AF_INET,  or  decimal  19  indicating  AF_INET6.  

Note:   A  socket  given  by  GIVESOCKET  can  only  be  taken  by  a 

TAKESOCKET  with  the  same  DOMAIN  (AF_INET  or  

AF_INET6).

NAME  

Specifies  an  eight-character  field,  left-justified,  padded  to  the  right  

with  blanks,  that  can  be  set  to  the  name  of  the  MVS  address  space  

that  will  contain  the  application  that  is going  to  take  the  socket.  

v   If the  socket-taking  application  is  in the  same  address  space  as  

the  socket-giving  application  (as  in  CICS),  NAME  can  be  

specified.  The  socket-giving  application  can  determine  its  own  

address  space  name  by  issuing  the  GETCLIENTID  call.  

v   If the  socket-taking  application  is  in a different  MVS  address  

space  (as  in IMS™), this  field  should  be  set  to  blanks.  When  this  

is done,  any  MVS  address  space  that  requests  the  socket  can  

have  it.

TASK  Specifies  an  8-byte  field  that  can  be  set  to  blanks,  or  to  the  

identifier  of the  socket-taking  MVS  subtask.  If this  field  is  set  to  

blanks,  any  subtask  in  the  address  space  specified  in the  NAME  

field  can  take  the  socket.  

v   As  used  by  IMS  and  CICS,  the  field  should  be  set  to blanks.  

v   If TASK identifier  is non-blank,  the  socket-receiving  task  should  

already  be  in  execution  when  the  GIVESOCKET  is issued.

RESERVED  

A  20-byte  reserved  field.  This  field  is required,  but  not  used.

Parameter values returned to the application 

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

INITAPI  

The  INITAPI  call  connects  an  application  to  the  TCP/IP  interface.  Almost  all  

sockets  programs  that  are  written  in  COBOL,  PL/1,  or  assembler  language  must  

issue  the  INITAPI  macro  before  they  issue  other  sockets  macros.  

The  exceptions  to  this  rule are  the  following  calls,  which,  when  issued  first,  will  

generate  a default  INITAPI  call.  

v   GETCLIENTID  

v   GETHOSTID  

v   GETHOSTNAME  

v   GETIBMOPT  

v   SELECT  

 

Chapter  7. Using the CALL instruction  application  programming  interface  (API) 117



v   SELECTEX  

v   SOCKET  

v   TAKESOCKET

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  36  shows  an  example  of  INITAPI  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  INITAPI.  The  field  is  left-justified  and  

padded  on  the  right  with  blanks.  

MAXSOC  

A  halfword  binary  field  set  to the  maximum  number  of  sockets  this  

application  will  ever  have  open  at  one  time.  The  maximum  number  is 

65535  and  the  minimum  number  is 50.  This  value  is used  to  determine  the  

amount  of  memory  that  will  be  allocated  for  socket  control  blocks  and  

buffers.  If  less  than  50  are  requested,  MAXSOC  defaults  to 50.  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’INITAPI’.  

        01   MAXSOC           PIC  9(4)  BINARY.  

        01   IDENT.  

            02   TCPNAME      PIC  X(8).  

            02   ADSNAME      PIC  X(8).  

        01   SUBTASK          PIC  X(8).  

        01   MAXSNO           PIC  9(8)  BINARY.  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  MAXSOC  IDENT  SUBTASK  

         MAXSNO  ERRNO  RETCODE.  

Figure  36. INITAPI call  instruction  example

 

118  z/OS V1R7.0  Comm  Svr: IP IMS Sockets Guide



IDENT  

A structure  containing  the  identities  of  the  TCP/IP  address  space  and  the  

calling  program’s  address  space.  Specify  IDENT  on  the  INITAPI  call  from  

an  address  space.  

TCPNAME  

An  8-byte  character  field  that  should  be  set  to  the  MVS  job  name  

of  the  TCP/IP  address  space  with  which  you  are  connecting.  

ADSNAME  

An  8-byte  character  field  set  to  the  identity  of  the  calling  program’s  

address  space.  For  explicit-mode  IMS  server  programs,  use  the  

TIMSrvAddrSpc  field  passed  in the  TIM.  If ADSNAME  is not  

specified,  the  system  derives  a value  from  the  MVS  control  block  

structure.

SUBTASK  

Indicates  an  8-byte  field,  containing  a unique  subtask  identifier  which  is 

used  to  distinguish  between  multiple  subtasks  within  a single  address  

space.  Use  your  own  job  name  as  part  of  your  subtask  name.  This  will  

ensure  that,  if you  issue  more  than  one  INITAPI  command  from  the  same  

address  space,  each  SUBTASK  parameter  will  be  unique.

Parameter values returned to the application 

MAXSNO  

A fullword  binary  field  that  contains  the  highest  socket  number  assigned  

to  this  application.  The  lowest  socket  number  is 0. If  you  have  50  sockets,  

they  are  numbered  from  0 to 49.  If MAXSNO  is not  specified,  the  value  for  

MAXSNO  is 49.  

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

IOCTL 

The  IOCTL  call  is  used  to  control  certain  operating  characteristics  for  a socket.  

Before  you  issue  an  IOCTL  macro,  you  must  load  a value  representing  the  

characteristic  that  you  want  to  control  into  the  COMMAND  field.  

The  variable  length  parameters  REQARG  and  RETARG  are  arguments  that  are  

passed  to  and  returned  from  IOCTL.  The  length  of  REQARG  and  RETARG  is 

determined  by  the  value  that  you  specify  in  COMMAND.  See  Table 4 on  page  125  

for  information  about  REQARG  and  RETARG.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

 

Chapter  7. Using the CALL instruction  application  programming  interface  (API) 119



Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  37  shows  an  example  of  IOCTL  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

       WORKING-STORAGE  SECTION.  

       01  SOC-FUNCTION            PIC X(16)  VALUE  ’IOCTL’.  

       01  S                      PIC  9(4)   BINARY.  

       01  COMMAND                 PIC 9(8)   BINARY.  

  

       01  IFREQ.  

         03 NAME                    PIC  X(16).  

         03 FAMILY                  PIC  9(4)   BINARY.  

         03 PORT                    PIC  9(4)   BINARY.  

         03 ADDRESS                 PIC  9(8)   BINARY.  

         03 RESERVED                PIC X(8).  

  

       01  IFREQOUT.  

         03 NAME                    PIC  X(16).  

         03 FAMILY                  PIC  9(4)   BINARY.  

         03 PORT                    PIC  9(4)   BINARY.  

         03 ADDRESS                 PIC  9(8)   BINARY.  

         03 RESERVED                PIC X(8).  

  

       01  GRP-IOCTL-TABLE.  

        02  IOCTL-ENTRY  OCCURS  100  TIMES.  

         03 NAME                    PIC  X(16).  

         03 FAMILY                  PIC  9(4)   BINARY.  

         03 PORT                    PIC  9(4)   BINARY.  

         03 ADDRESS                 PIC  9(8)   BINARY.  

         03 NULLS                   PIC  X(8).  

  

       01  IOCTL-REQARG            USAGE  IS POINTER.  

       01  IOCTL-RETARG            USAGE  IS POINTER.  

       01  ERRNO                   PIC  9(8)  BINARY.  

       01  RETCODE                 PIC 9(8)  BINARY.  

  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S COMMAND  REQARG  

               RETARG  ERRNO  RETCODE.  

Figure  37. IOCTL  call  instruction  example

 

120 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  IOCTL.  The  field  is  left-justified  and  

padded  to  the  right  with  blanks.  

S  A halfword  binary  number  set  to  the  descriptor  of  the  socket  to  be  

controlled.  

COMMAND  

To control  an  operating  characteristic,  set  this  field  to  one  of  the  following  

symbolic  names.  A  value  in a bit  mask  is associated  with  each  symbolic  

name.  By  specifying  one  of these  names,  you  are  turning  on  a bit  in  a 

mask  which  communicates  the  requested  operating  characteristic  to 

TCP/IP.  

FIONBIO  

Sets  or  clears  blocking  status.  

FIONREAD  

Returns  the  number  of  immediately  readable  bytes  for  the  socket.  

SIOCATMARK  

Determines  whether  the  current  location  in  the  data  input  is  

pointing  to  out-of-band  data.  

SIOCGHOMEIF6  

Requests  all  IPv6  home  interfaces.  

v   When  the  SIOCGHOMEIF6  IOCTL  is issued,  the  REGARQ  must  

contain  a Network  Configuration  Header.  The  NETCONFHDR  is  

defined  in  the  SYS1.MACLIB(BPXYIOC6)  for  assembler  

language.  The  following  fields  are  input  fields  and  must  be  filled  

out:  

NchEyeCatcher  

Contains  eye  catcher  '6NCH'  

NchIoctl  

Contains  the  command  code  

NchBufferLength  

Buffer  length  large  enough  to  contain  all  the  IPv6  

interface  records.  Each  interface  record  is length  of  

HOME-IF-ADDRESS.  If buffer  is not  large  enough,  then  

errno  will  be  set  to ERANGE  and  the  NchNumEntryRet  

will  be  set  to  number  of  interfaces.  Based  on  

NchNumEntryRet  and  size  of  HOME-IF-ADDRESS,  

calculate  the  necessary  storage  to  contain  the  entire  list.  

NchBufferPtr  

This  is a pointer  to  an  array  of HOME-IF  structures  

returned  on  a successful  call.  The  size  will  depend  on  

the  number  of  qualifying  interfaces  returned.  

NchNumEntryRet  

If return  code  is 0 this  will  be  set  to  number  of 

HOME-IF-ADDRESS  returned.  If errno  is ERANGE,  then  

will  be  set  to  number  of  qualifying  interfaces.  No  

interfaces  are  returned.  Recalculate  The  NchBufferLength  

based  on  this  value  times  the  size  of  

HOME-IF-ADDRESS.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 121



REQARG  and  RETARG  

Point  to  the  arguments  that  are  passed  between  the  

calling  program  and  IOCTL.  The  length  of  the  argument  

is determined  by  the  COMMAND  request.  REQARG  is 

an  input  parameter  and  is used  to  pass  arguments  to  

IOCTL.  RETARG  is  an  output  parameter  and  is used  for  

arguments  returned  by  IOCTL.  For  the  lengths  and  

meanings  of  REQARG  and  RETARG  for  each  

COMMAND  type,  see  Table 4 on  page  125.
 

SIOCGIFADDR  

Requests  the  IPv4  network  interface  address  for  a given  interface  

name.  See  the  NAME  field  in  Figure  39  on  page  123  for  the  address  

format.  

SIOCGIFBRDADDR  

Requests  the  IPv4  network  interface  broadcast  address  for  a given  

interface  name.  See  the  NAME  field  in  Figure  39  on  page  123  for  

the  address  format.  

Working-Storage  Section.  

       01  SIOCGHOMEIF6-VAL        pic  s9(10)  binary  value  3222599176.  

       01  SIOCGHOMEIF6-REDEF  REDEFINES  SIOCGHOMEIF6-VAL.  

           05 FILLER               PIC  9(6)  COMP.  

           05 SIOCGHOMEIF6         PIC  9(8)  COMP.  

       01  IOCTL-RETARG            USAGE  IS POINTER.  

       01  NET-CONF-HDR.  

           05 NCH-EYE-CATCHER      PIC  X(4)  VALUE  ’6NCH’.  

           05 NCH-IOCTL            PIC  9(8)  BINARY.  

           05 NCH-BUFFER-LENTH     PIC  9(8)  BINARY.  

           05 NCH-BUFFER-PTR       USAGE  IS POINTER.  

           05 NCH-NUM-ENTRY-RET    PIC  9(8)  BINARY.  

      01  HOME-IF.  

           03 HOME-IF-ADDRESS.  

              05 FILLER            PIC  9(16)  BINARY.  

  

Linkage  Section.  

  

       01 L1.  

          03 NetConfHdr.  

             05 NchEyeCatcher      pic  x(4).  

             05 NchIoctl           pic  9(8)  binary.  

             05 NchBufferLength    pic  9(8)  binary.  

             05 NchBufferPtr       usage  is pointer.  

             05 NchNumEntryRet     pic  9(8)  binary.  

      * Allocate  storage  based  on your  need.  

          03 Allocated-Storage     pic  x(nn).  

  

       Procedure  Division  using  L1.  

           move  ’6NCH’  to NchEyeCatcher.  

           set  NchBufferPtr  to address  of Allocated-Storage.  

      * Set  NchBufferLength  to the  length  of your  allocated  storage.  

           move  nn to  NchBufferLength.  

           move  SIOCGHOMEIF6  to NchIoctl.  

           Call  ’EZASOKET’  using  soket-ioctl  socket-descriptor  

                                 SIOCGHOMEIF6  

                                 NETCONFHDR  NETCONFHDR  

                                 errno  retcode.  

Figure  38. COBOL  language  example  for  SIOCGHOMEIF6

 

122 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



SIOCGIFCONF  

Requests  the  IPv4  network  interface  configuration.  The  

configuration  is a variable  number  of 32-byte  structures  formatted  

as  shown  in  Figure  39.  

v   When  IOCTL  is issued,  REQARG  must  contain  the  length  of the  

array  to be  returned.  To determine  the  length  of REQARG,  

multiply  the  structure  length  (array  element)  by  the  number  of  

interfaces  requested.  The  maximum  number  of array  elements  

that  TCP/IP  can  return  is 100.  

v   When  IOCTL  is issued,  RETARG  must  be  set  to  the  beginning  of 

the  storage  area  that  you  have  defined  in  your  program  for  the  

array  to be  returned.  

 

SIOCGIFDSTADDR  

Requests  the  network  interface  destination  address  for  a given  

interface  name.  (See  IFREQ  NAME  field,  Figure  39  for  format.)  

SIOCGIFNAMEINDEX  

Requests  all  interface  names  and  interface  indexes  including  local  

loopback  but  excluding  VIPAs.  Information  is returned  for  both  

IPv4  and  IPv6  interfaces  whether  they  are  active  or  inactive.  For  

IPv6  interfaces,  information  is only  returned  for  an  interface  if it 

has  at least  one  available  IP  address.  

 The  configuration  consists  of IF_NAMEINDEX  structure,  which  is 

defined  in SYS1.MACLIB(BPX1IOCC)  for  the  assembler  language.  

v   When  the  SIOCGIFNAMEINDEX  IOCTL  is issued,  the  first  word  

in REQARG  must  contain  the  length  (in  bytes)  to  contain  an  

IF-NAME-INDEX  structure  to  return  the  interfaces.  The  formula  

to compute  this  length  is as  follows:  

1.   Determine  the  number  of interfaces  expected  to  be  returned  

upon  successful  completion  of  this  command.  

2.   Multiply  the  number  of interfaces  by  the  array  element  (size  

of  IF-NIINDEX,  IF-NINAME,  and  IF-NIEXT)  to  get  the  size  

of  the  array  element.  

3.   Add  the  size  of  the  IF-NITOTALIF  and  IF-NIENTRIES  to  the  

size  of the  array  to  get  the  total  number  of  bytes  needed  to  

accommodate  the  name  and  index  information  returned.
v    When  IOCTL  is issued,  RETARG  must  be  set  to  the  address  of  

the  beginning  of  the  area  in  your  program’s  storage  that  is 

reserved  for  the  IF-NAMEINDEX  structure  that  is to  be  returned  

by  IOCTL.  

v   The  command  'SIOCGIFNAMEINDEX'  returns  a variable  

number  of  all  the  qualifying  network  interfaces.

 

      03  NAME          PIC  X(16).  

      03  FAMILY        PIC  9(4)  BINARY.  

      03  PORT          PIC  9(4)  BINARY.  

      03  ADDRESS       PIC 9(8)  BINARY.  

      03  RESERVED      PIC X(8).  

Figure  39.  Interface  request  structure  (IFREQ)  for the  IOCTL  call

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 123



SIOCTTLSCTL  

Controls  Application  Transparent  Transport  Layer  Security  

(AT-TLS)  for  the  connection.  REQARG  and  RETARG  must  contain  

a TTLS_IOCTL  structure.  If a partner  certificate  is requested,  the  

TTLS_IOCTL  must  include  a pointer  to  additional  buffer  space  and  

the  length  of that  buffer.  Information  is returned  in  the  

TTLS_IOCTL  structure.  If a partner  certificate  is requested  and  one  

is  available,  it  is returned  in  the  additional  buffer  space.  The  

TTLS_IOCTL  structure  is defined  in members  within  SEZANMAC.  

EZBZTLS1  defines  the  PL/I  layout,  EZBZTLSP  defines  the  

assembler  layout,  and  EZBZTLSB  defines  the  COBOL  layout.  For  

more  usage  information,  refer  to  the  Application  Transparent  TLS  

(AT-TLS)  chapter  of  the  z/OS  Communications  Server:  IP  

Programmer’s  Guide  and  Reference. 

 Restriction:Use  of  this  ioctl  for  functions  other  than  query  requires  

that  the  AT-TLS  policy  mapped  to the  connection  be  defined  with  

the  ApplicationControlled  parameter  set  to  On.

REQARG  and  RETARG  

Points  to  arguments  that  are  passed  between  the  calling  program  and  

IOCTL.  The  length  of  the  argument  is determined  by  the  COMMAND  

request.  REQARG  is an  input  parameter  and  is used  to pass  arguments  to  

IOCTL,  and  RETARG  is an  output  parameter  and  receives  arguments  from  

IOCTL.  The  REQARG  and  RETARG  parameters  are  described  in Table 4 on  

page  125.  

 WORKING-STORAGE  SECTION.  

       01 SIOCGIFNAMEINDEX-VAL  pic 9(10)  binary  value  1073804803.  

       01 SIOCGIFNAMEINDEX-REDEF  REDEFINES  SIOCGIFNAMEINDEX-VAL.  

          05 FILLER             PIC  9(6)  COMP.  

          05 SIOCGIFNAMEINDEX   PIC  9(8)  COMP.  

       01 reqarg                pic  9(8)  binary.  

       01 reqarg-header-only    pic 9(8)  binary.  

       01 IF-NIHEADER.  

          05 IF-NITOTALIF       PIC 9(8)  BINARY.  

          05 IF-NIENTRIES       PIC 9(8)  BINARY.  

          01 IF-NAME-INDEX-ENTRY.  

             05 IF-NIINDEX      PIC  9(8)  BINARY.  

             05 IF-NINAME       PIC X(16).  

             05 IF-NINAMETERM   PIC  X(1).  

             05 IF-NIRESV1      PIC  X(3).  

          01 OUTPUT-STORAGE     PIC  X(500).  

       Procedure  Division.  

           move  8 to  reqarg-header-only.  

           Call  ’EZASOKET’  using  soket-ioctl  socket-descriptor  

                                 SIOCGIFNAMEINDEX  

                                 REQARG-HEADER-ONLY  IF-NIHEADER  

                                 errno  retcode.  

           move  500  to reqarg.  

           Call  ’EZASOKET’  using  soket-ioctl  socket-descriptor  

                                 SIOCGIFNAMEINDEX  

                                 REQARG  OUTPUT-STORAGE  

                                 errno  retcode.  

Figure  40. COBOL  language  example  for  SIOCGIFNAMEINDEX

 

124 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|



Table 4. IOCTL  call  arguments  

COMMAND/CODE SIZE REQARG SIZE RETARG 

FIONBIO X'8004A77E' 4 Set socket mode to: 

X'00'=blocking, 

X'01'=nonblocking. 

0 Not used. 

FIONREAD X'4004A77F' 0 Not used. 4 Number of characters available for read. 

SIOCATMARK X'4004A707' 0 Not used. 4 X'00'= not at OOB data 

X'01'= at OOB data. 

SIOCGHOMEIF6 

X'C014F608' 

20 NetConfHdr See Figure 38 on page 122 NetConfHdr. 

SIOCGIFADDR X'C020A70D' 32 First 16 bytes - 

 interface name. 

Last 16 bytes - 

not used. 

32 Network interface address, see Figure 39 on 

page 123 for format. 

SIOCGIFBRDADDR 

X'C020A712' 

32 First 16 bytes - 

interface name. 

Last 16 bytes - 

not used. 

32 Network interface address, see Figure 39 on 

page 123 for format. 

SIOCGIFCONF X'C008A714' 8 Size of RETARG. See note1. 

SIOCGIFDSTADDR 

X'C020A70F' 

32 First 16 bytes - 

interface name. 

Last 16 bytes - 

not used. 

32 Destination interface address,  see Figure 39 on 

page 123 for format. 

SIOCGIFNAMEINDEX 

X'4000F603' 

4 First 4 bytes size of return 

buffer.  

See Figure 40 on page 124 IF-NAMEINDEX . 

SIOCTTLSCTL X'C038D90B' 56 For IOCTL structure layout, 

refer  to 

SEZANMAC(EZBZTLS1) for 

PL/I, 

SEZANMAC(EZBZTLSP) for 

assembler, and 

SEZANMAC(EZBZTLSB) for 

COBOL. 

56 For IOCTL structure layout, refer to 

SEZANMAC(EZBZTLS1) for PL/I, 

SEZANMAC(EZBZTLSP) for assembler, and 

SEZANMAC(EZBZTLSB) for COBOL. 

Notes:  

1.   When you call IOCTL with the SIOCGIFCONF command set, REQARG should contain the length in bytes of RETARG. Each interface is assigned a 

32-byte array element and REQARG should be set to the number of interfaces times 32. TCP/IP Services can return up to 100 array elements.
  

Parameter values returned to the application 

RETARG  

Returns  an  array  whose  size  is based  on  the  value  in  COMMAND.  See  

Table 4 for  information  about  REQARG  and  RETARG.  

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

The  COMMAND  SIOGIFCONF  returns  a variable  number  of network  interface  

configurations.  Figure  41  contains  an  example  of a COBOL  II routine  that  can  be  

used  to  work  with  such  a structure.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 125

|
|
|
|
|
|
|
|

|
|
|
|



Note:   This  call  can  only  be  programmed  in languages  that  support  address  

pointers.  Figure  41  shows  a COBOL  II  example  for  SIOCGIFCONF.  

   

LISTEN 

The  LISTEN  call:  

v   Completes  the  bind,  if BIND  has  not  already  been  called  for  the  socket.  

v   Creates  a connection-request  queue  of a specified  length  for  incoming  connection  

requests.

Note:   The  LISTEN  call  is  not  supported  for  datagram  sockets  or  raw  sockets.  

The  LISTEN  call  is  typically  used  by  a server  to  receive  connection  requests  from  

clients.  When  a connection  request  is received,  a new  socket  is created  by  a 

subsequent  ACCEPT  call,  and  the  original  socket  continues  to  listen  for  additional  

connection  requests.  The  LISTEN  call  converts  an  active  socket  to a passive  socket  

and  conditions  it  to  accept  connection  requests  from  clients.  Once  a socket  becomes  

passive  it cannot  initiate  connection  requests.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  42  on  page  127  shows  an  example  of LISTEN  call  instructions.  

 

  WORKING-STORAGE  SECTION.  

    77   REQARG         PIC  9(8)  COMP.  

    77   COUNT          PIC  9(8)  COMP  VALUE  max  number  of interfaces.  

  LINKAGE  SECTION.  

    01   RETARG.  

         05   IOCTL-TABLE  OCCURS  1 TO max  TIMES  DEPENDING  ON COUNT.  

              10    NAME      PIC X(16).  

              10    FAMILY    PIC 9(4)  BINARY.  

              10    PORT      PIC 9(4)  BINARY.  

              10    ADDR      PIC 9(8)  BINARY.  

              10    NULLS     PIC  X(8).  

  PROCEDURE  DIVISION.  

    MULTIPLY  COUNT  BY 32 GIVING  REQARQ.  

    CALL  'EZASOKET'  USING  SOC-FUNCTION  S COMMAND  

        REQARG  RETARG  ERRNO  RETCODE.  

Figure  41. COBOL  II example  for SIOCGIFCONF

 

126 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  LISTEN.  The  field  is left-justified  and  

padded  to  the  right  with  blanks.  

S  A halfword  binary  number  set  to  the  socket  descriptor.  

BACKLOG  

A fullword  binary  number  set  to the  number  of communication  requests  to  

be  queued.  

 Rule:  The  BACKLOG  value  specified  on  the  LISTEN  call  is limited  to  the  

value  configured  by  the  SOMAXCONN  statement  in  the  stack’s  TCPIP  

PROFILE  (default=10);  no  error  is  returned  if a larger  backlog  is requested.  

SOMAXCONN  might  need  to  be  updated  if a larger  backlog  is desired.  

Refer  to  the  z/OS  Communications  Server:  IP  Configuration  Reference  for  

details.

Parameter values returned to the application 

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

NTOP  

The  NTOP  call  converts  an  IP  address  from  its  numeric  binary  form  into  a 

standard  text  presentation  form.  On  successful  completion,  NTOP  returns  the  

converted  IP  address  in  the  buffer  provided.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’LISTEN’.  

        01  S               PIC  9(4)  BINARY.  

        01  BACKLOG          PIC  9(8)  BINARY.  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

        CALL  ’EZASOKET’  USING  SOC-FUNCTION  S BACKLOG  ERRNO  RETCODE.  

Figure  42.  LISTEN  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 127

|
|
|
|
|
|



Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  43  shows  an  example  of  NTOP  call  instructions.  

   

Parameter values set by the application 

Keyword  Description  

FAMILY  The  addressing  family  for  the  IP  address  being  converted.  The  

value  of  decimal  2 must  be  specified  for  AF_INET  and  19  for  

AF_INET6.  

IP-ADDRESS  A  field  containing  the  numeric  binary  form  of the  IPv4  or  IPv6  

address  being  converted.  For  an  IPv4  address  this  field  must  be  a 

    WORKING-STORAGE  SECTION.  

        01   SOC-ACCEPT-FUNCTION       PIC X(16)   VALUE  IS ’ACCEPT’.  

        01   SOC-NTOP-FUNCTION         PIC X(16)   VALUE  IS ’NTOP’.  

        01   S                        PIC  9(4)  BINARY.  

  

    * IPv4  socket  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   IP-ADDRESS   PIC  9(8)  BINARY.  

            03   RESERVED     PIC  X(8).  

  

    * IPv6  socket  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   FLOWINFO     PIC  9(8)  BINARY.  

            03   IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            03   SCOPE-ID     PIC  9(8)  BINARY.  

        01   NTOP-FAMILY      PIC 9(8)  BINARY.  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

        01   PRESENTABLE-ADDRESS       PIC X(45).  

        01   PRESENTABLE-ADDRESS-LEN   PIC  9(4)  BINARY.  

  

    PROCEDURE  DIVISION.  

  

         CALL  ’EZASOKET’  USING  SOC-ACCEPT-FUNCTION  S NAME  

               ERRNO  RETCODE.  

         CALL  ’EZASOKET’  USING  SOC-NTOP-FUNCTION  NTOP-FAMILY  IP-ADDRESS  

                 PRESENTABLE-ADDRESS  

               PRESENTABLE-ADDRESS-LEN  ERRNO  RETURN-CODE.  

Figure  43. NTOP  call  instruction  example

 

128 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



fullword  and  for  an  IPv6  address  this  field  must  be  16  bytes.  The  

address  must  be  in  network  byte  order.

Parameter values returned to the application 

Keyword  Description  

PRESENTABLE-ADDRESS  

A  field  used  to  receive  the  standard  text  presentation  form  of the  

IPv4  or  IPv6  address  being  converted.  For  IPv4  the  address  will  be  

in  dotted-decimal  format  and  for  IPv6  the  address  will  be  in  

colon-hex  format.  The  size  of  the  IPv4  address  will  be  a maximum  

of  15  bytes  and  the  size  of  the  converted  IPv6  address  will  be  a 

maximum  of  45  bytes.  Consult  the  value  returned  in 

PRESENTABLE-ADDRESS-LEN  for  the  actual  length  of  the  value  

in  PRESENTABLE-ADDRESS.  

PRESENTABLE-ADDRESS-LEN  

Initially,  an  input  parameter.  The  address  of a binary  halfword  field  

that  is used  to  specify  the  length  of DSTADDR  field  on  input  and  

upon  a successful  return  will  contain  the  length  of  converted  IP  

address.  

ERRNO  Output  parameter.  A  fullword  binary  field.  If  RETCODE  is 

negative,  ERRNO  contains  a valid  error  number.  Otherwise,  ignore  

the  ERRNO  field.  

 See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

RETCODE  A  fullword  binary  field  that  returns  one  of  the  following:  

Value  Description  

0 Successful  call.  

–1  Check  ERRNO  for  an  error  code.

PTON  

The  PTON  call  converts  an  IP  address  in  its  standard  text  presentation  form  to its  

numeric  binary  form.  On  successful  completion,  PTON  returns  the  converted  IP 

address  in the  buffer  provided.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
 

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 129



Figure  44  shows  an  example  of  PTON  call  instructions.  

   

Parameter values set by the application 

Keyword  Description  

    WORKING-STORAGE  SECTION.  

        01   SOC-BIND-FUNCTION       PIC  X(16)   VALUE  IS ’BIND’.  

        01   SOC-PTON-FUNCTION       PIC  X(16)   VALUE  IS ’PTON’.  

        01   S                      PIC  9(4)  BINARY.  

  

    * IPv4  socket  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   IP-ADDRESS   PIC  9(8)  BINARY.  

            03   RESERVED     PIC  X(8).  

  

    * IPv6  socket  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   FLOWINFO     PIC  9(8)  BINARY.  

            03   IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            03   SCOPE-ID     PIC  9(8)  BINARY.  

  

        01   AF-INET          PIC  9(8)  BINARY  VALUE  2. 

        01   AF-INET6         PIC  9(8)  BINARY  VALUE  19. 

  

    * IPv4  address.  

        01   PRESENTABLE-ADDRESS       PIC X(45).  

        01   PRESENTABLE-ADDRESS-IPV4  REDEFINES  PRESENTABLE-ADDRESS.  

            05   PRESENTABLE-IPV4-ADDRESS  PIC  X(15)  VALUE  ’192.26.5.19’.  

            05   FILLER       PIC  X(30).  

        01   PRESENTABLE-ADDRESS-LEN   PIC  9(4)  BINARY  VALUE  11. 

  

    * IPv6  address.  

        01   PRESENTABLE-ADDRESS       PIC X(45)  

              VALUE  ’12f9:0:0:c30:123:457:9cb:1112’.  

        01   PRESENTABLE-ADDRESS-LEN   PIC  9(4)  BINARY  VALUE  29. 

  

    * IPv4-mapped  IPv6  address.  

        01   PRESENTABLE-ADDRESS       PIC X(45)  

              VALUE  ’12f9:0:0:c30:123:457:192.26.5.19’.  

        01   PRESENTABLE-ADDRESS-LEN   PIC  9(4)  BINARY  VALUE  32. 

  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

  

    PROCEDURE  DIVISION.  

  

    * IPv4  address.  

         CALL  ’EZASOKET’  USING  SOC-PTON-FUNCTION  AF-INET  PRESENTABLE-ADDRESS  

               PRESENTABLE-ADDRESS-LEN  IP-ADDRESS  ERRNO  RETURN-CODE.  

    * IPv6  address.  

         CALL  ’EZASOKET’  USING  SOC-PTON-FUNCTION  AF-INET6  PRESENTABLE-ADDRESS  

               PRESENTABLE-ADDRESS-LEN  IP-ADDRESS  ERRNO  RETURN-CODE.  

         CALL  ’EZASOKET’  USING  SOC-BIND-FUNCTION  S NAME  ERRNO  RETURN-CODE.  

Figure  44. PTON  call  instruction  example

 

130 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



FAMILY  The  addressing  family  for  the  IP  address  being  converted.  The  

value  of decimal  2 must  be  specified  for  AF_INET  and  19  for  

AF_INET6.  

PRESENTABLE-ADDRESS  

A  field  containing  the  standard  text  presentation  form  of the  IPv4  

or  IPv6  address  being  converted.  For  IPv4  the  address  will  be  in 

dotted-decimal  format  and  for  IPv6  the  address  will  be  in 

colon-hex  format.  

PRESENTABLE-ADDRESS-LEN  

Input  parameter.  The  address  of  a binary  halfword  field  that  must  

contain  the  length  of  the  IP  address  to be  converted.

Parameter values returned to the application 

Keyword  Description  

IP-ADDRESS  A  field  containing  the  numeric  binary  form  of  the  IPv4  or  IPv6  

address  being  converted.  For  an  IPv4  address  this  field  must  be  a 

fullword  and  for  an  IPv6  address  this  field  must  be  16  bytes.  The  

address  must  be  in  network  byte  order.  

ERRNO  Output  parameter.  A  fullword  binary  field.  If  RETCODE  is 

negative,  ERRNO  contains  a valid  error  number.  Otherwise,  ignore  

the  ERRNO  field.  

 See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

RETCODE  A  fullword  binary  field  that  returns  one  of  the  following:  

Value  Description  

0 Successful  call.  

–1  Check  ERRNO  for  an  error  code.

READ 

The  READ  call  reads  the  data  on  socket  s.  This  is the  conventional  TCP/IP  read  

data  operation.  If  a datagram  packet  is too  long  to  fit  in  the  supplied  buffer,  

datagram  sockets  discard  extra  bytes.  

For  stream  sockets,  data  is processed  as  streams  of information  with  no  boundaries  

separating  the  data.  For  example,  if programs  A and  B are  connected  with  a stream  

socket  and  program  A sends  1000  bytes,  each  call  to this  function  can  return  any  

number  of  bytes,  up  to  the  entire  1000  bytes.  The  number  of bytes  returned  will  be  

contained  in  RETCODE.  Therefore,  programs  using  stream  sockets  should  place  

this  call  in  a loop  that  repeats  until  all  data  has  been  received.  

Note:   See  “EZACIC05”  on  page  185  for  a subroutine  that  will  translate  ASCII  

input  data  to  EBCDIC.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 131



Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  45  shows  an  example  of  READ  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  READ.  The  field  is left-justified  and  

padded  to  the  right  with  blanks.  

S A  halfword  binary  number  set  to the  socket  descriptor  of  the  socket  that  is 

going  to  read  the  data.  

NBYTE  

A  fullword  binary  number  set  to the  size  of  BUF. READ  does  not  return  

more  than  the  number  of bytes  of data  in  NBYTE  even  if more  data  is 

available.

Parameter values returned to the application 

BUF  On  input,  a buffer  to  be  filled  by  completion  of  the  call.  The  length  of BUF  

must  be  at  least  as long  as  the  value  of NBYTE.  

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’READ’.  

        01   S               PIC  9(4)  BINARY.  

        01   NBYTE            PIC 9(8)  BINARY.  

        01   BUF              PIC  X(length  of buffer).  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S NBYTE  BUF  

                         ERRNO  RETCODE.  

Figure  45. READ  call  instruction  example

 

132 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



0 A  0 return  code  indicates  that  the  connection  is closed  and  no  data  

is  available.  

>0  A  positive  value  indicates  the  number  of  bytes  copied  into  the  

buffer.  

−1  Check  ERRNO  for  an  error  code.

READV 

The  READV  function  reads  data  on  a socket  and  stores  it in a set  of  buffers.  If a 

datagram  packet  is too  long  to  fit  in  the  supplied  buffers,  datagram  sockets  discard  

extra  bytes.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  46  on  page  134  shows  an  example  of  READV  call  instructions.  

 

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 133



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  READV.  The  field  is left-justified  and  

padded  to  the  right  with  blanks.  

S A  value  or  the  address  of  a halfword  binary  number  specifying  the  

descriptor  of  the  socket  into  which  the  data  is  to be  read.  

IOV  An  array  of  tripleword  structures  with  the  number  of structures  equal  to  

the  value  in IOVCNT  and  the  format  of the  structures  as  follows:  

Fullword  1 

Pointer  to  the  address  of a data  buffer,  which  is filled  in  on  

completion  of the  call  

Fullword  2 

Reserved  

Fullword  3 

The  length  of the  data  buffer  referenced  in  fullword  one

IOVCNT  

A  fullword  binary  field  specifying  the  number  of data  buffers  provided  for  

this  call.

Parameter values returned to the application 

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  this  contains  an  error  

number.  See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

       WORKING-STORAGE  SECTION.  

       01  SOC-FUNCTION          PIC  X(16)  VALUE  ’READV’.  

       01  S                      PIC  9(4)   BINARY.  

       01  IOVCNT                  PIC  9(8)   BINARY.  

  

       01  IOV.  

           03 BUFFER-ENTRY  OCCURS  N TIMES.  

             05 BUFFER-POINTER     USAGE  IS POINTER.  

             05 RESERVED           PIC  X(4).  

             05 BUFFER_LENGTH      PIC  9(8)  BINARY.  

  

       01  ERRNO                   PIC  9(8)  BINARY.  

       01  RETCODE                 PIC 9(8)  BINARY.  

  

  

       PROCEDURE  DIVISION.  

       SET  BUFFER-POINTER(1)  TO ADDRESS  OF BUFFER1.  

       SET  BUFFER-LENGTH(1)  TO LENGTH  OF BUFFER1.  

       SET  BUFFER-POINTER(2)  TO ADDRESS  OF BUFFER2.  

       SET  BUFFER-LENGTH(2)  TO LENGTH  OF BUFFER2.  

       "   "                "  "         " 

       "   "                "  "         " 

       SET  BUFFER-POINTER(n)  TO ADDRESS  OF BUFFERn.  

       SET  BUFFER-LENGTH(n)  TO LENGTH  OF BUFFERn.  

       Call  ’EZASOCKET’  USING  SOC-FUNCTION  S IOV  IOVCNT  ERRNO  RETCODE.  

Figure  46. READV  call  instruction  example

 

134 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 A  0 return  code  indicates  that  the  connection  is closed  and  no  data  

is  available.  

>0  A  positive  value  indicates  the  number  of  bytes  copied  into  the  

buffer.  

−1  Check  ERRNO  for  an  error  code.

RECV 

The  RECV  call,  like  READ,  receives  data  on  a socket  with  descriptor  S. RECV  

applies  only  to  connected  sockets.  If a datagram  packet  is too  long  to fit  in  the  

supplied  buffers,  datagram  sockets  discard  extra  bytes.  

For  additional  control  of the  incoming  data,  RECV  can:  

v   Peek  at  the  incoming  message  without  having  it removed  from  the  buffer  

v   Read  out-of-band  data

For  stream  sockets,  data  is processed  as  streams  of information  with  no  boundaries  

separating  the  data.  For  example,  if programs  A and  B are  connected  with  a stream  

socket  and  program  A sends  1000  bytes,  each  call  to this  function  can  return  any  

number  of  bytes,  up  to  the  entire  1000  bytes.  The  number  of bytes  returned  will  be  

contained  in  RETCODE.  Therefore,  programs  using  stream  sockets  should  place  

RECV  in  a loop  that  repeats  until  all  data  has  been  received.  

If  data  is not  available  for  the  socket,  and  the  socket  is in  blocking  mode,  RECV  

blocks  the  caller  until  data  arrives.  If data  is not  available  and  the  socket  is  in 

nonblocking  mode,  RECV  returns  a −1  and  sets  ERRNO  to 35  (EWOULDBLOCK).  

See  “FCNTL”  on  page  75  or  “IOCTL”  on  page  119 for  a description  of  how  to  set  

nonblocking  mode.  

For  raw  sockets,  RECV  adds  a 20-byte  header.  

Note:   See  “EZACIC05”  on  page  185  for  a subroutine  that  will  translate  ASCII  

input  data  to  EBCDIC.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
 

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 135



Figure  47  shows  an  example  of  RECV  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  RECV. The  field  is left-justified  and  

padded  to  the  right  with  blanks.  

S A  halfword  binary  number  set  to the  socket  descriptor  of  the  socket  to 

receive  the  data.  

FLAGS  

A  fullword  binary  field  with  values  as  follows:  

 Literal  Value  Binary  Value  Description  

NO-FLAG  0 Read  data.  

OOB  1 Receive  out-of-band  data  (stream  sockets  

only).  Even  if the OOB  flag  is not  set,  

out-of-band  data  can  be read  if the  

SO-OOBINLINE  option  is set for  the  socket.  

PEEK  2 Peek  at the  data,  but do  not  destroy  data.  If 

the  peek  flag  is set,  the  next  RECV  call  will  

read  the  same  data.
  

NBYTE  

A  value  or  the  address  of  a fullword  binary  number  set  to  the  size  of  BUF. 

RECV  does  not  receive  more  than  the  number  of bytes  of data  in  NBYTE  

even  if more  data  is available.

Parameter values returned to the application 

BUF  The  input  buffer  to  receive  the  data.  

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’RECV’.  

        01   S               PIC  9(4)  BINARY.  

        01   FLAGS            PIC 9(8)  BINARY.  

            88   NO-FLAG                 VALUE  IS 0. 

            88   OOB                     VALUE  IS 1. 

            88   PEEK                    VALUE  IS 2. 

        01   NBYTE            PIC 9(8)  BINARY.  

        01   BUF              PIC  X(length  of buffer).  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S FLAGS  NBYTE  BUF  

                         ERRNO  RETCODE.  

Figure  47. RECV  call  instruction  example

 

136 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Value  Description  

0 The  socket  is closed.  

>0  A  positive  return  code  indicates  the  number  of bytes  copied  into  

the  buffer.  

−1  Check  ERRNO  for  an  error  code.

RECVFROM 

The  RECVFROM  call  receives  data  on  a socket  with  descriptor  S and  stores  it in a 

buffer.  The  RECVFROM  call  applies  to both  connected  and  unconnected  sockets.  

The  socket  address  is returned  in the  NAME  structure.  If a datagram  packet  is  too  

long  to  fit  in  the  supplied  buffers,  datagram  sockets  discard  extra  bytes.  

For  datagram  protocols,  RECVFROM  returns  the  source  address  associated  with  

each  incoming  datagram.  For  connection-oriented  protocols  like  TCP,  

GETPEERNAME  returns  the  address  associated  with  the  other  end  of  the  

connection.  

If  NAME  is nonzero,  the  call  returns  the  address  of the  sender.  The  NBYTE  

parameter  should  be  set  to  the  size  of the  buffer.  

On  return,  NBYTE  contains  the  number  of data  bytes  received.  

For  stream  sockets,  data  is processed  as  streams  of information  with  no  boundaries  

separating  the  data.  For  example,  if programs  A and  B are  connected  with  a stream  

socket  and  program  A sends  1000  bytes,  each  call  to this  function  can  return  any  

number  of  bytes,  up  to  the  entire  1000  bytes.  The  number  of bytes  returned  will  be  

contained  in  RETCODE.  Therefore,  programs  using  stream  sockets  should  place  

RECVFROM  in  a loop  that  repeats  until  all  data  has  been  received.  

For  raw  sockets,  RECVFROM  adds  a 20-byte  header.  

If  data  is not  available  for  the  socket,  and  the  socket  is in  blocking  mode,  

RECVFROM  blocks  the  caller  until  data  arrives.  If  data  is not  available  and  the  

socket  is in  nonblocking  mode,  RECVFROM  returns  a −1  and  sets  ERRNO  to 35  

(EWOULDBLOCK).  See  “FCNTL”  on  page  75  or  “IOCTL”  on  page  119  for  a 

description  of  how  to  set  nonblocking  mode.  

Note:   See  “EZACIC05”  on  page  185  for  a subroutine  that  will  translate  ASCII  

input  data  to  EBCDIC.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 137



Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  48  shows  an  example  of  RECVFROM  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  RECVFROM.  The  field  is left-justified  

and  padded  to  the  right  with  blanks.  

S A  halfword  binary  number  set  to the  socket  descriptor  of  the  socket  to 

receive  the  data.  

FLAGS  

A  fullword  binary  field  containing  flag  values  as  follows:  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’RECVFROM’.  

        01   S               PIC  9(4)  BINARY.  

        01   FLAGS            PIC 9(8)  BINARY.  

            88   NO-FLAG                 VALUE  IS 0. 

            88   OOB                     VALUE  IS 1. 

            88   PEEK                    VALUE  IS 2. 

        01   NBYTE            PIC 9(8)  BINARY.  

        01   BUF              PIC  X(length  of buffer).  

  

    * IPv4  socket  address  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   IP-ADDRESS   PIC  9(8)  BINARY.  

            03   RESERVED     PIC  X(8).  

  

    * IPv6  socket  address  structure.  

        01   NAME.  

            03   FAMILY       PIC  9(4)  BINARY.  

            03   PORT         PIC 9(4)  BINARY.  

            03   FLOWINFO     PIC  9(8)  BINARY.  

            03   IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            03   SCOPE-ID     PIC  9(8)  BINARY.  

  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S FLAGS  

                         NBYTE  BUF NAME  ERRNO  RETCODE.  

Figure  48. RECVFROM  call  instruction  example

 

138 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Literal  Value  Binary  Value  Description  

NO-FLAG  0 Read  data.  

OOB  1 Receive  out-of-band  data  (stream  sockets  

only).  Even  if the  OOB  flag  is not  set, 

out-of-band  data  can  be read  if the  

SO-OOBINLINE  option  is set  for the  socket.  

PEEK  2 Peek  at the  data,  but  do not  destroy  data.  If 

the  peek  flag  is set,  the  next  RECVFROM  

call  will read  the same  data.
  

NBYTE  

A fullword  binary  number  specifying  the  length  of  the  input  buffer.

Parameter values returned to the application 

BUF  Defines  an  input  buffer  to receive  the  input  data.  

NAME  

 An  IPv4  socket  address  structure  containing  the  address  of the  socket  that  

sent  the  data.  The  structure  is as follows:  

FAMILY  

A  halfword  binary  number  specifying  the  IPv4  addressing  family.  

The  value  is always  decimal  2, indicating  AF_INET.  

PORT  A  halfword  binary  number  specifying  the  port  number  of  the  

sending  socket.  

IP-ADDRESS  

A  fullword  binary  number  specifying  the  32-bit  IPv4  Internet  

address  of  the  sending  socket.  

RESERVED  

An  8-byte  reserved  field.  This  field  is required,  but  is not  used.

 An  IPv6  socket  address  structure  containing  the  address  of the  socket  that  

sent  the  data.  The  structure  is as follows:  

Field  Description  

FAMILY  

A  halfword  binary  number  specifying  the  IPv6  addressing  family.  

The  value  is decimal  19,  indicating  AF_INET6.  

PORT  A  halfword  binary  number  specifying  the  port  number  of  the  

sending  socket.  

FLOWINFO  

A  fullword  binary  field  specifying  the  traffic  class  and  flow  label.  

This  value  of  this  field  is undefined.  

IP-ADDRESS  

A  16-byte  binary  field  set  to  the  128-bit  IPv6  Internet  address  of the  

sending  socket.  

SCOPE-ID  

A  fullword  binary  field  which  identifies  a set  of interfaces  as  

appropriate  for  the  scope  of  the  address  carried  in  the  

IPv6-ADDRESS  field.  For  a link  scope  IPv6-ADDRESS,  SCOPE-ID  

contains  the  link  index  for  the  IPv6-ADDRESS.  For  all  other  

address  scopes,  SCOPE-ID  is undefined.

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 139



ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 The  socket  is closed.  

>0  A  positive  return  code  indicates  the  number  of  bytes  of  data  

transferred  by  the  read  call.  

−1  Check  ERRNO  for  an  error  code.

RECVMSG 

The  RECVMSG  call  receives  messages  on  a socket  with  descriptor  S and  stores  

them  in  an  array  of  message  headers.  If  a datagram  packet  is  too  long  to fit  in  the  

supplied  buffers,  datagram  sockets  discard  extra  bytes.  

For  datagram  protocols,  RECVMSG  returns  the  source  address  associated  with  

each  incoming  datagram.  For  connection-oriented  protocols  like  TCP,  

GETPEERNAME  returns  the  address  associated  with  the  other  end  of the  

connection.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  49  on  page  141  shows  an  example  of RECVMSG  call  instructions.  

  

 

140 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



WORKING-STORAGE  SECTION.  

            01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’RECVMSG’.  

            01  S               PIC  9(4)    BINARY.  

            01  MSG-HDR.  

                03  MSG-NAME         USAGE  IS POINTER.  

                03  MSG-NAME-LEN     PIC  9(8)  COMP.  

                03  IOV             USAGE  IS POINTER.  

                03  IOVCNT           USAGE  IS POINTER.  

                03  MSG-ACCRIGHTS    USAGE  IS  POINTER.  

                03  MSG-ACCRIGHTS-LEN  USAGE  IS POINTER.  

  

            01  FLAGS            PIC  9(8)    BINARY.  

                88  NO-FLAG                   VALUE  IS 0. 

                88  OOB                      VALUE  IS 1. 

                88  PEEK                      VALUE  IS 2. 

            01  ERRNO            PIC  9(8)    BINARY.  

            01  RETCODE          PIC  S9(8)   BINARY.  

  

       LINKAGE  SECTION.  

            01 L1.  

               03 RECVMSG-IOVECTOR.  

                  05 IOV1A                USAGE  IS POINTER.  

                  05 IOV1AL               PIC  9(8)  COMP.  

                  05 IOV1L                PIC  9(8)  COMP.  

                  05 IOV2A                USAGE  IS POINTER.  

                  05 IOV2AL               PIC  9(8)  COMP.  

                  05 IOV2L                PIC  9(8)  COMP.  

                  05 IOV3A                USAGE  IS POINTER.  

                  05 IOV3AL               PIC  9(8)  COMP.  

                  05 IOV3L                PIC  9(8)  COMP.  

  

            03 RECVMSG-BUFFER1      PIC  X(16).  

            03 RECVMSG-BUFFER2      PIC  X(16).  

            03 RECVMSG-BUFFER3      PIC  X(16).  

            03 RECVMSG-BUFNO        PIC  9(8)  COMP.  

  

     * IPv4  socket  address  structure.  

        03  NAME.  

            05  FAMILY       PIC  9(4)  BINARY.  

            05  PORT         PIC  9(4)  BINARY.  

            05  IP-ADDRESS   PIC  9(8)  BINARY.  

            05  RESERVED     PIC X(8).  

  

    * IPv6  socket  address  structure.  

        03  NAME.  

            05  FAMILY       PIC  9(4)  BINARY.  

            05  PORT         PIC  9(4)  BINARY.  

            53  FLOWINFO     PIC 9(8)  BINARY.  

            05  IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            05  SCOPE-ID     PIC 9(8)  BINARY.  

  

Figure  49.  RECVMSG  call  instruction  example  (Part  1 of 2)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 141



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

S A  value  or  the  address  of  a halfword  binary  number  specifying  the  socket  

descriptor.  

MSG  On  input,  a pointer  to a message  header  into  which  the  message  is 

received  upon  completion  of  the  call.  

Field  Description  

NAME  

On  input,  a pointer  to a buffer  where  the  sender  address  is stored  

upon  completion  of  the  call.  The  storage  being  pointed  to should  

be  for  an  IPv4  socket  address  or  an  IPv6  socket  address.  The  IPv4  

socket  address  structure  contains  the  following  fields:  

Field  Description  

FAMILY  

Output  parameter.  A  halfword  binary  number  specifying  

the  IPv4  addressing  family.  The  value  for  IPv4  socket  

descriptor  (S parameter)  is decimal  2,  indicating  AF_INET.  

PORT  Output  parameter.  A  halfword  binary  number  specifying  

the  port  number  of  the  sending  socket.  

IP-ADDRESS  

Output  parameter.  A  fullword  binary  number  specifying  

the  32-bit  IPv4  Internet  address  of  the  sending  socket.  

RESERVED  

Output  parameter.  An  8-byte  reserved  field.  This  field  is 

required,  but  is not  used.

  

       PROCEDURE  DIVISION  USING  L1.  

  

                  SET  MSG-NAME  TO ADDRESS  OF NAME.  

                  MOVE  LENGTH  OF NAME  TO MSG-NAME-LEN.  

                  SET  IOV  TO ADDRESS  OF RECVMSG-IOVECTOR.  

                  MOVE  3 TO RECVMSG-BUFNO.  

                  SET  IOVCNT  TO ADDRESS  OF RECVMSG-BUFNO.  

                  SET  IOV1A  TO ADDRESS  OF RECVMSG-BUFFER1.  

                  MOVE  0 TO IOV1AL.  

                  MOVE  LENGTH  OF RECVMSG-BUFFER1  TO IOV1L.  

                  SET  IOV2A  TO ADDRESS  OF RECVMSG-BUFFER2.  

                  MOVE  0 TO IOV2AL.  

                  MOVE  LENGTH  OF RECVMSG-BUFFER2  TO IOV2L.  

                  SET  IOV3A  TO ADDRESS  OF RECVMSG-BUFFER3.  

                  MOVE  0 TO IOV3AL.  

                  MOVE  LENGTH  OF RECVMSG-BUFFER3  TO IOV3L.  

                  SET  MSG-ACCRIGHTS  TO NULLS.  

                  SET  MSG-ACCRIGHTS-LEN  TO NULLS.  

                  MOVE  0 TO FLAGS.  

                  MOVE  SPACES  TO RECVMSG-BUFFER1.  

                  MOVE  SPACES  TO RECVMSG-BUFFER2.  

                  MOVE  SPACES  TO RECVMSG-BUFFER3.  

  

           CALL  ’EZASOKET’  USING  SOC-FUNCTION  S MSG-HDR  FLAGS  ERRNO  RETCODE.  

Figure  49. RECVMSG  call  instruction  example  (Part  2 of 2)

 

142 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



The  IPv6  socket  address  structure  contains  the  following  fields:  

Field  Description  

FAMILY  

Output  parameter.  A halfword  binary  number  specifying  

the  IPv6  addressing  family.  The  value  for  IPv6  socket  

descriptor  (S  parameter)  is decimal  19,  indicating  

AF_INET6.  

PORT  Output  parameter.  A halfword  binary  number  specifying  

the  port  number  of  the  sending  socket.  

FLOWINFO  

A  fullword  binary  field  specifying  the  traffic  class  and  flow  

label.  This  value  of  this  field  is undefined.  

IP–ADDRESS  

Output  parameter.  A 16  byte  binary  field  specifying  the  

128–bit  IPv6  Internet  address,  in  network  byte  order,  of  the  

sending  socket.  

SCOPE-ID  

A  fullword  binary  field  which  identifies  a set  of interfaces  

as  appropriate  for  the  scope  of the  address  carried  in  the  

IPv6-ADDRESS  field.  For  a link  scope  IPv6-ADDRESS,  

SCOPE-ID  contains  the  link  index  for  the  IPv6-ADDRESS.  

For  all  other  address  scopes,  SCOPE-ID  is undefined.

NAME-LEN  

On  input,  a pointer  to the  size  of the  NAME.  

IOV  On  input,  a pointer  to an  array  of tripleword  structures  with  the  

number  of structures  equal  to  the  value  in  IOVCNT  and  the  format  

of  the  structures  as  follows:  

Fullword  1 

A  pointer  to the  address  of  a data  buffer.  This  data  buffer  

must  be  in  the  home  address  space.  

Fullword  2 

Reserved.  This  storage  will  be  cleared.  

Fullword  3 

A  pointer  to the  length  of  the  data  buffer  referenced  in  

fullword  1.

In  COBOL,  the  IOV  structure  must  be  defined  separately  in  the  

Linkage  section,  as shown  in  the  example.  

IOVCNT  

On  input,  a pointer  to a fullword  binary  field  specifying  the  

number  of data  buffers  provided  for  this  call.  

ACCRIGHTS  

On  input,  a pointer  to the  access  rights  received.  This  field  is  

ignored.  

ACCRLEN  

On  input,  a pointer  to the  length  of the  access  rights  received.  This  

field  is ignored.

FLAGS  

A fullword  binary  field  with  values  as follows:  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 143



Literal  Value  Binary  Value  Description  

NO-FLAG  0 Read  data.  

OOB  1 Receive  out-of-band  data  (stream  sockets  

only).  Even  if the OOB  flag  is not  set,  

out-of-band  data  can  be read  if the  

SO-OOBINLINE  option  is set for  the  socket.  

PEEK  2 Peek  at the  data,  but do  not  destroy  data.  If 

the  peek  flag  is set,  the  next  RECVMSG  call  

will read  the  same  data.
  

Parameter values returned to the application 

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  this  contains  an  error  

number.  See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  with  the  following  values:  

Value  Description  

<0  Call  returned  error. See  ERRNO  field.  

0 Connection  partner  has  closed  connection.  

>0  Number  of  bytes  read.

SELECT 

In  a process  where  multiple  I/O  operations  can  occur  it is necessary  for  the  

program  to  be  able  to  wait  on  one  or  several  of  the  operations  to  complete.  

For  example,  consider  a program  that  issues  a READ  to multiple  sockets  whose  

blocking  mode  is set.  Because  the  socket  would  block  on  a READ  call,  only  one  

socket  could  be  read  at a time.  Setting  the  sockets  nonblocking  would  solve  this  

problem,  but  would  require  polling  each  socket  repeatedly  until  data  became  

available.  The  SELECT  call  allows  you  to  test  several  sockets  and  to  execute  a 

subsequent  I/O  call  only  when  one  of the  tested  sockets  is ready,  thereby  ensuring  

that  the  I/O  call  will  not  block.  

To use  the  SELECT  call  as a timer  in  your  program,  do  one  of  the  following:  

v   Set  the  read,  write,  and  except  arrays  to  zeros.  

v   Specify  MAXSOC  <=  0.

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

 

144 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Defining which sockets to test 

The  SELECT  call  monitors  for  read  operations,  write  operations,  and  exception  

operations:  

v   When  a socket  is ready  to  read,  one  of the  following  has  occurred:  

–   A  buffer  for  the  specified  sockets  contains  input  data.  If  input  data  is 

available  for  a given  socket,  a read  operation  on  that  socket  will  not  block.  

–   A  connection  has  been  requested  on  that  socket.
v    When  a socket  is ready  to  write,  TCP/IP  can  accommodate  additional  output  

data.  If  TCP/IP  can  accept  additional  output  for  a given  socket,  a write  

operation  on  that  socket  will  not  block.  

v   When  an  exception  condition  has  occurred  on  a specified  socket  it  is an  

indication  that  a TAKESOCKET  has  occurred  for  that  socket.

Each  socket  descriptor  is represented  by  a bit  in  a bit  string.  The  bit  strings  are  

contained  in  32-bit  fullwords,  numbered  from  right  to  left.  The  rightmost  bit  

represents  socket  descriptor  0,  the  leftmost  bit  represents  socket  descriptor  31,  and  

so  on.  If  your  process  uses  32  or  fewer  sockets,  the  bit  string  is 1 fullword.  If your  

process  uses  33  sockets,  the  bit  string  is 2 fullwords.  You define  the  sockets  that  

you  want  to  test  by  turning  on  bits  in  the  string.  

Note:   To simplify  string  processing  in COBOL,  you  can  use  the  program  

EZACIC06  to  convert  each  bit  in  the  string  to a character.  For  more  

information,  see  “EZACIC06”  on  page  187.  

Read operations 

Read  operations  include  ACCEPT,  READ,  READV,  RECV,  RECVFROM,  or  

RECVMSG  calls.  A socket  is ready  to be  read  when  data  has  been  received  for  it or  

when  a connection  request  has  occurred.  

To test  whether  any  of  several  sockets  is ready  for  reading,  set  the  appropriate  bits  

in  RSNDMSK  to  one  before  issuing  the  SELECT  call.  When  the  SELECT  call  

returns,  the  corresponding  bits  in  the  RRETMSK  indicate  sockets  are  ready  for  

reading.  

Write operations 

A  socket  is selected  for  writing  (ready  to  be  written)  when:  

v   TCP/IP  can  accept  additional  outgoing  data.  

v   The  socket  is marked  nonblocking  and  a previous  CONNECT  did  not  complete  

immediately.  In  this  case,  CONNECT  returned  an  ERRNO  with  a value  of  36 

(EINPROGRESS).  This  socket  will  be  selected  for  write  when  the  CONNECT  

completes.

A call  to  WRITE,  SEND,  or  SENDTO  blocks  when  the  amount  of  data  to  be  sent  

exceeds  the  amount  of  data  TCP/IP  can  accept.  To avoid  this,  you  can  precede  the  

write  operation  with  a SELECT  call  to  ensure  that  the  socket  is  ready  for  writing.  

Once  a socket  is selected  for  WRITE,  the  program  can  determine  the  amount  of 

TCP/IP  buffer  space  available  by  issuing  the  GETSOCKOPT  call  with  the  

SO-SNDBUF  option.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 145



To test  whether  any  of  several  sockets  is ready  for  writing,  set  the  WSNDMSK  bits  

representing  those  sockets  to  1 before  issuing  the  SELECT  call.  When  the  SELECT  

call  returns,  the  corresponding  bits  in  the  WRETMSK  indicate  sockets  are  ready  for  

writing.  

Exception operations 

For  each  socket  to  be  tested,  the  SELECT  call  can  check  for  an  existing  exception  

condition.  Two  exception  conditions  are  supported:  

v   The  calling  program  (concurrent  server)  has  issued  a GIVESOCKET  command  

and  the  target  child  server  has  successfully  issued  the  TAKESOCKET  call.  When  

this  condition  is  selected,  the  calling  program  (concurrent  server)  should  issue  

CLOSE  to  dissociate  itself  from  the  socket.  

v   A socket  has  received  out-of-band  data.  On  this  condition,  a READ  will  return  

the  out-of-band  data  ahead  of  program  data.

To  test  whether  any  of  several  sockets  have  an  exception  condition,  set  the  

ESNDMSK  bits  representing  those  sockets  to  1. When  the  SELECT  call  returns,  the  

corresponding  bits  in  the  ERETMSK  indicate  sockets  with  exception  conditions.  

MAXSOC parameter 

The  SELECT  call  must  test  each  bit  in  each  string  before  returning  results.  For  

efficiency,  the  MAXSOC  parameter  can  be  used  to specify  the  largest  socket  

descriptor  number  that  needs  to  be  tested  for  any  event  type.  The  SELECT  call  

tests  only  bits  in  the  range  0 through  the  MAXSOC  value  minus  one.  

Example:  If  MAXSOC  is set  to 5,  the  range  would  be  0 through  49.  

TIMEOUT parameter 

If the  time  specified  in  the  TIMEOUT  parameter  elapses  before  any  event  is 

detected,  the  SELECT  call  returns,  and  the  RETCODE  is set  to 0. 

Figure  50  shows  an  example  of  SELECT  call  instructions.  

 

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’SELECT’.  

        01   MAXSOC           PIC  9(8)  BINARY.  

        01   TIMEOUT.  

            03   TIMEOUT-SECONDS    PIC  9(8)  BINARY.  

            03   TIMEOUT-MICROSEC   PIC  9(8)  BINARY.  

        01   RSNDMSK         PIC  X(*).  

        01   WSNDMSK         PIC  X(*).  

        01   ESNDMSK         PIC  X(*).  

        01   RRETMSK         PIC  X(*).  

        01   WRETMSK         PIC  X(*).  

        01   ERETMSK         PIC  X(*).  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  MAXSOC  TIMEOUT  

                        RSNDMSK  WSNDMSK  ESNDMSK  

                        RRETMSK  WRETMSK  ERETMSK  

                        ERRNO  RETCODE.  

* The  bit  mask  lengths  can  be determined  from  the  expression:  

((maximum  socket  number  +32)/32  (drop  the  remainder))*4  

Figure  50. SELECT  call  instruction  example

 

146 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|
|
|
|
|

|



Bit  masks  are  32-bit  fullwords  with  one  bit  for  each  socket.  Up  to 32  sockets  fit  into  

one  32-bit  mask  [PIC  X(4)].  If  you  have  33  sockets,  you  must  allocate  two  32-bit  

masks  [PIC  X(8)].  

For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  SELECT.  The  field  is left-justified  and  

padded  on  the  right  with  blanks.  

MAXSOC  

Input  parameter;  a fullword  binary  field  set  to  the  largest  socket  descriptor  

number  being  checked.  

TIMEOUT  

If  TIMEOUT  is a positive  value,  it specifies  the  maximum  interval  to wait  

for  the  selection  to  complete.  If TIMEOUT-SECONDS  is a negative  value,  

the  SELECT  call  blocks  until  a socket  becomes  ready.  To poll  the  sockets  

and  return  immediately,  specify  the  TIMEOUT  value  to  be  0.  

 TIMEOUT  is specified  in the  two-word  TIMEOUT  as follows:  

v   TIMEOUT-SECONDS,  word  one  of  the  TIMEOUT  field,  is the  seconds  

component  of  the  timeout  value.  

v   TIMEOUT-MICROSEC,  word  two  of the  TIMEOUT  field,  is the  

microseconds  component  of  the  timeout  value  (0—999999).

 For  example,  if you  want  SELECT  to  time  out  after  3.5  seconds,  set  

TIMEOUT-SECONDS  to  3 and  TIMEOUT-MICROSEC  to  500000.  

RSNDMSK  

A bit  string  sent  to  request  read  event  status.  

v   For  each  socket  to  be  checked  for  pending  read  events,  the  

corresponding  bit  in  the  string  should  be  set  to  1. 

v   For  sockets  to be  ignored,  the  value  of  the  corresponding  bit  should  be  

set  to  0.

If  this  parameter  is set  to  all  zeros,  the  SELECT  will  not  check  for  read  

events.  

WSNDMSK  

A bit  string  sent  to  request  write  event  status.  

v   For  each  socket  to  be  checked  for  pending  write  events,  the  

corresponding  bit  in  the  string  should  be  set  to  1. 

v   For  sockets  to be  ignored,  the  value  of  the  corresponding  bit  should  be  

set  to  0.

If  this  parameter  is set  to  all  zeros,  the  SELECT  will  not  check  for  write  

events.  

ESNDMSK  

A bit  string  sent  to  request  exception  event  status.  

v   For  each  socket  to  be  checked  for  pending  exception  events,  the  

corresponding  bit  in  the  string  should  be  set  to  1. 

v   For  each  socket  to  be  ignored,  the  corresponding  bit  should  be  set  to 0.

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 147

|
|



If  this  parameter  is set  to  all  zeros,  the  SELECT  will  not  check  for  

exception  events.

Parameter values returned to the application 

RRETMSK  

A  bit  string  returned  with  the  status  of  read  events.  The  length  of  the  

string  should  be  equal  to  the  maximum  number  of  sockets  to be  checked.  

For  each  socket  that  is ready  to  read,  the  corresponding  bit  in  the  string  

will  be  set  to  1; bits  that  represent  sockets  that  are  not  ready  to read  will  

be  set  to  0. 

WRETMSK  

A  bit  string  returned  with  the  status  of  write  events.  The  length  of  the  

string  should  be  equal  to  the  maximum  number  of  sockets  to be  checked.  

For  each  socket  that  is ready  to  write,  the  corresponding  bit  in  the  string  

will  be  set  to  1; bits  that  represent  sockets  that  are  not  ready  to be  written  

will  be  set  to  0. 

ERETMSK  

A  bit  string  returned  with  the  status  of  exception  events.  The  length  of  the  

string  should  be  equal  to  the  maximum  number  of  sockets  to be  checked.  

For  each  socket  that  has  an  exception  status,  the  corresponding  bit  will  be  

set  to  1;  bits  that  represent  sockets  that  do  not  have  exception  status  will  

be  set  to  0. 

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

>0  Indicates  the  sum  of all  ready  sockets  in  the  three  masks.  

 0 Indicates  that  the  SELECT  time  limit  has  expired.  

−1  Check  ERRNO  for  an  error  code.

SELECTEX 

The  SELECTEX  call  monitors  a set  of  sockets,  a time  value,  and  an  ECB.  It 

completes  when  either  one  of  the  sockets  has  activity,  the  time  value  expires,  or  

one  of  the  ECBs  is posted.  

To use  the  SELECTEX  call  as a timer  in  your  program,  do  either  of  the  following:  

v   Set  the  read,  write,  and  except  arrays  to  zeros.  

v   Specify  MAXSOC  <=  0.

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

 

148 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Defining which sockets to test 

The  SELECTEX  call  monitors  for  read  operations,  write  operations,  and  exception  

operations:  

v   When  a socket  is ready  to  read,  one  of the  following  has  occurred:  

–   A  buffer  for  the  specified  sockets  contains  input  data.  If  input  data  is 

available  for  a given  socket,  a read  operation  on  that  socket  will  not  block.  

–   A  connection  has  been  requested  on  that  socket.
v    When  a socket  is ready  to  write,  TCP/IP  can  accommodate  additional  output  

data.  If  TCP/IP  can  accept  additional  output  for  a given  socket,  a write  

operation  on  that  socket  will  not  block.  

v   When  an  exception  condition  has  occurred  on  a specified  socket  it  is an  

indication  that  a TAKESOCKET  has  occurred  for  that  socket.

Each  socket  descriptor  is represented  by  a bit  in  a bit  string.  The  bit  strings  are  

contained  in  32-bit  fullwords,  numbered  from  right  to  left.  The  rightmost  bit  

represents  socket  descriptor  0,  the  leftmost  bit  represents  socket  descriptor  31,  and  

so  on.  If  your  process  uses  32  or  fewer  sockets,  the  bit  string  is 1 fullword.  If your  

process  uses  33  sockets,  the  bit  string  is 2 fullwords.  You define  the  sockets  that  

you  want  to  test  by  turning  on  bits  in  the  string.  

Note:   To simplify  string  processing  in COBOL,  you  can  use  the  program  

EZACIC06  to  convert  each  bit  in  the  string  to a character.  For  more  

information,  see  “EZACIC06”  on  page  187.  

Read operations 

Read  operations  include  ACCEPT,  READ,  READV,  RECV,  RECVFROM,  or  

RECVMSG  calls.  A socket  is ready  to be  read  when  data  has  been  received  for  it or  

when  a connection  request  has  occurred.  

To test  whether  any  of  several  sockets  is ready  for  reading,  set  the  appropriate  bits  

in  RSNDMSK  to  one  before  issuing  the  SELECTEX  call.  When  the  SELECTEX  call  

returns,  the  corresponding  bits  in  the  RRETMSK  indicate  sockets  are  ready  for  

reading.  

Write operations 

A  socket  is selected  for  writing  (ready  to  be  written)  when:  

v   TCP/IP  can  accept  additional  outgoing  data.  

v   The  socket  is marked  nonblocking  and  a previous  CONNECT  did  not  complete  

immediately.  In  this  case,  CONNECT  returned  an  ERRNO  with  a value  of  36 

(EINPROGRESS).  This  socket  will  be  selected  for  write  when  the  CONNECT  

completes.

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 149

|
|
|

|

|
|

|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|



A call  to  WRITE,  SEND,  or  SENDTO  blocks  when  the  amount  of data  to  be  sent  

exceeds  the  amount  of  data  TCP/IP  can  accept.  To avoid  this,  you  can  precede  the  

write  operation  with  a SELECTEX  call  to  ensure  that  the  socket  is ready  for  

writing.  Once  a socket  is selected  for  WRITE,  the  program  can  determine  the  

amount  of  TCP/IP  buffer  space  available  by  issuing  the  GETSOCKOPT  call  with  

the  SO-SNDBUF  option.  

To test  whether  any  of  several  sockets  is ready  for  writing,  set  the  WSNDMSK  bits  

representing  those  sockets  to  1 before  issuing  the  SELECTEX  call.  When  the  

SELECTEX  call  returns,  the  corresponding  bits  in the  WRETMSK  indicate  sockets  

are  ready  for  writing.  

Exception operations 

For  each  socket  to  be  tested,  the  SELECTEX  call  can  check  for  an  existing  exception  

condition.  Two  exception  conditions  are  supported:  

v   The  calling  program  (concurrent  server)  has  issued  a GIVESOCKET  command  

and  the  target  child  server  has  successfully  issued  the  TAKESOCKET  call.  When  

this  condition  is  selected,  the  calling  program  (concurrent  server)  should  issue  

CLOSE  to  dissociate  itself  from  the  socket.  

v   A socket  has  received  out-of-band  data.  On  this  condition,  a READ  will  return  

the  out-of-band  data  ahead  of  program  data.

To  test  whether  any  of  several  sockets  have  an  exception  condition,  set  the  

ESNDMSK  bits  representing  those  sockets  to  1. When  the  SELECTEX  call  returns,  

the  corresponding  bits  in the  ERETMSK  indicate  sockets  with  exception  conditions.  

MAXSOC parameter 

The  SELECTEX  call  must  test  each  bit  in  each  string  before  returning  results.  For  

efficiency,  the  MAXSOC  parameter  can  be  used  to specify  the  largest  socket  

descriptor  number  that  needs  to  be  tested  for  any  event  type.  The  SELECTEX  call  

tests  only  bits  in  the  range  0 through  the  MAXSOC  value  minus  one.  

Example:  If  MAXSOC  is set  to 5,  the  range  would  be  0 through  49.  

TIMEOUT parameter 

If the  time  specified  in  the  TIMEOUT  parameter  elapses  before  any  event  is 

detected,  the  SELECTEX  call  returns,  and  the  RETCODE  is set  to  0. 

 Figure  51  on  page  151  shows  an  example  of SELECTEX  call  instructions.  

 

 

150 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|
|



If an  application  intends  to pass  a single  ECB  on the  SELECTEX  call,  then  the  corresponding  

working  storage  definitions  and  CALL  instruction  should  be coded  as below:  

  

WORKING-STORAGE  SECTION.  

    01  SOC-FUNCTION     PIC X(16)   VALUE  IS ’SELECTEX’.  

    01  MAXSOC           PIC  9(8)    BINARY.  

    01  TIMEOUT.  

        03  TIMEOUT-SECONDS     PIC 9(8)  BINARY.  

        03  TIMEOUT-MINUTES     PIC 9(8)  BINARY.  

    01  RSNDMSK          PIC  X(*).  

    01  WSNDMSK          PIC  X(*).  

    01  ESNDMSK          PIC  X(*).  

    01  RRETMSK          PIC  X(*).  

    01  WRETMSK          PIC  X(*).  

    01  ERETMSK          PIC  X(*).  

    01  SELECB           PIC  X(4).  

    01  ERRNO            PIC  9(8)    BINARY.  

    01  RETCODE          PIC  S9(8)   BINARY.  

  

Where  * is the  size  of the  select  mask  

  

 PROCEDURE  DIVISION.  

    CALL  ’EZASOKET’  USING  SOC-FUNCTION  MAXSOC  TIMEOUT  

                    RSNDMSK  WSNDMSK  ESNDMSK  

                    RRETMSK  WRETMSK  ERETMSK  

                    SELECB  ERRNO  RETCODE.  

  

However,  if the  application  intends  to pass  the  address  of an ECB  list on the  SELECTEX  

call,  then  the  application  must  set  the  high  order  bit in the  ECB  list address  and  pass  that 

address  using  the  BY VALUE  option  as documented  in the  following  example.  The  

remaining  parameters  must  be set back  to the  default  by specifying  BY  REFERENCE  before  

ERRNO:  

 WORKING-STORAGE  SECTION.  

     01  SOC-FUNCTION     PIC  X(16)   VALUE  IS  ’SELECTEX’.  

     01  MAXSOC           PIC  9(8)    BINARY.  

     01  TIMEOUT.  

         03  TIMEOUT-SECONDS     PIC  9(8)  BINARY.  

         03  TIMEOUT-MINUTES     PIC  9(8)  BINARY.  

     01  RSNDMSK          PIC  X(*).  

     01  WSNDMSK          PIC  X(*).  

     01  ESNDMSK          PIC  X(*).  

     01  RRETMSK          PIC  X(*).  

     01  WRETMSK          PIC  X(*).  

     01  ERETMSK          PIC  X(*).  

     01  ECBLIST-PTR      USAGE  IS POINTER.  

     01  ERRNO            PIC  9(8)    BINARY.  

     01  RETCODE          PIC  S9(8)   BINARY.  

  

 Where  * is the  size  of the  select  mask  

  

 PROCEDURE  DIVISION.  

    CALL  ’EZASOKET’  USING  SOC-FUNCTION  MAXSOC  TIMEOUT  

                    RSNDMSK  WSNDMSK  ESNDMSK  

                    RRETMSK  WRETMSK  ERETMSK  

                    BY VALUE  ECBLIST-PTR  

                    BY REFERENCE  ERRNO  RETCODE.  

* The  bit  mask  lengths  can  be determined  from  the  expression:  

((maximum  socket  number  +32)/32  (drop  the  remainder))*4  

Figure  51.  SELECTEX  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 151



Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  SELECT.  The  field  is left-justified  and  

padded  on  the  right  with  blanks.  

MAXSOC  

A  fullword  binary  field  specifying  the  largest  socket  descriptor  number  

being  checked.  

TIMEOUT  

If  TIMEOUT  is a positive  value,  it specifies  a maximum  interval  to  wait  for  

the  selection  to complete.  If TIMEOUT-SECONDS  is a negative  value,  the  

SELECT  call  blocks  until  a socket  becomes  ready.  To poll  the  sockets  and  

return  immediately,  set  TIMEOUT  to be  zeros.  

 TIMEOUT  is  specified  in  the  two-word  TIMEOUT  as  follows:  

v   TIMEOUT-SECONDS,  word  one  of  the  TIMEOUT  field,  is the  seconds  

component  of the  timeout  value.  

v   TIMEOUT-MICROSEC,  word  two  of  the  TIMEOUT  field,  is the  

microseconds  component  of the  timeout  value  (0—999999).

 For  example,  if you  want  SELECTEX  to time  out  after  3.5  seconds,  set  

TIMEOUT-SECONDS  to 3 and  TIMEOUT-MICROSEC  to 500000.  

RSNDMSK  

The  bit-mask  array  to control  checking  for  read  interrupts.  If this  

parameter  is  not  specified  or  the  specified  bit-mask  is zeros,  the  SELECT  

will  not  check  for  read  interrupts.  The  length  of  this  bit-mask  array  is 

dependent  on  the  value  in  MAXSOC.  

WSNDMSK  

The  bit-mask  array  to control  checking  for  write  interrupts.  If this  

parameter  is  not  specified  or  the  specified  bit-mask  is zeros,  the  SELECT  

will  not  check  for  write  interrupts.  The  length  of  this  bit-mask  array  is 

dependent  on  the  value  in  MAXSOC.  

ESNDMSK  

The  bit-mask  array  to control  checking  for  exception  interrupts.  If this  

parameter  is  not  specified  or  the  specified  bit-mask  is zeros,  the  SELECT  

will  not  check  for  exception  interrupts.  The  length  of this  bit-mask  array  is  

dependent  on  the  value  in  MAXSOC.  

SELECB  

An  ECB  which,  if posted,  causes  completion  of  the  SELECTEX.  

ECBLIST-PTR  

A  pointer  to  an  ECB  list.  The  application  must  set  the  high  order  bit  in the  

ECB  list  address  and  pass  that  address  using  the  BY  VALUE  option.  The  

remaining  parameters  must  be  set  back  to the  default  by  specifying  BY  

REFERENCE  before  ERRNO.

Parameter values returned to the application 

ERRNO  

A  fullword  binary  field;  if RETCODE  is  negative,  this  contains  an  error  

number.  See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  

 

152 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Value  Meaning  

>0  The  number  of  ready  sockets.  

0 Either  the  SELECTEX  time  limit  has  expired  (ECB  value  will  be  0)  

or  one  of  the  caller’s  ECBs  has  been  posted  (ECB  value  will  be  

nonzero  and  the  caller’s  descriptor  sets  will  be  set  to  0).  The  caller  

must  initialize  the  ECB  values  to 0 before  issuing  the  SELECTEX  

macro.  

-1 Check  ERRNO  for  an  error  code.

RRETMSK  

The  bit-mask  array  returned  by  the  SELECT  if RSNDMSK  is specified.  The  

length  of this  bit-mask  array  is dependent  on  the  value  in  MAXSOC.  

WRETMSK  

The  bit-mask  array  returned  by  the  SELECT  if WSNDMSK  is specified.  The  

length  of this  bit-mask  array  is dependent  on  the  value  in  MAXSOC.  

ERETMSK  

The  bit-mask  array  returned  by  the  SELECT  if ESNDMSK  is specified.  The  

length  of this  bit-mask  array  is dependent  on  the  value  in  MAXSOC.  

SEND 

The  SEND  call  sends  data  on  a specified  connected  socket.  

The  FLAGS  field  allows  you  to:  

v   Send  out-of-band  data,  such  as interrupts,  aborts,  and  data  marked  urgent.  Only  

stream  sockets  created  in  the  AF_INET  address  family  support  out-of-band  data.  

v   Suppress  use  of  local  routing  tables.  This  implies  that  the  caller  takes  control  of 

routing  and  writing  network  software.

For  datagram  sockets,  SEND  transmits  the  entire  datagram  if it fits  into  the  

receiving  buffer.  Extra  data  is discarded.  

For  stream  sockets,  data  is processed  as  streams  of information  with  no  boundaries  

separating  the  data.  For  example,  if a program  is required  to  send  1000  bytes,  each  

call  to  this  function  can  send  any  number  of bytes,  up  to the  entire  1000  bytes,  

with  the  number  of  bytes  sent  returned  in  RETCODE.  Therefore,  programs  using  

stream  sockets  should  place  this  call  in  a loop,  reissuing  the  call  until  all  data  has  

been  sent.  

Note:   See  “EZACIC04”  on  page  183  for  a subroutine  that  will  translate  EBCDIC  

input  data  to  ASCII.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 153



Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  52  shows  an  example  of  SEND  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  SEND.  The  field  is left-justified  and  

padded  on  the  right  with  blanks.  

S A  halfword  binary  number  specifying  the  socket  descriptor  of  the  socket  

that  is  sending  data.  

FLAGS  

A  fullword  binary  field  with  values  as  follows:  

 Literal  Value  Binary  Value  Description  

NO-FLAG  0 No flag  is set.  The  command  behaves  like  a 

WRITE  call.  

OOB  1 Send  out-of-band  data.  (Stream  sockets  

only.)  Even  if the  OOB  flag  is not  set,  

out-of-band  data  can  be read  if the  

SO-OOBINLINE  option  is set for  the  socket.  

DONT-ROUTE  4 Do not  route.  Routing  is provided  by the 

calling  program.
  

NBYTE  

A  fullword  binary  number  set  to the  number  of  bytes  of  data  to  be  

transferred.  

BUF  The  buffer  containing  the  data  to  be  transmitted.  BUF  should  be  the  size  

specified  in  NBYTE.

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’SEND’.  

        01   S               PIC  9(4)  BINARY.  

        01   FLAGS            PIC 9(8)  BINARY.  

            88   NO-FLAG                 VALUE  IS 0. 

            88   OOB                     VALUE  IS 1. 

            88   DONT-ROUTE              VALUE  IS 4.  

        01   NBYTE            PIC 9(8)  BINARY.  

        01   BUF              PIC  X(length  of buffer).  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S FLAGS  NBYTE  

                        BUF  ERRNO  RETCODE.  

Figure  52. SEND  call  instruction  example

 

154 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Parameter values returned to the application 

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

≥0  A  successful  call.  The  value  is set  to the  number  of  bytes  

transmitted.  

−1  Check  ERRNO  for  an  error  code.

SENDMSG 

The  SENDMSG  call  sends  messages  on  a socket  with  descriptor  S passed  in  an  

array  of  messages.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  53  on  page  156  shows  an  example  of  SENDMSG  call  instructions.  

  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 155



WORKING-STORAGE  SECTION.  

            01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’SENDMSG’.  

            01   S               PIC 9(4)    BINARY.  

            01   MSG-HDR.  

                03  MSG-NAME         USAGE  IS POINTER.  

                03  MSG-NAME-LEN     PIC 9(8)  BINARY.  

                03  IOV              USAGE  IS POINTER.  

                03  IOVCNT           USAGE  IS POINTER.  

                03  MSG-ACCRIGHTS    USAGE  IS POINTER.  

                03  MSG-ACCRIGHTS-LEN  USAGE  IS POINTER.  

  

            01   FLAGS            PIC  9(8)    BINARY.  

                88  NO-FLAG                   VALUE  IS 0. 

                88  OOB                       VALUE  IS 1. 

                88  DONTROUTE                 VALUE  IS 4. 

            01   ERRNO            PIC  9(8)    BINARY.  

            01   RETCODE          PIC  S9(8)   BINARY.  

  

            01   SENDMSG-IPV4ADDR  PIC  9(8)  BINARY.  

            01   SENDMSG-IPV6ADDR.  

                05 FILLER         PIC9(16)  BINARY.  

                05 FILLER         PIC9(16)  BINARY.  

  

       LINKAGE  SECTION.  

           01 L1.  

            03  SENDMSG-IOVECTOR.  

               05 IOV1A                USAGE  IS POINTER.  

               05 IOV1AL               PIC 9(8)  COMP.  

               05 IOV1L                PIC  9(8)  COMP.  

               05 IOV2A                USAGE  IS POINTER.  

               05 IOV2AL               PIC 9(8)  COMP.  

               05 IOV2L                PIC  9(8)  COMP.  

               05 IOV3A                USAGE  IS POINTER.  

               05 IOV3AL               PIC 9(8)  COMP.  

               05 IOV3L                PIC  9(8)  COMP.  

  

            03  SENDMSG-BUFFER1      PIC  X(16).  

            03  SENDMSG-BUFFER2      PIC  X(16).  

            03  SENDMSG-BUFFER3      PIC  X(16).  

            03  SENDMSG-BUFNO        PIC  9(8)  COMP.  

  

    * IPv4  socket  address  structure.  

  

            03  NAME.  

               05  FAMILY       PIC  9(4)  BINARY.  

               05  PORT         PIC  9(4)  BINARY.  

               05  IP-ADDRESS   PIC  9(8)  BINARY.  

               05  RESERVED     PIC  X(8)  BINARY.  

  

    * IPv6  socket  address  structure.  

  

            03  NAME.  

               05  FAMILY       PIC  9(4)  BINARY.  

               05  PORT         PIC  9(4)  BINARY.  

               05  FLOWINFO     PIC  9(8)  BINARY.  

               05  IP-ADDRESS.  

                   10 FILLER    PIC  9(16)  BINARY.  

                   10 FILLER    PIC  9(16)  BINARY.  

               05  SCOPE-ID     PIC  9(8)  BINARY.  

Figure  53. SENDMSG  call  instruction  example  (Part  1 of 2)

 

156 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  SENDMSG.  The  field  is left-justified  

and  padded  on  the  right  with  blanks.  

S  A value  or  the  address  of a halfword  binary  number  specifying  the  socket  

descriptor.  

MSG  A pointer  to  an  array  of  message  headers  from  which  messages  are  sent.  

Field  Description  

NAME  

On  input,  a pointer  to a buffer  where  the  sender’s  address  is stored  

upon  completion  of the  call.  The  storage  being  pointed  to  should  

be  for  an  IPv4  socket  address  or  an  IPv6  socket  address.  The  IPv4  

socket  address  structure  contains  the  following  fields:  

Field  Description  

  

  

       PROCEDURE  DIVISION  USING  L1. 

  

       * For  IPv6.  

                  MOVE  19 TO FAMILY.  

                  MOVE  1234  TO PORT.  

                  MOVE  0 TO FLOWINFO.  

                  MOVE  SENDMSG-IPV6ADDR  TO IP-ADDRESS.  

                  MOVE  0 TO SCOPE-ID.  

       * For  IPv4.  

                  MOVE  2 TO FAMILY.  

                  MOVE  1234  TO PORT.  

                  MOVE  SENDMSG-IPV4ADDR  TO IP-ADDRESS.  

  

                  SET MSG-NAME  TO ADDRESS  OF NAME.  

                  MOVE  LENGTH  OF NAME  TO MSG-NAME-LEN.  

                  SET IOV  TO ADDRESS  OF SENDMSG-IOVECTOR.  

                  MOVE  3 TO SENDMSG-BUFNO.  

                  SET MSG-IOVCNT  TO ADDRESS  OF SENDMSG-BUFNO.  

                  SET IOV1A  TO ADDRESS  OF SENDMSG-BUFFER1.  

                  MOVE  0 TO IOV1AL.  

                  MOVE  LENGTH  OF SENDMSG-BUFFER1  TO IOV1L.  

                  SET IOV2A  TO ADDRESS  OF SENDMSG-BUFFER2.  

                  MOVE  0 TO IOV2AL.  

                  MOVE  LENGTH  OF SENDMSG-BUFFER2  TO IOV2L.  

                  SET IOV3A  TO ADDRESS  OF SENDMSG-BUFFER3.  

                  MOVE  0 TO IOV3AL.  

                  MOVE  LENGTH  OF SENDMSG-BUFFER3  TO IOV3L.  

                  SET MSG-ACCRIGHTS  TO NULLS.  

                  SET MSG-ACCRIGHTS-LEN  TO NULLS.  

                  MOVE  0 TO FLAGS.  

                  MOVE  ’MESSAGE  TEXT  1 ’ TO SENDMSG-BUFFER1.  

                  MOVE  ’MESSAGE  TEXT  2 ’ TO SENDMSG-BUFFER2.  

                  MOVE  ’MESSAGE  TEXT  3 ’ TO SENDMSG-BUFFER3.  

  

           CALL  ’EZASOKET’  USING  SOC-FUNCTION  S MSG-HDR  FLAGS  ERRNO  RETCODE.  

Figure  53.  SENDMSG  call  instruction  example  (Part  2 of 2)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 157



FAMILY  

Output  parameter.  A  halfword  binary  number  specifying  

the  IPv4  addressing  family.  The  value  for  IPv4  socket  

descriptor  (S parameter)  is decimal  2,  indicating  AF_INET.  

PORT  Output  parameter.  A  halfword  binary  number  specifying  

the  port  number  of  the  sending  socket.  

IP-ADDRESS  

Output  parameter.  A  fullword  binary  number  specifying  

the  32-bit  IPv4  Internet  address  of  the  sending  socket.  

RESERVED  

Output  parameter.  An  8-byte  reserved  field.  This  field  is 

required,  but  is not  used.

 The  IPv6  socket  address  structure  contains  the  following  fields:  

Field  Description  

FAMILY  

Output  parameter.  A  halfword  binary  number  specifying  

the  IPv6  addressing  family.  The  value  for  IPv6  socket  

descriptor  (S parameter)  is decimal  19,  indicating  

AF_INET6.  

PORT  Output  parameter.  A  halfword  binary  number  specifying  

the  port  number  of  the  sending  socket.  

FLOWINFO  

A fullword  binary  field  specifying  the  traffic  class  and  flow  

label.  This  field  must  be  set  to  0. 

IP-ADDRESS  

Output  parameter.  A  16-byte  binary  field  set  to  the  128-bit  

IPv6  Internet  address  of the  sending  socket.  

SCOPE-ID  

A fullword  binary  field  which  identifies  a set  of interfaces  

as  appropriate  for  the  scope  of the  address  carried  in  the  

IPv6-ADDRESS  field.  A value  of  0 indicates  the  SCOPE-ID  

field  does  not  identify  the  set  of  interfaces  to be  used,  and  

may  be  specified  for  any  address  types  and  scopes.  For  a 

link  scope  IPv6-ADDRESS,  SCOPE-ID  may  specify  a link  

index  which  identifies  a set  of  interfaces.  For  all  other  

address  scopes,  SCOPE-ID  must  be  set  to  0.

NAME-LEN  

On  input,  a pointer  to the  size  of  the  address  buffer.  

IOV  On  input,  a pointer  to an  array  of three  fullword  structures  with  

the  number  of structures  equal  to  the  value  in  IOVCNT  and  the  

format  of  the  structures  as  follows:  

Fullword  1 

A pointer  to  the  address  of  a data  buffer.  

Fullword  2 

Reserved.  

Fullword  3 

A pointer  to  the  length  of  the  data  buffer  referenced  in  

Fullword  1.

 

158 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



In  COBOL,  the  IOV  structure  must  be  defined  separately  in  the  

Linkage  section,  as shown  in  the  example.  

IOVCNT  

On  input,  a pointer  to a fullword  binary  field  specifying  the  

number  of data  buffers  provided  for  this  call.  

ACCRIGHTS  

On  input,  a pointer  to the  access  rights  received.  This  field  is  

ignored.  

ACCRIGHTS-LEN  

On  input,  a pointer  to the  length  of the  access  rights  received.  This  

field  is ignored.

FLAGS  

A fullword  field  containing  the  following:  

 Literal  Value  Binary  Value  Description  

NO-FLAG  0 No  flag  is set. The  command  behaves  like  a 

WRITE  call.  

OOB  1 Send  out-of-band  data.  (Stream  sockets  

only.)  Even  if the  OOB  flag is not  set, 

out-of-band  data  can  be read  if the  

SO-OOBINLINE  option  is set  for the  socket.  

DONTROUTE  4 Do  not  route.  Routing  is provided  by the 

calling  program.
  

Parameter values returned to the application 

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  this  contains  an  error  

number.  See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

≥0  A  successful  call.  The  value  is set  to the  number  of  bytes  

transmitted.  

−1  Check  ERRNO  for  an  error  code.

SENDTO  

SENDTO  is  similar  to  SEND,  except  that  it includes  the  destination  address  

parameter.  The  destination  address  allows  you  to use  the  SENDTO  call  to  send  

datagrams  on  a UDP  socket,  regardless  of whether  the  socket  is connected.  

The  FLAGS  parameter  allows  you  to:  

v   Send  out-of-band  data,  such  as interrupts,  aborts,  and  data  marked  as urgent.  

v   Suppress  use  of  local  routing  tables.  This  implies  that  the  caller  takes  control  of 

routing,  which  requires  writing  network  software.

For  datagram  sockets,  SENDTO  transmits  the  entire  datagram  if it fits  into  the  

receiving  buffer.  Extra  data  is discarded.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 159



For  stream  sockets,  data  is processed  as  streams  of information  with  no  boundaries  

separating  the  data.  For  example,  if a program  is required  to send  1000  bytes,  each  

call  to  this  function  can  send  any  number  of  bytes,  up  to the  entire  1000  bytes,  

with  the  number  of  bytes  sent  returned  in  RETCODE.  Therefore,  programs  using  

stream  sockets  should  place  SENDTO  in  a loop  that  repeats  the  call  until  all  data  

has  been  sent.  

Note:   See  “EZACIC04”  on  page  183  for  a subroutine  that  will  translate  EBCDIC  

input  data  to  ASCII.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  54  on  page  161  shows  an  example  of SENDTO  call  instructions.  

 

 

160 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  SENDTO.  The  field  is left-justified  and  

padded  on  the  right  with  blanks.  

S  A halfword  binary  number  set  to  the  socket  descriptor  of  the  socket  

sending  the  data.  

FLAGS  

A fullword  field  that  returns  one  of the  following:  

 Literal  Value  Binary  Value  Description  

NO-FLAG  0 No  flag  is set. The  command  behaves  like  a 

WRITE  call.  

OOB  1 Send  out-of-band  data.  (Stream  sockets  

only.)  Even  if the  OOB  flag is not  set, 

out-of-band  data  can  be read  if the  

SO-OOBINLINE  option  is set  for the  socket.  

DONT-ROUTE  4 Do  not  route.  Routing  is provided  by the 

calling  program.
 

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’SENDTO’.  

        01  S               PIC  9(4)  BINARY.  

        01  FLAGS.           PIC  9(8)  BINARY.  

            88  NO-FLAG          VALUE  IS 0. 

            88  OOB              VALUE  IS 1. 

            88  DONT-ROUTE       VALUE  IS 4. 

        01  NBYTE            PIC  9(8)  BINARY.  

        01  BUF              PIC  X(length  of buffer).  

  

    * IPv4  socket  address  structure.  

        01  NAME  

            03  FAMILY       PIC  9(4)  BINARY.  

            03  PORT         PIC  9(4)  BINARY.  

            03  IP-ADDRESS   PIC  9(8)  BINARY.  

            03  RESERVED     PIC X(8).  

  

    * IPv6  socket  address  structure.  

        01  NAME  

            03  FAMILY       PIC  9(4)  BINARY.  

            03  PORT         PIC  9(4)  BINARY.  

            03  FLOWINFO     PIC 9(8)  BINARY.  

            03  IP-ADDRESS.  

                10 FILLER    PIC  9(16)  BINARY.  

                10 FILLER    PIC  9(16)  BINARY.  

            03  SCOPE-ID     PIC 9(8)  BINARY.  

  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S FLAGS  NBYTE  

                        BUF NAME  ERRNO  RETCODE.  

Figure  54.  SENDTO  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 161



NBYTE  

A  fullword  binary  number  set  to the  number  of  bytes  to transmit.  

BUF  Specifies  the  buffer  containing  the  data  to be  transmitted.  BUF  should  be  

the  size  specified  in NBYTE.  

NAME  

Specifies  the  IPv4  socket  address  structure  as  follows:  

FAMILY  

A  halfword  binary  field  containing  the  IPv4  addressing  family.  For  

TCP/IP  the  value  must  be  decimal  2, indicating  AF_INET.  

PORT  A  halfword  binary  field  containing  the  port  number  bound  to the  

socket.  

IP-ADDRESS  

A  fullword  binary  field  containing  the  socket’s  32-bit  IPv4  Internet  

address.  

RESERVED  

Specifies  eight-byte  reserved  field.  This  field  is required,  but  not  

used.

 Specifies  the  IPv6  socket  address  structure  as  follows:  

FAMILY  

A  halfword  binary  field  containing  the  IPv6  addressing  family.  For  

TCP/IP  the  value  is decimal  19,  indicating  AF_INET6.  

PORT  A  halfword  binary  field  containing  the  port  number  bound  to the  

socket.  

FLOWINFO  

A  fullword  binary  field  specifying  the  traffic  class  and  flow  label.  

This  field  must  be  set  to 0.  

IP-ADDRESS  

A  16-byte  binary  field  set  to  the  128-bit  IPv6  Internet  address,  in 

network  byte  order.  

SCOPE-ID  

A  fullword  binary  field  which  identifies  a set  of  interfaces  as  

appropriate  for  the  scope  of the  address  carried  in  the  

IPv6-ADDRESS  field.  A value  of  0 indicates  the  SCOPE-ID  field  

does  not  identify  the  set  of interfaces  to  be  used,  and  may  be  

specified  for  any  address  types  and  scopes.  For  a link  scope  

IPv6-ADDRESS,  SCOPE-ID  may  specify  a link  index  which  

identifies  a set  of  interfaces.  For  all  other  address  scopes,  

SCOPE-ID  must  be  set  to  0.

Parameter values returned to the application 

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

 

162 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



≥0  A  successful  call.  The  value  is set  to the  number  of  bytes  

transmitted.  

−1  Check  ERRNO  for  an  error  code.

SETSOCKOPT 

The  SETSOCKOPT  call  sets  the  options  associated  with  a socket.  SETSOCKOPT  

can  be  called  only  for  sockets  in  the  AF_INET  or  AF_INET6  domains.  

The  OPTVAL  and  OPTLEN  parameters  are  used  to  pass  data  used  by  the  

particular  set  command.  The  OPTVAL  parameter  points  to  a buffer  containing  the  

data  needed  by  the  set  command.  The  OPTLEN  parameter  must  be  set  to  the  size  

of  the  data  pointed  to  by  OPTVAL.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  55  shows  an  example  of SETSOCKOPT  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’SETSOCKOPT’.  

        01  S               PIC  9(4)  BINARY.  

        01  OPTNAME          PIC  9(8)  BINARY.  

        01  OPTVAL           PIC  9(16)  BINARY.  

        01  OPTLEN           PIC  9(8)  BINARY.  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

        01  OPTVAL           PIC  9(16)  BINARY.  

        01  OPTLEN           PIC  9(8)   BINARY.  

        01  ERRNO            PIC  9(8)   BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S OPTNAME  

                        OPTVAL  OPTLEN  ERRNO  RETCODE.  

Figure  55.  SETSOCKOPT  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 163



Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  SETSOCKOPT.  The  field  is left-justified  

and  padded  to  the  right  with  blanks.  

S A  halfword  binary  number  set  to the  socket  whose  options  are  to be  set.  

OPTNAME  

Input  parameter.  See  the  table  below  for  a list  of  the  options  and  their  

unique  requirements.  

Note:   COBOL  programs  cannot  contain  field  names  with  the  underbar  

character.  Fields  representing  the  option  name  should  contain  dashes  

instead.

OPTVAL  

Contains  data  which  further  defines  the  option  specified  in OPTNAME.  

For  the  SETSOCKOPT  API,  OPTVAL  will  be  an  input  parameter.  See  the  

table  below  for  a list  of  the  options  and  their  unique  requirements.  

OPTLEN  

Input  parameter.  A fullword  binary  field  containing  the  length  of  the  data  

returned  in  OPTVAL.  See  the  table  below  for  determining  on  what  to  base  

the  value  of  OPTLEN.

Parameter values returned to the application 

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

 Table 5. OPTNAME  options  for  GETSOCKOPT  and  SETSOCKOPT  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

IP_ADD_MEMBERSHIP  

Use  this  option  to enable  an application  to join  

a multicast  group  on  a specific  interface.  An  

interface  has  to be specified  with  this  option.  

Only  applications  that  want  to receive  multicast  

datagrams  need  to join  multicast  groups.  

This  is an IPv4-only  socket  option.  

Contains  the  IP_MREQ  structure  as 

defined  in 

SYS1.MACLIB(BPXYSOCK).  The  

IP_MREQ  structure  contains  a 

4-byte  IPv4  multicast  address  

followed  by a 4-byte  IPv4  interface  

address.  

See  SEZAINST(CBLOCK)  for the  

PL/I  example  of IP_MREQ.  

The  IP_MREQ  definition  for 

COBOL:  

01 IP-MREQ.  

  05  IMR-MULTIADDR  

       PIC  9(8)  BINARY.  

  05  IMR-INTERFACE  

       PIC  9(8)  BINARY.  

N/A  

 

164 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Table 5. OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

IP_DROP_MEMBERSHIP  

Use  this  option  to enable  an application  to exit  

a multicast  group.  

This  is an IPv4-only  socket  option.  

Contains  the  IP_MREQ  structure  as 

defined  in 

SYS1.MACLIB(BPXYSOCK).  The  

IP_MREQ  structure  contains  a 

4-byte  IPv4  multicast  address  

followed  by a 4-byte  IPv4  interface  

address.  

See  SEZAINST(CBLOCK)  for  the 

PL/I  example  of IP_MREQ.  

The  IP_MREQ  definition  for 

COBOL:  

01 IP-MREQ.  

  05  IMR-MULTIADDR  

       PIC  9(8)  BINARY.  

  05  IMR-INTERFACE  

       PIC  9(8)  BINARY.  

N/A  

IP_MULTICAST_IF  

Use  this  option  to set  or obtain  the  IPv4  

interface  address  used  for  sending  outbound  

multicast  datagrams  from  the  socket  

application.  

This  is an IPv4-only  socket  option.  

Note:  Multicast  datagrams  can  be transmitted  

only  on one  interface  at a time.  

A 4-byte  binary  field  containing  an 

IPv4  interface  address.  

A 4-byte  binary  field 

containing  an IPv4  interface  

address.  

IP_MULTICAST_LOOP  

Use  this  option  to control  or  determine  whether  

a copy  of multicast  datagrams  are  looped  back  

for  multicast  datagrams  sent  to a group  to 

which  the  sending  host  itself  belongs.  The  

default  is to loop  the  datagrams  back.  

This  is an IPv4-only  socket  option.  

A 1-byte  binary  field.  

To enable,  set to 1. 

To disable,  set to 0. 

A 1-byte  binary  field.  

If enabled,  will  contain  a 1. 

If disabled,  will  contain  a 0. 

IP_MULTICAST_TTL  

Use  this  option  to set  or obtain  the  IP 

time-to-live  of outgoing  multicast  datagrams.  

The  default  value  is ’01’x  meaning  that  

multicast  is available  only  to the  local  subnet.  

This  is an IPv4-only  socket  option.  

A 1-byte  binary  field  containing  the 

value  of ’00’x  to ’FF’x.  

A 1-byte  binary  field 

containing  the value  of ’00’x  

to ’FF’x.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 165



Table 5. OPTNAME  options  for  GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

IPV6_JOIN_GROUP  

Use  this  option  to control  the  reception  of 

multicast  packets  and  specify  that  the  socket  

join  a multicast  group.  

This  is an IPv6-only  socket  option.  

Contains  the  IPV6_MREQ  structure  

as defined  in 

SYS1.MACLIB(BPXYSOCK).  The  

IPV6_MREQ  structure  contains  a 

16-byte  IPv6  multicast  address  

followed  by a 4-byte  IPv6  interface  

index  number.  

If the  interface  index  number  is 0, 

then  the  stack  chooses  the  local  

interface.  

See  the  SEZAINST(CBLOCK)  for  

the  PL/I  example  of IPV6_MREQ.  

The  IPV6_MREQ  definition  for 

COBOL:  

01  IPV6-MREQ.  

   05 IPV6MR-MULTIADDR.  

     10  FILLER  PIC 9(16)  

           BINARY.  

     10  FILLER  PIC 9(16)  

           BINARY.  

   05 IPV6MR-INTERFACE  PIC 

        9(8)     BINARY.  

N/A  

IPV6_LEAVE_GROUP  

Use  this  option  to control  the  reception  of 

multicast  packets  and  specify  that  the  socket  

leave  a multicast  group.  

This  is an IPv6-only  socket  option.  

Contains  the  IPV6_MREQ  structure  

as defined  in 

SYS1.MACLIB(BPXYSOCK).  The  

IPV6_MREQ  structure  contains  a 

16-byte  IPv6  multicast  address  

followed  by a 4-byte  IPv6  interface  

index  number.  

If the  interface  index  number  is 0, 

then  the  stack  chooses  the  local  

interface.  

See  the  SEZAINST(CBLOCK)  for  

the  PL/I  example  of IPV6_MREQ.  

The  IPV6_MREQ  definition  for 

COBOL:  

01  IPV6-MREQ.  

  05 IPV6MR-MULTIADDR.  

    10  FILLER  PIC  9(16)  

          BINARY.  

    10  FILLER  PIC  9(16)  

          BINARY.  

  05 IPV6MR-INTERFACE  PIC 

       9(8)     BINARY.  

N/A  

 

166 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Table 5. OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

IPV6_MULTICAST_HOPS  

Use  to set  or obtain  the  hop  limit  used  for 

outgoing  multicast  packets.  

This  is an IPv6-only  socket  option.  

Contains  a 4-byte  binary  value  

specifying  the  multicast  hops.  If not  

specified,  then  the  default  is 1 hop.  

-1 indicates  use  stack  default.  

0 – 255  is the valid  hop  limit  range.  

Note:  An application  must  be APF  

authorized  to enable  it to set  the  

hop  limit  value  above  the  system  

defined  hop  limit  value.  CICS  

applications  cannot  execute  as APF  

authorized.  

Contains  a 4-byte  binary  

value  in the  range  0 – 255 

indicating  the  number  of 

multicast  hops.  

IPV6_MULTICAST_IF  

Use  this  option  to set  or obtain  the  index  of the  

IPv6  interface  used  for sending  outbound  

multicast  datagrams  from  the  socket  

application.  

This  is an IPv6-only  socket  option.  

Contains  a 4-byte  binary  field  

containing  an IPv6  interface  index  

number.  

Contains  a 4-byte  binary  field  

containing  an IPv6  interface  

index  number.  

IPV6_MULTICAST_LOOP  

Use  this  option  to control  or  determine  whether  

a multicast  datagram  is looped  back  on  the  

outgoing  interface  by the  IP  layer  for  local  

delivery  when  datagrams  are  sent  to a group  to 

which  the  sending  host  itself  belongs.  The  

default  is to loop  multicast  datagrams  back.  

This  is an IPv6-only  socket  option.  

A 4-byte  binary  field.  

To enable,  set to 1. 

To disable,  set to 0. 

A 4-byte  binary  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

IPV6_UNICAST_HOPS  

Use  this  option  to set  or obtain  the  hop  limit  

used  for outgoing  unicast  IPv6  packets.  

This  is an IPv6-only  socket  option.  

Contains  a 4-byte  binary  value  

specifying  the  unicast  hops.  If not  

specified,  then  the  default  is 1 hop.  

-1 indicates  use  stack  default.  

0 – 255  is the valid  hop  limit  range.  

Note:  APF  authorized  applications  

are  permitted  to set a hop  limit  that  

exceeds  the  system  configured  

default.  CICS  applications  cannot  

execute  as APF  authorized.  

Contains  a 4-byte  binary  

value  in the  range  0 – 255 

indicating  the  number  of 

unicast  hops.  

IPV6_V6ONLY  

Use  this  option  to set  or determine  whether  the  

socket  is restricted  to send  and  receive  only  

IPv6  packets.  The  default  is to not  restrict  the  

sending  and  receiving  of only  IPv6  packets.  

This  is an IPv6-only  socket  option.  

A 4-byte  binary  field.  

To enable,  set to 1. 

To disable,  set to 0. 

A 4-byte  binary  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 167



Table 5. OPTNAME  options  for  GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

SO_ASCII  

Use  this  option  to set  or determine  the  

translation  to ASCII  data  option.  When  

SO_ASCII  is set,  data  is translated  to  ASCII.  

When  SO_ASCII  is not  set,  data  is not  

translated  to or from  ASCII.  

Note:  This  is a REXX-only  socket  option.  

To enable,  set to ON.  

To disable,  set to OFF. 

Note:  The  optvalue  is returned  and  

is optionally  followed  by the  name  

of the  translation  table  that  is used  

if translation  is applied  to the  data.  

If enabled,  contains  ON.  

If disabled,  contains  OFF. 

Note:  The  optvalue  is 

returned  and  is optionally  

followed  by the  name  of the  

translation  table  that  is used  

if translation  is applied  to the  

data.  

SO_BROADCAST  

Use  this  option  to set  or determine  whether  a 

program  can  send  broadcast  messages  over  the  

socket  to destinations  that  can  receive  datagram  

messages.  The  default  is disabled.  

Note:  This  option  has  no  meaning  for  stream  

sockets.  

A 4-byte  binary  field.  

To enable,  set to 1 or a positive  

value.  

To disable,  set to 0. 

A 4-byte  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

SO_DEBUG  

Use  SO_DEBUG  to set or determine  the  status  

of the  debug  option.  The  default  is disabled. The  

debug  option  controls  the  recording  of debug  

information.  

Notes:   

1.   This  is a REXX-only  socket  option.  

2.   This  option  has  meaning  only  for stream  

sockets.  

To enable,  set to ON.  

To disable,  set to OFF. 

If enabled,  contains  ON.  

If disabled,  contains  OFF. 

SO_EBCDIC  

Use  this  option  to set  or determine  the  

translation  to EBCDIC  data  option.  When  

SO_EBCDIC  is set,  data  is translated  to 

EBCDIC.  When  SO_EBCDIC  is not  set,  data  is 

not  translated  to  or from  EBCDIC.  This  option  

is ignored  by  EBCDIC  hosts.  

Note:  This  is a REXX-only  socket  option.  

To enable,  set to ON.  

To disable,  set to OFF. 

Note:  The  optvalue  is returned  and  

is optionally  followed  by the  name  

of the  translation  table  that  is used  

if translation  is applied  to the  data.  

If enabled,  contains  ON.  

If disabled,  contains  OFF. 

Note:  The  optvalue  is 

returned  and  is optionally  

followed  by the  name  of the  

translation  table  that  is used  

if translation  is applied  to the  

data.  

SO_ERROR  

Use  this  option  to request  pending  errors  on  the  

socket  or to check  for  asynchronous  errors  on  

connected  datagram  sockets  or  for  other  errors  

that  are  not  explicitly  returned  by one  of the  

socket  calls.  The  error  status  is clear  afterwards.  

N/A  A 4-byte  binary  field  

containing  the  most  recent  

ERRNO  for  the  socket.  

 

168 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Table 5. OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

SO_KEEPALIVE  

Use  this  option  to set  or determine  whether  the  

keep  alive  mechanism  periodically  sends  a 

packet  on an otherwise  idle  connection  for  a 

stream  socket.  

The  default  is disabled.  

When  activated,  the  keep  alive  mechanism  

periodically  sends  a packet  on  an otherwise  idle  

connection.  If the  remote  TCP  does  not  respond  

to  the  packet  or to retransmissions  of the  

packet,  the  connection  is terminated  with  the  

error  ETIMEDOUT.  

A 4-byte  binary  field.  

To enable,  set to 1 or a positive  

value.  

To disable,  set to 0. 

A 4-byte  binary  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

SO_LINGER  

Use  this  option  to control  or  determine  how  

TCP/IP  processes  data  that  has  not  been  

transmitted  when  a CLOSE  is issued  for  the  

socket.  The  default  is disabled.  

Notes:   

1.   This  option  has meaning  only  for  stream  

sockets.  

2.   If you  set a zero  linger  time,  the  connection  

cannot  close  in an  orderly  manner,  but  

stops,  resulting  in a RESET  segment  being  

sent  to the  connection  partner.  Also,  if the 

aborting  socket  is in nonblocking  mode,  the  

close  call  is treated  as though  no  linger  

option  had  been  set.

When  SO_LINGER  is set and  CLOSE  is called,  

the  calling  program  is blocked  until  the  data  is 

successfully  transmitted  or the  connection  has  

timed  out.  

When  SO_LINGER  is not  set,  the  CLOSE  

returns  without  blocking  the  caller,  and  TCP/IP  

continues  to attempt  to send  data  for a 

specified  time.  This  usually  allows  sufficient  

time  to complete  the  data  transfer.  

Use  of the  SO_LINGER  option  does  not  

guarantee  successful  completion  because  

TCP/IP  only  waits  the  amount  of time  specified  

in  OPTVAL  for SO_LINGER.  

Contains  an 8-byte  field  containing  

two  4-byte  binary  fields.  

Assembler  coding:  

ONOFF    DS F 

LINGER   DS F 

COBOL  coding:  

ONOFF   PIC 9(8)  BINARY.  

LINGER  PIC 9(8)  BINARY.  

Set ONOFF  to a nonzero  value  to 

enable  and  set to 0 to disable  this  

option.  Set LINGER  to the  number  

of seconds  that  TCP/IP  lingers  after  

the  CLOSE  is issued.  

Contains  an 8-byte  field  

containing  two  4-byte  binary  

fields.  

Assembler  coding:  

ONOFF    DS F 

LINGER   DS  F 

COBOL  coding:  

ONOFF   PIC  9(8)  BINARY.  

LINGER  PIC  9(8)  BINARY.  

A nonzero  value  returned  in 

ONOFF  indicates  enabled,  a 0 

indicates  disabled.  LINGER  

indicates  the  number  of 

seconds  that  TCP/IP  will  try  

to send  data  after  the CLOSE  

is issued.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 169



Table 5. OPTNAME  options  for  GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

SO_OOBINLINE  

Use  this  option  to control  or determine  whether  

out-of-band  data  is received.  

Note:  This  option  has  meaning  only  for  stream  

sockets.  

When  this  option  is set,  out-of-band  data  is 

placed  in the  normal  data  input  queue  as it is 

received  and  is available  to a RECV  or  a 

RECVFROM  even  if the  OOB  flag  is not  set in 

the  RECV  or the  RECVFROM.  

When  this  option  is disabled,  out-of-band  data  

is placed  in the  priority  data  input  queue  as it 

is received  and  is available  to a RECV  or  a 

RECVFROM  only  when  the  OOB  flag  is set  in 

the  RECV  or the  RECVFROM.  

A 4-byte  binary  field.  

To enable,  set to 1 or a positive  

value.  

To disable,  set to 0. 

A 4-byte  binary  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

SO_RCVBUF  

Use  this  option  to control  or determine  the  size  

of the  data  portion  of the  TCP/IP  receive  buffer.  

The  size  of the  data  portion  of the  receive  

buffer  is protocol-specific,  based  on  the  

following  values  prior  to any  SETSOCKOPT  

call:  

v   TCPRCVBufrsize  keyword  on  the  

TCPCONFIG  statement  in  the  

PROFILE.TCPIP  data  set for  a TCP  Socket  

v   UDPRCVBufrsize  keyword  on  the  

UDPCONFIG  statement  in the  

PROFILE.TCPIP  data  set for  a UDP  Socket  

v   The  default  of 65 535  for  a raw  socket  

A 4-byte  binary  field.  

To enable,  set to a positive  value  

specifying  the  size  of the  data  

portion  of the TCP/IP  receive  

buffer.  

To disable,  set to a 0. 

A 4-byte  binary  field.  

If enabled,  contains  a positive  

value  indicating  the  size  of 

the  data  portion  of the 

TCP/IP  receive  buffer.  

If disabled,  contains  a 0. 

 

170 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Table 5. OPTNAME  options  for GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

SO_REUSEADDR  

Use  this  option  to control  or  determine  whether  

local  addresses  are  reused.  The  default  is 

disabled.  This  alters  the  normal  algorithm  used  

with  BIND.  The  normal  BIND  algorithm  allows  

each  Internet  address  and  port  combination  to 

be bound  only  once.  If the  address  and  port  

have  been  already  bound,  then  a subsequent  

BIND  will  fail  and  result  error  will  be 

EADDRINUSE.  

When  this  option  is enabled,  the  following  

situations  are  supported:  

v   A server  can  BIND  the  same  port  multiple  

times  as long  as every  invocation  uses  a 

different  local  IP address  and  the  wildcard  

address  INADDR_ANY  is used  only  one  time  

per  port.  

v   A server  with  active  client  connections  can  be 

restarted  and  can  bind  to its port  without  

having  to close  all  of the  client  connections.  

v   For  datagram  sockets,  multicasting  is 

supported  so multiple  bind()  calls  can  be 

made  to  the  same  class  D  address  and  port  

number.  

v   If you  require  multiple  servers  to BIND  to 

the  same  port  and  listen  on  INADDR_ANY,  

refer  to the  SHAREPORT  option  on  the  PORT 

statement  in TCPIP.PROFILE.  

A 4-byte  binary  field.  

To enable,  set to 1 or a positive  

value.  

To disable,  set to 0. 

A 4-byte  binary  field.  

If enabled,  contains  a 1. 

If disabled,  contains  a 0. 

SO_SNDBUF  

Use  this  option  to control  or  determine  the  size  

of the  data  portion  of the  TCP/IP  send  buffer.  

The  size  is of the  TCP/IP  send  buffer  is 

protocol  specific  and  is based  on  the  following:  

v   The  TCPSENDBufrsize  keyword  on the  

TCPCONFIG  statement  in the  

PROFILE.TCPIP  data  set for a TCP  socket  

v   The  UDPSENDBufrsize  keyword  on  the  

UDPCONFIG  statement  in the  

PROFILE.TCPIP  data  set for a UDP  socket  

v   The  default  of 65 535  for a raw  socket  

A 4-byte  binary  field.  

To enable,  set to a positive  value  

specifying  the  size  of the data  

portion  of the  TCP/IP  send  buffer. 

To disable,  set to a 0. 

A 4-byte  binary  field.  

If enabled,  contains  a positive  

value  indicating  the  size  of 

the  data  portion  of the 

TCP/IP  send  buffer.  

If disabled,  contains  a 0. 

SO_TYPE  

Use  this  option  to return  the  socket  type.  

N/A  A 4-byte  binary  field 

indicating  the  socket  type:  

X’1’  indicates  

SOCK_STREAM.  

X’2’  indicates  

SOCK_DGRAM.  

X’3’  indicates  SOCK_RAW. 

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 171



Table 5. OPTNAME  options  for  GETSOCKOPT  and  SETSOCKOPT  (continued)  

OPTNAME  options  (input)  SETSOCKOPT,  OPTVAL  (input)  GETSOCKOPT,  OPTVAL  

(output)  

TCP_KEEPALIVE  

Use  this  option  to set  or determine  whether  a 

socket-specific  timeout  value  (in  seconds)  is to 

be used  in place  of a configuration-specific  

value  whenever  keep  alive  timing  is active  for 

that  socket.  

When  activated,  the  socket-specified  timer  value  

remains  in effect  until  respecified  by  

SETSOCKOPT  or  until  the  socket  is closed.  

Refer  to the  z/OS  Communications  Server:  IP 

Programmer’s  Guide  and  Reference  for more  

information  on the  socket  option  parameters.  

A 4-byte  binary  field.  

To enable,  set to a value  in the 

range  of 1 – 2 147 460.  

To disable,  set to a value  of 0. 

A 4-byte  binary  field.  

If enabled,  contains  the 

specific  timer  value  (in 

seconds)  that  is in effect  for 

the  given  socket.  

If disabled,  contains  a 0 

indicating  keep  alive  timing  

is not  active.  

TCP_NODELAY  

Use  this  option  to set  or determine  whether  

data  sent  over  the  socket  is subject  to the  Nagle  

algorithm  (RFC  896).  

Under  most  circumstances,  TCP  sends  data  

when  it is presented.  When  this  option  is 

enabled,  TCP  will  wait  to send  small  amounts  

of data  until  the  acknowledgment  for  the  

previous  data  sent  is received.  When  this  option  

is disabled,  TCP  will  send  small  amounts  of 

data  even  before  the  acknowledgment  for the  

previous  data  sent  is received.  

Note:  Use  the  following  to set  TCP_NODELAY  

OPTNAME  value  for  COBOL  programs:  

01 TCP-NODELAY-VAL  PIC  9(10)  COMP  

     VALUE  2147483649.  

01 TCP-NODELAY-REDEF  REDEFINES  

     TCP-NODELAY-VAL.  

 05 FILLER  PIC  9(6)  BINARY.  

 05 TCP-NODELAY  PIC  9(8)  BINARY.  

A 4-byte  binary  field.  

To enable,  set to a 0. 

To disable,  set to a 1 or nonzero.  

A 4-byte  binary  field.  

If enabled,  contains  a 0. 

If disabled,  contains  a 1.

  

SHUTDOWN 

One  way  to  terminate  a network  connection  is to  issue  the  CLOSE  call  which  

attempts  to  complete  all  outstanding  data  transmission  requests  prior  to  breaking  

the  connection.  The  SHUTDOWN  call  can  be  used  to  close  one-way  traffic  while  

completing  data  transfer  in  the  other  direction.  The  HOW  parameter  determines  

the  direction  of  traffic  to  shutdown.  

When  the  CLOSE  call  is used,  the  SETSOCKOPT  OPTVAL  LINGER  parameter  

determines  the  amount  of  time  the  system  will  wait  before  releasing  the  

connection.  For  example,  with  a LINGER  value  of 30  seconds,  system  resources  

(including  the  IMS  or  CICS  transaction)  will  remain  in  the  system  for  up  to  30  

seconds  after  the  CLOSE  call  is issued.  In  high  volume,  transaction-based  systems  

like  CICS  and  IMS,  this  can  impact  performance  severely.  

If the  SHUTDOWN  call  is issued  when  the  CLOSE  call  is  received,  the  connection  

can  be  closed  immediately,  rather  than  waiting  for  the  30-second  delay.  

 

172 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|

|

|

|
|
|
|

|
|
|



The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  56  shows  an  example  of SHUTDOWN  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  SHUTDOWN.  The  field  is left-justified  

and  padded  on  the  right  with  blanks.  

S  A halfword  binary  number  set  to  the  socket  descriptor  of  the  socket  to  be  

shutdown.  

HOW  A fullword  binary  field.  Set  to specify  whether  all  or  part  of a connection  is 

to  be  shut  down.  The  following  values  can  be  set:  

Value  Description  

0 (END-FROM)  

Ends  further  receive  operations.  

1 (END-TO)  Ends  further  send  operations.  

2 (END-BOTH)  

Ends  further  send  and  receive  operations.

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’SHUTDOWN’.  

        01  S               PIC  9(4)  BINARY.  

        01  HOW              PIC  9(8)  BINARY.  

            88  END-FROM       VALUE   0. 

            88  END-TO         VALUE   1. 

            88  END-BOTH       VALUE   2. 

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S HOW  ERRNO  RETCODE.  

Figure  56.  SHUTDOWN  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 173



Parameter values returned to the application 

ERRNO  

A  fullword  binary  field.  If RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

SOCKET 

The  SOCKET  call  creates  an  endpoint  for  communication  and  returns  a socket  

descriptor  representing  the  endpoint.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  57  shows  an  example  of  SOCKET  call  instructions.  

 

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’SOCKET’.  

    * AF_INET  

        01   AF              PIC 9(8)  COMP  VALUE  2. 

  

    * AF_INET6  

        01   AF              PIC 9(8)  COMP  VALUE  19.  

        01   SOCTYPE          PIC  9(8)  BINARY.  

            88   STREAM         VALUE   1.  

            88   DATAGRAM       VALUE   2. 

            88   RAW            VALUE   3. 

        01   PROTO            PIC 9(8)  BINARY.  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  AF  SOCTYPE  

                        PROTO  ERRNO  RETCODE.  

Figure  57. SOCKET  call  instruction  example

 

174 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  SOCKET.  The  field  is left-justified  and  

padded  on  the  right  with  blanks.  

AF  A fullword  binary  field  set  to  the  addressing  family.  For  TCP/IP  the  value  

is set  to  decimal  2 for  AF_INET,  or  decimal  19,  indicating  AF_INET6.  

SOCTYPE  

A fullword  binary  field  set  to  the  type  of  socket  required.  The  types  are:  

Value  Description  

1 Stream  sockets  provide  sequenced,  two-way  byte  streams  that  are  

reliable  and  connection-oriented.  They  support  a mechanism  for  

out-of-band  data.  

2 Datagram  sockets  provide  datagrams,  which  are  connectionless  

messages  of  a fixed  maximum  length  whose  reliability  is not  

guaranteed.  Datagrams  can  be  corrupted,  received  out  of order, 

lost,  or  delivered  multiple  times.  

3 Raw  sockets  provide  the  interface  to  internal  protocols  (such  as  IP 

and  ICMP).

PROTO  

A fullword  binary  field  set  to  the  protocol  to be  used  for  the  socket.  If this  

field  is  set  to 0, the  default  protocol  is used.  For  streams,  the  default  is 

TCP;  for  datagrams,  the  default  is UDP.  

 PROTO  numbers  are  found  in  the  hlq.etc.proto  data  set.  For  IPv6  raw  

sockets,  PROTO  cannot  be  set  to the  following:  

Protocol  name  Numeric  value  

IPROTO_HOPOPTS  0 

IPPROTO_TCP  6 

IPPROTO_UDP  17  

IPPROTO_IPV6  41  

IPPROTO_ROUTING  43  

IPPROTO_FRAGMENT  44  

IPPROTO_ESP  50  

IPPROTO_AH  51  

IPPROTO_NONE  59  

IPPROTO_DSTOPTS  60

Parameter values returned to the application 

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 175



RETCODE  

A  fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

>  or  = 0 

Contains  the  new  socket  descriptor.  

−1  Check  ERRNO  for  an  error  code.

TAKESOCKET  

The  TAKESOCKET  call  acquires  a socket  from  another  program  and  creates  a new  

socket.  Typically,  a child  server  issues  this  call  using  client  ID  and  socket  descriptor  

data  that  it obtained  from  the  concurrent  server.  See  “GIVESOCKET”  on  page  115 

for  a discussion  of the  use  of  GETSOCKET  and  TAKESOCKET  calls.  

Note:   When  TAKESOCKET  is issued,  a new  socket  descriptor  is returned  in  

RETCODE.  You should  use  this  new  socket  descriptor  in  subsequent  calls  

such  as  GETSOCKOPT,  which  require  the  S (socket  descriptor)  parameter.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  58  shows  an  example  of  TAKESOCKET  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’TAKESOCKET’.  

        01   SOCRECV          PIC  9(4)  BINARY.  

        01   CLIENT.  

            03   DOMAIN       PIC  9(8)  BINARY.  

            03   NAME         PIC X(8).  

            03   TASK         PIC X(8).  

            03   RESERVED     PIC  X(20).  

        01   ERRNO            PIC 9(8)  BINARY.  

        01   RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION   SOCRECV  CLIENT  

                         ERRNO  RETCODE.  

Figure  58. TAKESOCKET  call  instruction  example

 

176 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  TAKESOCKET.  The  field  is 

left-justified  and  padded  to the  right  with  blanks.  

SOCRECV  

A halfword  binary  field  set  to  the  descriptor  of  the  socket  to  be  taken.  The  

socket  to  be  taken  is passed  by  the  concurrent  server.  

CLIENT  

Specifies  the  client  ID  of  the  program  that  is giving  the  socket.  In  CICS  and  

IMS,  these  parameters  are  passed  by  the  Listener  program  to  the  program  

that  issues  the  TAKESOCKET  call.  

v   In CICS,  the  information  is obtained  using  EXEC  CICS  RETRIEVE.  

v   In IMS,  the  information  is obtained  by  issuing  GU  TIM.

DOMAIN  

A  fullword  binary  field  set  to  the  domain  of  the  program  giving  

the  socket.  It  is decimal  2, indicating  AF_INET,  or  decimal  19,  

indicating  AF_INET6.  

Note:   The  TAKESOCKET  can  only  acquire  a socket  of the  same  

address  family  from  a GIVESOCKET.

NAME  

Specifies  an  8-byte  character  field  set  to  the  MVS  address  space  

identifier  of the  program  that  gave  the  socket.  

TASK  Specifies  an  8-byte  field  set  to the  task  identifier  of  the  task  that  

gave  the  socket.  

RESERVED  

A  20-byte  reserved  field.  This  field  is required,  but  not  used.

Parameter values returned to the application 

ERRNO  

A fullword  binary  field.  If  the  value  of  RETCODE  is negative,  the  field  

contains  an  error  number.  See  Appendix  A.  Return  codes  on  page  295  for  

information  about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

≥ 0 Contains  the  new  socket  descriptor.  

−1  Check  ERRNO  for  an  error  code.

TERMAPI 

This  call  terminates  the  session  created  by  INITAPI.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 177



Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  59  shows  an  example  of  TERMAPI  call  instructions.
 

For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A  16-byte  character  field  containing  TERMAPI.  The  field  is left-justified  

and  padded  to  the  right  with  blanks.

WRITE 

The  WRITE  call  writes  data  on  a connected  socket.  This  call  is similar  to  SEND,  

except  that  it lacks  the  control  flags  available  with  SEND.  

For  datagram  sockets  the  WRITE  call  writes  the  entire  datagram  if it fits  into  the  

receiving  buffer.  

Stream  sockets  act  like  streams  of  information  with  no  boundaries  separating  data.  

For  example,  if a program  wishes  to  send  1000  bytes,  each  call  to  this  function  can  

send  any  number  of  bytes,  up  to the  entire  1000  bytes.  The  number  of bytes  sent  

will  be  returned  in RETCODE.  Therefore,  programs  using  stream  sockets  should  

place  this  call  in  a loop,  calling  this  function  until  all  data  has  been  sent.  

See  “EZACIC04”  on  page  183  for  a subroutine  that  will  translate  EBCDIC  output  

data  to  ASCII.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

    WORKING-STORAGE  SECTION.  

        01   SOC-FUNCTION     PIC  X(16)   VALUE  IS ’TERMAPI’.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION.  

Figure  59. TERMAPI  call  instruction  example

 

178 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for interrupts.  

Locks:  Unlocked.  

Control  parameters:  All  parameters  must  be addressable  by the  caller  and  in the  

primary  address  space.
  

Figure  60  shows  an  example  of WRITE  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

SOC-FUNCTION  

A 16-byte  character  field  containing  WRITE.  The  field  is left-justified  and  

padded  on  the  right  with  blanks.  

S  A halfword  binary  field  set  to  the  socket  descriptor.  

NBYTE  

A fullword  binary  field  set  to  the  number  of  bytes  of  data  to  be  

transmitted.  

BUF  Specifies  the  buffer  containing  the  data  to  be  transmitted.

Parameter values returned to the application 

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  the  field  contains  an  

error  number.  See  Appendix  A.  Return  codes  on  page  295  for  information  

about  ERRNO  return  codes.  

RETCODE  

A fullword  binary  field  that  returns  one  of the  following:  

Value  Description  

≥0  A  successful  call.  A return  code  greater  than  0 indicates  the  number  

of  bytes  of  data  written.  

−1  Check  ERRNO  for  an  error  code.

    WORKING-STORAGE  SECTION.  

        01  SOC-FUNCTION     PIC  X(16)   VALUE  IS ’WRITE’.  

        01  S               PIC  9(4)  BINARY.  

        01  NBYTE            PIC  9(8)  BINARY.  

        01  BUF              PIC  X(length  of buffer).  

        01  ERRNO            PIC  9(8)  BINARY.  

        01  RETCODE          PIC  S9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZASOKET’  USING  SOC-FUNCTION  S NBYTE  BUF  

                         ERRNO  RETCODE.  

Figure  60.  WRITE  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 179



WRITEV 

The  WRITEV  function  writes  data  on  a socket  from  a set  of buffers.  

The  following  requirements  apply  to this  call:  

 Authorization:  Supervisor  state  or problem  state,  any  PSW  key.  

Dispatchable  unit  mode:  Task. 

Cross  memory  mode:  PASN = HASN.  

Amode:  31-bit  or 24-bit.  

Note:  See  “Addressability  mode  (Amode)  considerations”  

under  “Environmental  restrictions  and  programming  

requirements”  on page  61. 

ASC  mode:  Primary  address  space  control  (ASC)  mode.  

Interrupt  status:  Enabled  for  interrupts.  

Locks:  Unlocked.  

Control  parameters:  All parameters  must  be addressable  by the  caller  and  in the 

primary  address  space.
  

Figure  61  shows  an  example  of  WRITEV  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter values set by the application 

S A  value  or  the  address  of  a halfword  binary  number  specifying  the  

descriptor  of  the  socket  from  which  the  data  is to  be  written.  

       WORKING-STORAGE  SECTION.  

       01  SOC-FUNCTION          PIC  X(16)  VALUE  ’WRITEV’.  

       01  S                      PIC  9(4)   BINARY.  

       01  IOVCNT                  PIC  9(8)   BINARY.  

  

       01  IOV.  

           03 BUFFER-ENTRY  OCCURS  N TIMES.  

             05 BUFFER-POINTER     USAGE  IS POINTER.  

             05 RESERVED           PIC  X(4).  

             05 BUFFER-LENGTH      PIC  9(8)  USAGE  IS BINARY.  

  

       01  ERRNO                   PIC  9(8)  BINARY.  

       01  RETCODE                 PIC 9(8)  BINARY.  

  

       PROCEDURE  DIVISION.  

  

           SET  BUFFER-POINTER(1)  TO ADDRESS  OF BUFFER1.  

           SET  BUFFER-LENGTH(1)   TO LENGTH  OF BUFFER1.  

           SET  BUFFER-POINTER(2)  TO ADDRESS  OF BUFFER2.  

           SET  BUFFER-LENGTH(2)   TO LENGTH  OF BUFFER2.  

           "   "                 "  "          " 

           "   "                 "  "          " 

           SET  BUFFER-POINTER(n)  TO ADDRESS  OF BUFFERn.  

           SET  BUFFER-LENGTH(n)  TO LENGTH  OF BUFFERn.  

  

           CALL  ’EZASOKET’  USING  SOC-FUNCTION  S IOV  IOVCNT  ERRNO  RETCODE.  

Figure  61. WRITEV  call  instruction  example

 

180 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



IOV  An  array  of  tripleword  structures  with  the  number  of structures  equal  to  

the  value  in  IOVCNT  and  the  format  of  the  structures  as  follows:  

Fullword  1 

The  address  of a data  buffer.  

Fullword  2 

Reserved.  

Fullword  3 

The  length  of  the  data  buffer  referenced  in  Fullword  1.

IOVCNT  

A fullword  binary  field  specifying  the  number  of  data  buffers  provided  for  

this  call.

Parameters returned by the application 

ERRNO  

A fullword  binary  field.  If  RETCODE  is negative,  this  contains  an  error  

number.  See  Appendix  A.  Return  codes  on  page  295  for  information  about  

ERRNO  return  codes.  

RETCODE  

A fullword  binary  field.  

Value  Meaning  

<0  Check  ERRNO  for  an  error  code.  

0 Connection  partner  has  closed  connection.  

>0  Number  of bytes  sent.

Using data translation programs for socket call interface 

In  addition  to  the  socket  calls,  you  can  use  the  following  utility  programs  to 

translate  data:  

Data translation 

TCP/IP  hosts  and  networks  use  ASCII  data  notation;  MVS  TCP/IP  and  its  

subsystems  use  EBCDIC  data  notation.  In  situations  where  data  must  be  translated  

from  one  notation  to the  other,  you  can  use  the  following  utility  programs:  

v   EZACIC04  translates  EBCDIC  data  to  ASCII  data  using  the  translation  table  

documented  in  the  z/OS  Communications  Server:  IP  Configuration  Reference.  

v   EZACIC05  translates  ASCII  data  to  EBCDIC  data  using  the  translation  table  

documented  in  the  z/OS  Communications  Server:  IP  Configuration  Reference.  

v   EZACIC14  provides  an  alternative  to  EZACIC04  and  translates  EBCDIC  data  to  

ASCII  data  using  the  translation  table  documented  in Figure  69  on  page  197.  

v   EZACIC15  provides  an  alternative  to  EZACIC05  and  translates  ASCII  data  to 

EBCDIC  data  using  the  translation  table  documented  in  Figure  71  on  page  199.

Bit-string processing 

In  C-language,  bit  strings  are  often  used  to  convey  flags,  switch  settings,  and  so 

on;  TCP/IP  makes  frequent  uses  of  bit  strings.  However,  since  bit  strings  are  

difficult  to  decode  in  COBOL,  TCP/IP  includes  the  following:  

v   EZACIC06  translates  bit-masks  into  character  arrays  and  character  arrays  into  

bit-masks.  

v   EZACIC08  interprets  the  variable  length  address  list  in  the  HOSTENT  structure  

returned  by  GETHOSTBYNAME  or  GETHOSTBYADDR.  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 181



v    EZACIC09  interprets  the  ADDRINFO  structure  returned  by  GETADDRINFO.

 

182 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



EZACIC04 

 The  EZACIC04  program  is used  to  translate  EBCDIC  data  to  ASCII  data.  Figure  62 

shows  how  EZACIC04  translates  a byte  of  EBCDIC  data.  

 

 Figure  63  shows  an  example  of EZACIC04  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

OUT-BUFFER  

A buffer  that  contains  the  following:  

v   When  called,  EBCDIC  data  

v   Upon  return,  ASCII  data

   --------------------------------------------------------------  

   | ASCII       |    second  hex  digit  of byte  of  EBCDIC  data     | 

   | output  by  |-----------------------------------------------|  

   | EZACIC04    | 0| 1| 2| 3| 4| 5| 6|  7| 8| 9| A| B| C| D|  E| F| 

   |------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | 0 |00|01|02|03|1A|09|1A|7F|1A|1A|1A|0B|0C|0D|0E|0F|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | 1 |10|11|12|13|1A|0A|08|1A|18|19|1A|1A|1C|1D|1E|1F|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | 2 |1A|1A|1C|1A|1A|0A|17|1B|1A|1A|1A|1A|1A|05|06|07|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | 3 |1A|1A|16|1A|1A|1E|1A|04|1A|1A|1A|1A|14|15|1A|1A|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | 4 |20|A6|E1|80|EB|90|9F|E2|AB|8B|9B|2E|3C|28|2B|7C|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | 5 |26|A9|AA|9C|DB|A5|99|E3|A8|9E|21|24|2A|29|3B|5E|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   | first   | 6 |2D|2F|DF|DC|9A|DD|DE|98|9D|AC|BA|2C|25|5F|3E|3F|  

   | hex     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   | digit   | 7 |D7|88|94|B0|B1|B2|FC|D6|FB|60|3A|23|40|27|3D|22|  

   | of     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   | byte    | 8 |F8|61|62|63|64|65|66|67|68|69|96|A4|F3|AF|AE|C5|  

   | of     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   | EBCDIC  | 9 |8C|6A|6B|6C|6D|6E|6F|70|71|72|97|87|CE|93|F1|FE|  

   | data    |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | A |C8|7E|73|74|75|76|77|78|79|7A|EF|C0|DA|5B|F2|AE|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | B |B5|B6|FD|B7|B8|B9|E6|BB|BC|BD|8D|D9|BF|5D|D8|C4|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | C |7B|41|42|43|44|45|46|47|48|49|CB|CA|BE|E8|EC|ED|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | D |7D|4A|4B|4C|4D|4E|4F|50|51|52|A1|AD|F5|F4|A3|8F|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | E |5C|E7|53|54|55|56|57|58|59|5A|A0|85|8E|E9|E4|D1|  

   |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

   |        | F |30|31|32|33|34|35|36|37|38|39|B3|F7|F0|FA|A7|FF|  

   --------------------------------------------------------------  

Figure  62.  EZACIC04  EBCDIC-to-ASCII  table

    WORKING-STORAGE  SECTION.  

        01  OUT-BUFFER    PIC X(length  of output).  

        01  LENGTH        PIC  9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZACIC04’  USING  OUT-BUFFER  LENGTH.  

Figure  63.  EZACIC04  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 183



LENGTH  

Specifies  the  length  of the  data  to  be  translated.

 

184 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



EZACIC05 

 The  EZACIC05  program  is used  to  translate  ASCII  data  to  EBCDIC  data.  EBCDIC  

data  is required  by  COBOL,  PL/I,  and  assembler  language  programs.  Figure  64  

shows  how  EZACIC05  translates  a byte  of  ASCII  data.  

 

 Figure  65  shows  an  example  of EZACIC05  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

IN-BUFFER  

A buffer  that  contains  the  following:  

v   When  called,  ASCII  data  

  --------------------------------------------------------------  

  | EBCDIC      |    second  hex  digit  of byte  of ASCII  data      | 

  | output  by  |-----------------------------------------------|  

  | EZACIC05    | 0| 1| 2| 3| 4| 5| 6|  7| 8| 9| A| B| C| D| E| F| 

  |------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 0 |00|01|02|03|37|2D|2E|2F|16|05|25|0B|0C|0D|0E|0F|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 1 |10|11|12|13|3C|3D|32|26|18|19|3F|27|22|1D|35|1F|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 2 |40|5A|7F|7B|5B|6C|50|7D|4D|5D|5C|4E|6B|60|4B|61|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 3 |F0|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 4 |7C|C1|C2|C3|C4|C5|C6|C7|C8|C9|D1|D2|D3|D4|D5|D6|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 5 |D7|D8|D9|E2|E3|E4|E5|E6|E7|E8|E9|AD|E0|BD|5F|6D|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |  first  | 6 |79|81|82|83|84|85|86|87|88|89|91|92|93|94|95|96|  

  |  hex    |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |  digit  | 7 |97|98|99|A2|A3|A4|A5|A6|A7|A8|A9|C0|4F|D0|A1|07|  

  |  of     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |  byte   | 8 |00|01|02|03|37|2D|2E|2F|16|05|25|0B|0C|0D|0E|0F|  

  |  of     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |  ASCII  | 9 |10|11|12|13|3C|3D|32|26|18|19|3F|27|22|1D|35|1F|  

  |  data   |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | A |40|5A|7F|7B|5B|6C|50|7D|4D|5D|5C|4E|6B|60|AF|61|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | B |F0|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | C |7C|C1|C2|C3|C4|C5|C6|C7|C8|C9|D1|D2|D3|D4|D5|D6|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | D |D7|D8|D9|E2|E3|E4|E5|E6|E7|E8|E9|AD|E0|BD|5F|6D|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | E |79|81|82|83|84|85|86|87|88|89|91|92|93|94|95|96|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | F |97|98|99|A2|A3|A4|A5|A6|A7|A8|A9|C0|4F|D0|A1|07|  

  --------------------------------------------------------------  

Figure  64.  EZACIC05  ASCII-to-EBCDIC  table

    WORKING-STORAGE  SECTION.  

        01  IN-BUFFER     PIC  X(length  of output)  

        01  LENGTH        PIC  9(8)  BINARY  VALUE  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZACIC05’  USING  IN-BUFFER  LENGTH.  

Figure  65.  EZACIC05  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 185



v   Upon  return,  EBCDIC  data

LENGTH  

Specifies  the  length  of the  data  to  be  translated.

 

186 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



EZACIC06 

 The  SELECT  call  uses  bit  strings  to  specify  the  sockets  to  test  and  to  return  the  

results  of  the  test.  Because  bit  strings  are  difficult  to manage  in  COBOL,  you  might  

want  to  use  the  assembler  language  program  EZACIC06  to translate  them  to  

character  strings  to  be  used  with  the  SELECT  call.  

Figure  66  shows  an  example  of EZACIC06  call  instructions.  

 

 For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

TOKEN  

Specifies  a 16-character  identifier.  This  identifier  is required  and  it must  be  

the  first  parameter  in  the  list.  

CHAR-MASK  

Specifies  the  character  array  where  nn  is the  maximum  number  of sockets  

in  the  array.  The  first  character  in  the  array  represents  socket  0,  the  second  

represents  socket  1, and  so  on.  Note  that  the  index  is 1 greater  than  the  

socket  number  [for  example,  CHAR-ENTRY(1)  represents  socket  0, 

CHAR-ENTRY  (2)  represents  socket  1, and  so on.]  

BIT-MASK  

Specifies  the  bit  string  to  be  translated  for  the  SELECT  call.  Within  each  

fullword  of  the  bit  string,  the  bits  are  ordered  right  to  left.  The  right-most  

WORKING-STORAGE  SECTION.  

    01  CHAR-MASK.  

        05 CHAR-STRING               PIC  X(nn).  

  

    01  CHAR-ARRAY                   REDEFINES  CHAR-MASK.  

        05  CHAR-ENTRY-TABLE         OCCURS  nn  TIMES.  

            10  CHAR-ENTRY           PIC X(1).  

    01  BIT-MASK.  

        05 BIT-ARRAY-FWDS            OCCURS  (nn+31)/32  TIMES.  

           10  BIT_ARRAY_WORD        PIC  9 (8)  COMP.  

  

    01  BIT-FUNCTION-CODES.  

        05  CTOB                     PIC  X(4)  VALUE  ’CTOB’.  

        05  BTOC                     PIC  X(4)  VALUE  ’BTOC’.  

  

    01  CHAR-MASK-LENGTH             PIC  9(8)  COMP  VALUE  nn.  

  

  

  

   PROCEDURE  CALL  (to  convert  from  character  to binary)  

     CALL  ’EZACIC06’  USING  CTOB  

                           BIT-MASK  

                           CHAR-MASK  

                           CHAR-MASK-LENGTH  

                           RETCODE.  

  

  

   PROCEDURE  CALL  (to  convert  from  binary  to character)  

     CALL  ’EZACIC06’  USING  BTOC  

                           BIT-MASK  

                           CHAR-MASK  

                           CHAR-MASK-LENGTH  

                           RETCODE.  

  

Figure  66.  EZACIC06  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 187



bit  in  the  first  fullword  represents  socket  0 and  the  left-most  bit  represents  

socket  31.  The  right-most  bit  in  the  second  fullword  represents  socket  32  

and  the  left-most  bit  represents  socket  63.  The  number  of  fullwords  in  the  

bit  string  should  be  calculated  by  dividing  the  sum  of  31  and  the  character  

array  lenth  by  32 (truncate  the  remainder).  

COMMAND  

BTOC  specifies  bit  string  to  character  array  translation.  

 CTOB  specifies  character  array  to  bit  string  translation.  

CHAR-MASK-LENGTH  

Specifies  the  length  of the  character  array.  This  field  should  be  no  greater  

than  1 plus  the  MAXSNO  value  returned  on  the  INITAPI  (which  is usually  

the  same  as  the  MAXSOC  value  specified  on  the  INITAPI).  

RETCODE  

A  binary  field  that  returns  one  of  the  following:  

Value  Description  

0 Successful  call.  

−1  Check  ERRNO  for  an  error  code.

Examples:    If  you  want  to use  the  SELECT  call  to  test  sockets  0,  5, and  32,  and  

you  are  using  a character  array  to  represent  the  sockets,  you  must  set  the  

appropriate  characters  in  the  character  array  to 1.  In this  example,  index  positions  

1,  6 and  33  in  the  character  array  are  set  to 1. Then  you  can  call  EZACIC06  with  

the  COMMAND  parameter  set  to  CTOB.  When  EZACIC06  returns,  the  first  

fullword  of  BIT-MASK  contains  B'00000000000000000000000000100001'  to  indicate  

that  sockets  0 and  5 will  be  checked.  The  second  word  of BIT-MASK  contains  

B'00000000000000000000000000000001'  to  indicate  that  socket  32  will  be  checked.  

These  instructions  process  the  bit  string  shown  in  the  following  example:  

MOVE  ZEROS  TO CHAR-STRING.  

MOVE  '1'  TO CHAR-ENTRY(1),  CHAR-ENTRY(6),  CHAR-ENTRY(33).  

CALL  'EZACIC06'  USING  TOKEN  CTOB  BIT-MASK  CH-MASK  

      CHAR-MASK-LENGTH  RETCODE.  

MOVE  BIT-MASK  TO ....  

When  the  select  call  returns  and  you  want  to  check  the  bit-mask  string  for  socket  

activity,  enter  the  following  instructions.  

MOVE  .....  TO BIT-MASK.  

CALL  'EZACIC06'  USING  TOKEN  BTOC  BIT-MASK  CH-MASK  

         CHAR-MASK-LENGTH  RETCODE.  

PERFORM  TEST-SOCKET  THRU  TEST-SOCKET-EXIT   VARYING  IDX  

     FROM  1 BY 1 UNTIL  IDX  EQUAL  CHAR-MASK-LENGTH.  

  

TEST-SOCKET.  

      IF CHAR-ENTRY(IDX)  EQUAL  '1' 

           THEN  PERFORM  SOCKET-RESPONSE  THRU  SOCKET-RESPONSE-EXIT  

           ELSE  NEXT  SENTENCE.  

TEST-SOCKET-EXIT.  

      EXIT.  

 

188 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



EZACIC08 

 The  GETHOSTBYNAME  and  GETHOSTBYADDR  calls  were  derived  from  C socket  

calls  that  return  a structure  known  as  HOSTENT.  A given  TCP/IP  host  can  have  

multiple  alias  names  and  host  Internet  addresses.  

TCP/IP  uses  indirect  addressing  to connect  the  variable  number  of alias  names  

and  Internet  addresses  in  the  HOSTENT  structure  that  are  returned  by  the  

GETHOSTBYADDR  AND  GETHOSTBYNAME  calls.  

If  you  are  coding  in  PL/I  or  assembler  language,  the  HOSTENT  structure  can  be 

processed  in  a relatively  straight-forward  manner.  However,  if you  are  coding  in  

COBOL,  HOSTENT  can  be  more  difficult  to process  and  you  should  use  the  

EZACIC08  subroutine  to process  it  for  you.  

It  works  as  follows:  

1.   GETHOSTBYADDR  or  GETHOSTBYNAME  returns  a HOSTENT  structure  that  

indirectly  addresses  the  lists  of  alias  names  and  Internet  addresses.  

2.   Upon  return  from  GETHOSTBYADDR  or  GETHOSTBYNAME,  your  program  

calls  EZACIC08  and  passes  it the  address  of  the  HOSTENT  structure.  

EZACIC08  processes  the  structure  and  returns  the  following:  

v   The  length  of host  name,  if present  

v   The  host  name  

v   The  number  of alias  names  for  the  host  

v   The  alias  name  sequence  number  

v   The  length  of the  alias  name  

v   The  alias  name  

v   The  host  Internet  address  type,  always  2 for  AF_INET  

v   The  host  Internet  address  length,  always  4 for  AF_INET  

v   The  number  of host  Internet  addresses  for  this  host  

v   The  host  Internet  address  sequence  number  

v   The  host  Internet  address
3.   If the  GETHOSTBYADDR  or  GETHOSTBYNAME  call  returns  more  than  one  

alias  name  or  host  Internet  address,  the  application  program  should  repeat  the  

call  to  EZACIC08  until  all  alias  names  and  host  Internet  addresses  have  been  

retrieved.

Figure  67  on  page  190  shows  an  example  of  EZACIC08  call  instructions.  

 

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 189



For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter  values  set  by  the  application  

HOSTENT-ADDR  

This  fullword  binary  field  must  contain  the  address  of the  HOSTENT  

structure  (as  returned  by  the  GETHOSTBYxxxx  call).  This  variable  is the  

same  as  the  variable  HOSTENT  in  the  GETHOSTBYADDR  and  

GETHOSTBYNAME  socket  calls.  

HOSTALIAS-SEQ  

This  halfword  field  is used  by  EZACIC08  to  index  the  list  of alias  names.  

When  EZACIC08  is  called,  it adds  1 to the  current  value  of 

HOSTALIAS-SEQ  and  uses  the  resulting  value  to index  into  the  table  of 

alias  names.  Therefore,  for  a given  instance  of  GETHOSTBYxxxx,  this  field  

should  be  set  to  0 for  the  initial  call  to  EZACIC08.  For  all  subsequent  calls  

to  EZACIC08,  this  field  should  contain  the  HOSTALIAS-SEQ  number  

returned  by  the  previous  invocation.  

HOSTADDR-SEQ  

This  halfword  field  is used  by  EZACIC08  to  index  the  list  of IP  addresses.  

When  EZACIC08  is  called,  it adds  1 to the  current  value  of 

HOSTADDR-SEQ  and  uses  the  resulting  value  to index  into  the  table  of  IP 

addresses.  Therefore,  for  a given  instance  of GETHOSTBYxxxx,  this  field  

should  be  set  to  0 for  the  initial  call  to  EZACIC08.  For  all  subsequent  calls  

to  EZACIC08,  this  field  should  contain  the  HOSTADDR-SEQ  number  

returned  by  the  previous  call.

     WORKING-STORAGE  SECTION.  

  

         01  HOSTENT-ADDR        PIC  9(8)  BINARY.  

         01  HOSTNAME-LENGTH     PIC 9(4)  BINARY.  

         01  HOSTNAME-VALUE      PIC  X(255).  

         01  HOSTALIAS-COUNT     PIC 9(4)  BINARY.  

         01  HOSTALIAS-SEQ       PIC 9(4)  BINARY.  

         01  HOSTALIAS-LENGTH    PIC 9(4)  BINARY.  

         01  HOSTALIAS-VALUE     PIC X(255).  

         01  HOSTADDR-TYPE       PIC 9(4)  BINARY.  

         01  HOSTADDR-LENGTH     PIC 9(4)  BINARY.  

         01  HOSTADDR-COUNT      PIC  9(4)  BINARY.  

         01  HOSTADDR-SEQ        PIC  9(4)  BINARY.  

         01  HOSTADDR-VALUE      PIC  9(8)  BINARY.  

         01  RETURN-CODE         PIC  9(8)  BINARY.  

  

     PROCEDURE  DIVISION.  

  

        CALL  ’EZASOKET’  USING  ’GETHOSTBYADDR’  

                        HOSTADDR  HOSTENT-ADDR  

                        RETCODE.  

  

        CALL  ’EZASOKET’  USING  ’GETHOSTBYNAME’  

                        NAMELEN  NAME  HOSTENT-ADDR  

                        RETCODE.  

  

        CALL  ’EZACIC08’  USING  HOSTENT-ADDR  HOSTNAME-LENGTH  

                        HOSTNAME-VALUE  HOSTALIAS-COUNT  HOSTALIAS-SEQ  

                        HOSTALIAS-LENGTH  HOSTALIAS-VALUE  

                        HOSTADDR-TYPE  HOSTADDR-LENGTH  HOSTADDR-COUNT  

                        HOSTADDR-SEQ  HOSTADDR-VALUE  RETURN-CODE.  

Figure  67. EZAZIC08  call  instruction  example

 

190 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Parameter  values  returned  to  the  application  

HOSTNAME-LENGTH  

This  halfword  binary  field  contains  the  length  of  the  host  name  (if  host  

name  was  returned).  

HOSTNAME-VALUE  

This  255-byte  character  string  contains  the  host  name  (if  host  name  was  

returned).  

HOSTALIAS-COUNT  

This  halfword  binary  field  contains  the  number  of alias  names  returned.  

HOSTALIAS-SEQ  

This  halfword  binary  field  is the  sequence  number  of the  alias  name  

currently  found  in HOSTALIAS-VALUE.  

HOSTALIAS-LENGTH  

This  halfword  binary  field  contains  the  length  of  the  alias  name  currently  

found  in  HOSTALIAS-VALUE.  

HOSTALIAS-VALUE  

This  255-byte  character  string  contains  the  alias  name  returned  by  this  

instance  of  the  call.  The  length  of  the  alias  name  is  contained  in  

HOSTALIAS-LENGTH.  

HOSTADDR-TYPE  

This  halfword  binary  field  contains  the  type  of  host  address.  For  FAMILY 

type  AF_INET,  HOSTADDR-TYPE  is always  2. 

HOSTADDR-LENGTH  

This  halfword  binary  field  contains  the  length  of  the  host  Internet  address  

currently  found  in HOSTADDR-VALUE.  For  FAMILY type  AF_INET,  

HOSTADDR-LENGTH  is always  set  to  4.  

HOSTADDR-COUNT  

This  halfword  binary  field  contains  the  number  of host  Internet  addresses  

returned  by  this  instance  of the  call.  

HOSTADDR-SEQ  

This  halfword  binary  field  contains  the  sequence  number  of the  host  

Internet  address  currently  found  in  HOSTADDR-VALUE.  

HOSTADDR-VALUE  

This  fullword  binary  field  contains  a host  Internet  address.  

RETURN-CODE  

This  fullword  binary  field  contains  the  EZACIC08  return  code:  

Value  Description  

0 Successful  completion.  

-1 HOSTENT  address  is not  valid.  

-2 A  value  of HOSTALIAS-SEQ  is not  valid.  

-3 A  value  of HOSTADDR-SEQ  is not  valid.

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 191

||
||



EZACIC09 

 The  GETADDRINFO  call  was  derived  from  the  C socket  call  that  return  a structure  

known  as  RES.  A  given  TCP/IP  host  can  have  multiple  sets  of NAMES.  TCP/IP  

uses  indirect  addressing  to  connect  the  variable  number  of NAMES  in  the  RES  

structure  that  is returned  by  the  GETADDRINFO  call.  If you  are  coding  in  PL/I  or  

assembler  language,  the  RES  structure  can  be  processed  in  a relatively  

straight-forward  manner.  However,  if you  are  coding  in COBOL,  RES  can  be  more  

difficult  to  process  and  you  should  use  the  EZACIC09  subroutine  to process  it  for  

you.  It works  as  follows:  

1.   GETADDRINFO  returns  a RES  structure  that  indirectly  addresses  the  lists  of  

socket  address  structures.  

2.   Upon  return  from  GETADDRINFO,  your  program  calls  EZACIC09  and  passes  

it the  address  of  the  next  address  information  structure  as  referenced  by  the  

NEXT  argument.  EZACIC09  processes  the  structure  and  returns  the  following:  

a. The  socket  address  structure  b.  The  next  address  information  structure.  

3.   If  the  GETADDRINFO  call  returns  more  than  one  socket  address  structure  the  

application  program  should  repeat  the  call  to  EZACIC09  until  all  socket  

address  structures  have  been  retrieved.

Figure  68  on  page  193  shows  an  example  of EZACIC09  call  instructions.  

  

 

192 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



WORKING-STORAGE  SECTION.  

      * 

      * Variables  used  for  the  GETADDRINFO  call  

      * 

       01 getaddrinfo-parms.  

          02 node-name  pic  x(255).  

          02 node-name-len  pic  9(8)  binary.  

          02 service-name  pic x(32).  

          02 service-name-len  pic 9(8)  binary.  

          02 canonical-name-len  pic  9(8)  binary.  

          02 ai-passive  pic  9(8)  binary  value  1. 

          02 ai-canonnameok  pic  9(8)  binary  value  2. 

          02 ai-numerichost  pic  9(8)  binary  value  4. 

          02 ai-numericserv  pic  9(8)  binary  value  8. 

          02 ai-v4mapped  pic  9(8)  binary  value  16.  

          02 ai-all  pic 9(8)  binary  value  32. 

          02 ai-addrconfig  pic  9(8)  binary  value  64. 

      * 

      * Variables  used  for  the  EZACIC09  call  

      * 

       01 ezacic09-parms.  

          02 res  usage  is pointer.  

          02 res-name-len  pic 9(8)  binary.  

          02 res-canonical-name  pic  x(256).  

          02 res-name  usage  is pointer.  

          02 res-next-addrinfo  usage  is pointer.  

      * 

      * Socket  address  structure  

      * 

       01 server-socket-address.  

          05 server-family  pic  9(4)  Binary  Value  19. 

          05 server-port  pic  9(4)  Binary  Value  9997.  

          05 server-flowinfo  pic 9(8)  Binary  Value  0.  

          05 server-ipaddr.  

             10 filler  pic  9(16)  binary  value  0. 

             10 filler  pic  9(16)  binary  value  0. 

          05 server-scopeid  pic  9(8)  Binary  Value  0. 

  

Figure  68.  EZACIC09  call  instruction  example  (Part  1 of 3)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 193



LINKAGE  SECTION.  

       01 L1.  

          03 HINTS-ADDRINFO.  

             05 HINTS-AI-FLAGS  PIC  9(8)  BINARY.  

             05 HINTS-AI-FAMILY  PIC 9(8)  BINARY.  

             05 HINTS-AI-SOCKTYPE  PIC  9(8)  BINARY.  

             05 HINTS-AI-PROTOCOL  PIC  9(8)  BINARY.  

             05 FILLER  PIC  9(8)  BINARY.  

             05 FILLER  PIC  9(8)  BINARY.  

             05 FILLER  PIC  9(8)  BINARY.  

             05 FILLER  PIC  9(8)  BINARY.  

          03 HINTS-ADDRINFO-PTR  USAGE  IS POINTER.  

          03 RES-ADDRINFO-PTR  USAGE  IS POINTER.  

      * 

      * RESULTS  ADDRESS  INFO  

      * 

       01 RESULTS-ADDRINFO.  

          05 RESULTS-AI-FLAGS  PIC 9(8)  BINARY.  

          05 RESULTS-AI-FAMILY  PIC  9(8)  BINARY.  

          05 RESULTS-AI-SOCKTYPE  PIC  9(8)  BINARY.  

          05 RESULTS-AI-PROTOCOL  PIC  9(8)  BINARY.  

          05 RESULTS-AI-ADDR-LEN  PIC  9(8)  BINARY.  

          05 RESULTS-AI-CANONICAL-NAME  USAGE  IS  POINTER.  

          05 RESULTS-AI-ADDR-PTR  USAGE  IS  POINTER.  

          05 RESULTS-AI-NEXT-PTR  USAGE  IS  POINTER.  

      * 

      * SOCKET  ADDRESS  STRUCTURE  FROM  EZACIC09.  

      * 

       01 OUTPUT-NAME-PTR  USAGE  IS POINTER.  

       01 OUTPUT-IP-NAME.  

          03 OUTPUT-IP-FAMILY  PIC 9(4)  BINARY.  

          03 OUTPUT-IP-PORT  PIC 9(4)  BINARY.  

          03 OUTPUT-IP-SOCK-DATA  PIC  X(24).  

          03 OUTPUT-IPV4-SOCK-DATA  REDEFINES  OUTPUT-IP-SOCK-DATA.  

             05 OUTPUT-IPV4-IPADDR  PIC  9(8)  BINARY.  

             05 FILLER  PIC  X(20).  

          03 OUTPUT-IPV6-SOCK-DATA  REDEFINES  OUTPUT-IP-SOCK-DATA.  

             05 OUTPUT-IPV6-FLOWINFO  PIC  9(8)  BINARY.  

             05 OUTPUT-IPV6-IPADDR.  

                10 FILLER  PIC  9(16)  BINARY.  

                10 FILLER  PIC  9(16)  BINARY.  

             05 OUTPUT-IPV6-SCOPEID  PIC  9(8)  BINARY.  

  

Figure  68. EZACIC09  call  instruction  example  (Part  2 of 3)

 

194 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



For  equivalent  PL/I  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

Parameter  values  set  by  the  application:  

RES  This  fullword  binary  field  must  contain  the  address  of  the  

ADDRINFO  structure  (as  returned  by  the  GETADDRINFO  call).  

This  variable  is the  same  as  the  RES  variable  in the  

GETADDRINFO  socket  call.  

RES-NAME-LEN  

A  fullword  binary  field  that  will  contain  the  length  of the  socket  

address  structure  as  returned  by  the  GETADDRINFO  call.

Parameter  values  returned  to  the  application:  

Description  

RES-CANONICAL-NAME  

A  field  large  enough  to  hold  the  canonical  name.  The  maximum  

field  size  is 256  bytes.  The  canonical  name  length  field  will  indicate  

the  length  of the  canonical  name  as returned  by  the  

GETADDRINFO  call.  

RES-NAME  The  address  of the  subsequent  socket  address  structure.  

       PROCEDURE  DIVISION  USING  L1. 

      * 

      * Get  and  address  from  the  resolver.  

      * 

           move  ’yournodename’  to node-name.  

           move  12 to node-name-len.  

           move  spaces  to service-name.  

           move  0 to service-name-len.  

           move  af-inet6  to hints-ai-family.  

           move  49 to hints-ai-flags  

           move  0 to hints-ai-socktype.  

           move  0 to hints-ai-protocol.  

           set  address  of results-addrinfo  to res-addrinfo-ptr.  

           set  hints-addrinfo-ptr  to  address  of  hints-addrinfo.  

           call  ’EZASOKET’  using  soket-getaddrinfo  

                                 node-name  node-name-len  

                                 service-name  service-name-len  

                                 hints-addrinfo-ptr  

                                 res-addrinfo-ptr  

                                 canonical-name-len  

                                 errno  retcode.  

      * 

      * Use  EZACIC09  to extract  the IP address  

      * 

           set  address  of results-addrinfo  to res-addrinfo-ptr.  

           set  res  to address  of results-addrinfo.  

           move  zeros  to res-name-len.  

           move  spaces  to res-canonical-name.  

           set  res-name  to nulls.  

           set  res-next-addrinfo  to  nulls.  

           call  ’EZACIC09’  using  res  

                                 res-name-len  

                                 res-canonical-name  

                                 res-name  

                                 res-next-addrinfo  

                                 retcode.  

           set  address  of output-ip-name  to res-name.  

           move  output-ipv6-ipaddr  to server-ipaddr.  

Figure  68.  EZACIC09  call  instruction  example  (Part  3 of 3)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 195



RES-NEXT  The  address  of the  next  address  information  structure.  

RETURN-CODE  

CODE  This  fullword  binary  field  contains  the  EZACIC09  return  

code:  

Value  Description  

0 Successful  call.  

−1  Invalid  RES  address.

 

196 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



EZACIC14 

 The  EZACIC14  program  is an  alternative  to  EZACIC04,  which  translates  EBCDIC  

data  to  ASCII  data.  Figure  69 shows  how  EZACIC14  translates  a byte  of EBCDIC  

data.
 

Figure  70  shows  an  example  of EZACIC14  call  instructions.
 

For  equivalent  PL/I  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

OUT-BUFFER  

A buffer  that  contains  the  following:  

v   When  called,  EBCDIC  data  

  --------------------------------------------------------------  

  | ASCII       |    second  hex  digit  of byte  of EBCDIC  data     | 

  | output  by  |-----------------------------------------------|  

  | EZACIC14    | 0| 1| 2| 3| 4| 5| 6|  7| 8| 9| A| B| C| D| E| F| 

  |------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 0 |00|01|02|03|9C|09|86|7F|97|8D|8E|0B|0C|0D|0E|0F|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 1 |10|11|12|13|9D|85|08|87|18|19|92|8F|1C|1D|1E|1F|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 2 |80|81|82|83|84|0A|17|1B|88|89|8A|8B|8C|05|06|07|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 3 |90|91|16|93|94|95|96|04|98|99|9A|9B|14|15|9E|1A|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 4 |20|A0|E2|E4|E0|E1|E3|E5|E7|F1|A2|2E|3C|28|2B|7C|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 5 |26|E9|EA|EB|E8|ED|EE|EF|EC|DF|21|24|2A|29|3B|5E|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  | first   | 6 |2D|2F|C2|C4|C0|C1|C3|C5|C7|D1|A6|2C|25|5F|3E|3F|  

  | hex     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  | digit   | 7 |F8|C9|CA|CB|C8|CD|CE|CF|CC|60|3A|23|40|27|3D|22|  

  | of     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  | byte    | 8 |D8|61|62|63|64|65|66|67|68|69|AB|BB|F0|FD|FE|B1|  

  | of     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  | EBCDIC  | 9 |B0|6A|6B|6C|6D|6E|6F|70|71|72|AA|BA|E6|B8|C6|A4|  

  | data    |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | A |B5|7E|73|74|75|76|77|78|79|7A|A1|BF|D0|5B|DE|AE|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | B |AC|A3|A5|B7|A9|A7|B6|BC|BD|BE|DD|A8|AF|5D|B4|D7|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | C |7B|41|42|43|44|45|46|47|48|49|AD|F4|F6|F2|F3|F5|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | D |7D|4A|4B|4C|4D|4E|4F|50|51|52|B9|FB|FC|F9|FA|FF|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | E |5C|F7|53|54|55|56|57|58|59|5A|B2|D4|D6|D2|D3|D5|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | F |30|31|32|33|34|35|36|37|38|39|B4|DB|DC|D9|DA|9F|  

  --------------------------------------------------------------  

Figure  69.  EZACIC14  EBCDIC-to-ASCII  table

    WORKING-STORAGE  SECTION.  

        01  OUT-BUFFER    PIC  X(length  of output).  

        01  LENGTH        PIC  9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZACIC14’  USING  OUT-BUFFER  LENGTH.  

Figure  70.  EZACIC14  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 197



v   Upon  return,  ASCII  data

LENGTH  

Specifies  the  length  of the  data  to  be  translated.

 

198 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



EZACIC15 

 The  EZACIC15  program  is an  alternative  to  EZACIC05,  which  translates  ASCII  

data  to  EBCDIC  data.  Figure  71  shows  how  EZACIC15  translates  a byte  of ASCII  

data.
 

Figure  72  shows  an  example  of EZACIC15  call  instructions.
 

For  equivalent  PL/1  and  assembler  language  declarations,  see  “Converting  

parameter  descriptions”  on  page  64.  

OUT-BUFFER  

A buffer  that  contains  the  following:  

v   When  called,  ASCII  data  

  --------------------------------------------------------------  

  | EBCDIC      |    second  hex  digit  of byte  of ASCII  data      | 

  | output  by  |-----------------------------------------------|  

  | EZACIC15    | 0| 1| 2| 3| 4| 5| 6|  7| 8| 9| A| B| C| D| E| F| 

  |------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 0 |00|01|02|03|37|2D|2E|2F|16|05|25|0B|0C|0D|0E|0F|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 1 |10|11|12|13|3C|3D|32|26|18|19|3F|27|1C|1D|1E|1F|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 2 |40|5A|7F|7B|5B|6C|50|7D|4D|5D|5C|4E|6B|60|4B|61|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 3 |F0|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 4 |7C|C1|C2|C3|C4|C5|C6|C7|C8|C9|D1|D2|D3|D4|D5|D6|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | 5 |D7|D8|D9|E2|E3|E4|E5|E6|E7|E8|E9|AD|E0|BD|5F|6D|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  | first   | 6 |79|81|82|83|84|85|86|87|88|89|91|92|93|94|95|96|  

  | hex     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  | digit   | 7 |97|98|99|A2|A3|A4|A5|A6|A7|A8|A9|C0|4F|D0|A1|07|  

  | of     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  | byte    | 8 |20|21|22|23|24|15|06|17|28|29|2A|2B|2C|09|0A|1B|  

  | of     |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  | ASCII   | 9 |30|31|1A|33|34|35|36|08|38|39|3A|3B|04|14|3E|FF|  

  | data    |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | A |41|AA|4A|B1|9F|B2|6A|B5|BB|B4|9A|8A|B0|CA|AF|BC|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | B |90|8F|EA|FA|BE|A0|B6|B3|9D|DA|9B|8B|B7|B8|B9|A9|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | C |64|65|62|66|63|67|9E|68|74|71|72|73|78|75|76|77|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | D |AC|69|ED|EE|EB|EF|EC|BF|80|FD|FE|FB|FC|BA|AE|59|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | E |44|45|42|46|43|47|9C|48|54|51|52|53|58|55|56|57|  

  |        |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|  

  |        | F |8C|49|CD|CE|CB|CF|CC|E1|70|DD|DE|DB|DC|8D|8E|DF|  

  --------------------------------------------------------------  

Figure  71.  EZACIC15  ASCII-to-EBCDIC  table

    WORKING-STORAGE  SECTION.  

        01  OUT-BUFFER    PIC  X(length  of output).  

        01  LENGTH        PIC  9(8)  BINARY.  

  

    PROCEDURE  DIVISION.  

         CALL  ’EZACIC15’  USING  OUT-BUFFER  LENGTH.  

Figure  72.  EZACIC15  call  instruction  example

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 199



v   Upon  return,  EBCDIC  data

LENGTH  

Specifies  the  length  of the  data  to  be  translated.

 

 

200 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Call interface sample programs 

This  section  provides  sample  programs  for  the  call  interface  that  you  can  use  for  a 

PL/I  or  COBOL  application  program.  

The  following  are  the  sample  programs  available  in the  SEZAINST  data  set:  

 Program  Description  

EZASOKPS  PL/I  call  interface  sample  IPv4  server  program  

EZASOKPC  PL/I  call  interface  sample  IPv4  client  program  

EZASO6PS  PL/I  call  interface  sample  IPv6  server  program  

EZASO6PC  PL/I  call  interface  sample  IPv6  client  program  

CBLOCK  PL/I  common  variables  

EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  

EZASO6CC  COBOL  call  interface  sample  IPv6  client  program
  

Sample code for IPv4 server program 

The  EZASOKPS  PL/I  sample  program  is a server  program  that  shows  you  how  to  

use  the  following  calls:  

v   ACCEPT  

v   BIND  

v   CLOSE  

v   GETSOCKNAME  

v   INITAPI  

v   LISTEN  

v   READ  

v   SOCKET  

v   TERMAPI  

v   WRITE

  

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 201



/*********************************************************************/  

 /*                                                                   */ 

 /*   MODULE  NAME:   EZASOKPS  - THIS  IS A VERY  SIMPLE  IPV4  SERVER       */ 

 /*                                                                   */ 

 /* Copyright:     Licensed  Materials  - Property  of IBM                 */ 

 /*                                                                   */ 

 /*               "Restricted  Materials  of IBM"                        */ 

 /*                                                                   */ 

 /*               5694-A01                                             */ 

 /*                                                                   */ 

 /*               (C)  Copyright  IBM  Corp.  1994,  2005                   */         

 /*                                                                   */ 

 /*               US Government  Users  Restricted  Rights  -             */ 

 /*               Use,  duplication  or disclosure  restricted  by        */  

 /*               GSA  ADP  Schedule  Contract  with  IBM  Corp.             */ 

 /*                                                                   */ 

 /* Status:        CSV1R7                                               */         

 /*                                                                   */ 

 /*********************************************************************/  

 EZASOKPS:  PROC  OPTIONS(MAIN);  

 /* INCLUDE  CBLOCK  - common  variables                                  */ 

 % include  CBLOCK;  

 ID.TCPNAME  = ’TCPIP’;                  /* Set  TCP to use               */ 

 ID.ADSNAME  = ’EZASOKPS’;               /* and  address  space  name       */ 

 open  file(driver);  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  INITAPI                                                    */ 

 /*                                                                   */ 

 /*********************************************************************/  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Uncomment  this  code  to set  max  sockets  to the  maximum.             */ 

 /*                                                                   */ 

 /* MAXSOC_INPUT  = 65535;                                              */  

 /* MAXSOC_FWD  = MAXSOC_INPUT;                                         */ 

 /*********************************************************************/  

 call  ezasoket(INITAPI,  MAXSOC,  ID,  SUBTASK,  

                       MAXSNO,  ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  initapi’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  SOCKET                                                     */ 

 /*                                                                   */ 

 /*********************************************************************/  

Figure  73.  EZASOKPS  PL/1  sample  server  program  for IPv4  (Part  1 of 4)

 

202 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|



call  ezasoket(SOCKET,  AF_INET,  TYPE_STREAM,  PROTO,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  socket,  stream,  internet’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 else  sock_stream  = retcode;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  BIND                                                       */ 

 /*                                                                   */ 

 /*********************************************************************/  

 name_id.port  = 8888;  

 name_id.address  = ’01234567’BX;        /* internet  address             */ 

 call  ezasoket(BIND,  SOCK_STREAM,  NAME_ID,  

                     ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  bind’  ||  errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  GETSOCKNAME                                                */ 

 /*                                                                   */ 

 /*********************************************************************/  

 name_id.port  = 8888;  

 name_id.address  = ’01234567’BX;        /* internet  address             */ 

 call  ezasoket(GETSOCKNAME,  SOCK_STREAM,  

                      NAME_ID,  ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  getsockname,  stream,  internet’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’getsockname  = ’ || name_id.address;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  LISTEN                                                     */ 

 /*                                                                   */ 

 /*********************************************************************/  

 backlog  = 5; 

 call  ezasoket(LISTEN,  SOCK_STREAM,  BACKLOG,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  listen  w/  backlog  = 5’ || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

Figure  73.  EZASOKPS  PL/1  sample  server  program  for  IPv4  (Part  2 of 4)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 203



end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  ACCEPT                                                     */ 

 /*                                                                   */ 

 /*********************************************************************/  

 name_id.port  = 8888;  

 name_id.address  = ’01234567’BX;        /* internet  address             */ 

 call  ezasoket(ACCEPT,  SOCK_STREAM,  

                      NAME_ID,  ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  accept’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    accpsock  = retcode;  

    msg  = ’accept  socket  = ’ || accpsock;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  READ                                                       */ 

 /*                                                                   */ 

 /*********************************************************************/  

 nbyte  = length(bufin);  

 call  ezasoket(READ,  ACCPSOCK,  

                      NBYTE,  BUFIN,  ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  read’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’read  = ’ || bufin;  

    write  file(driver)  from  (msg);  

    bufout  = bufin;  

    nbyte  = retcode;                                                              

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  WRITE                                                      */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(WRITE,  ACCPSOCK,  NBYTE,  BUFOUT,  

                      ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  write’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’write  = ’ || bufout;  

Figure  73.  EZASOKPS  PL/1  sample  server  program  for IPv4  (Part  3 of 4)

 

204 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|



Sample program for IPv4 client program 

The  EZASOKPC  PL/I  sample  program  is a client  program  that  shows  you  how  to  

use  the  following  calls  provided  by  the  call  socket  interface:  

v   CONNECT  

v   GETPEERNAME  

v   INITAPI  

v   READ  

v   SHUTDOWN  

v   SOCKET  

v   TERMAPI  

v   WRITE

  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  CLOSE  accept  socket                                        */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(CLOSE,  ACCPSOCK,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  close,  accept  sock’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  TERMAPI                                                    */ 

 /*                                                                   */ 

 /*********************************************************************/  

 getout:  

 call  ezasoket(TERMAPI);  

 close  file(driver);  

 end  ezasokps;  

Figure  73.  EZASOKPS  PL/1  sample  server  program  for  IPv4  (Part  4 of 4)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 205



/*********************************************************************/  

 /*                                                                   */ 

 /*   MODULE  NAME:   EZASOKPC  - THIS  IS A VERY  SIMPLE  IPV4  CLIENT       */ 

 /*                                                                   */ 

 /* Copyright:     Licensed  Materials  - Property  of IBM                 */ 

 /*                                                                   */ 

 /*               "Restricted  Materials  of IBM"                        */ 

 /*                                                                   */ 

 /*               5694-A01                                             */ 

 /*                                                                   */ 

 /*               (C)  Copyright  IBM  Corp.  1994,  2002                   */ 

 /*                                                                   */ 

 /*               US Government  Users  Restricted  Rights  -             */ 

 /*               Use,  duplication  or disclosure  restricted  by        */  

 /*               GSA  ADP  Schedule  Contract  with  IBM  Corp.             */ 

 /*                                                                   */ 

 /* Status:        CSV1R4                                               */ 

 /*                                                                   */ 

 /*********************************************************************/  

 EZASOKPC:  PROC  OPTIONS(MAIN);  

 /* INCLUDE  CBLOCK  - common  variables                                  */ 

 % include  CBLOCK;  

 ID.TCPNAME  = ’TCPIP’;                  /* Set  TCP to use               */ 

 ID.ADSNAME  = ’EZASOKPC’;               /* and  address  space  name       */ 

 open  file(driver);  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  INITAPI                                                    */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(INITAPI,  MAXSOC,  ID,  SUBTASK,  

                       MAXSNO,  ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  initapi’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  SOCKET                                                     */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(SOCKET,  AF_INET,  TYPE_STREAM,  PROTO,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  socket,  stream,  internet’  || errno;  

    write  file(driver)  from  (msg);  

Figure  74.  EZASOKPC  PL/1  sample  client  program  for IPv4  (Part  1 of 3)

 

206 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



goto  getout;  

 end;  

 sock_stream  = retcode;                 /* save  socket  descriptor       */ 

 /*********************************************************************/  

 /* Execute  CONNECT                                                    */ 

 /*                                                                   */ 

 /*********************************************************************/  

 name_id.port  = 8888;  

 name_id.address  = ’01234567’BX;        /* internet  address             */ 

 call  ezasoket(CONNECT,  SOCK_STREAM,  NAME_ID,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  connect,  stream,  internet’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /*   Execute  GETPEERNAME                                              */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(GETPEERNAME,  SOCK_STREAM,  

                      NAME_ID,  ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  getpeername’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’getpeername  =’ || name_id.address;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  WRITE                                                      */ 

 /*                                                                   */ 

 /*********************************************************************/  

 bufout  = message;  

 nbyte  = length(message);  

 call  ezasoket(WRITE,  SOCK_STREAM,  NBYTE,  BUFOUT,  

                      ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  write’  ||  errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’write  = ’ || bufout;  

Figure  74.  EZASOKPC  PL/1  sample  client  program  for IPv4  (Part  2 of 3)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 207



Sample code for IPv6 server program 

The  EZASO6PS  PL/I  sample  program  is a server  program  that  shows  you  how  to  

use  the  following  calls  provided  by  the  call  socket  interface:  

v   ACCEPT  

v   BIND  

v   CLOSE  

v   EZACIC09  

v   FREEADDRINFO  

v   GETADDRINFO  

v   GETHOSTNAME  

v   GETSOCKNAME  

v   INITAPI  

v   LISTEN  

v   NTOP  

v   PTON  

v   READ  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  READ                                                       */ 

 /*                                                                   */ 

 /*********************************************************************/  

 nbyte  = length(bufin);  

 call  ezasoket(READ,  SOCK_STREAM,  

                     NBYTE,  BUFIN,  ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  read’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’read  = ’ || bufin;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  SHUTDOWN  from/to                                           */ 

 /*                                                                   */ 

 /*********************************************************************/  

 getout:  

 how  = 2; 

 call  ezasoket(SHUTDOWN,  SOCK_STREAM,  HOW,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  shutdown’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  TERMAPI                                                    */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(TERMAPI);  

 close  file(driver);  

 end  ezasokpc;  

Figure  74.  EZASOKPC  PL/1  sample  client  program  for IPv4  (Part  3 of 3)

 

208 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



v   SOCKET  

v   TERMAPI  

v   WRITE

  

  

 /*********************************************************************/  

 /*                                                                   */ 

 /*   MODULE  NAME:   EZASO6PS  - THIS  IS A VERY  SIMPLE  IPV6  SERVER       */ 

 /*                                                                   */ 

 /* Copyright:     Licensed  Materials  - Property  of IBM                 */ 

 /*                                                                   */ 

 /*               "Restricted  Materials  of  IBM"                        */ 

 /*                                                                   */ 

 /*               5694-A01                                             */ 

 /*                                                                   */ 

 /*               (C)  Copyright  IBM  Corp.  2002,  2005                   */         

 /*                                                                   */ 

 /*               US Government  Users  Restricted  Rights  -             */  

 /*               Use,  duplication  or disclosure  restricted  by        */ 

 /*               GSA  ADP  Schedule  Contract  with  IBM Corp.             */ 

 /*                                                                   */ 

 /* Status:        CSV1R7                                               */         

 /*                                                                   */ 

 /*********************************************************************/  

 EZASO6PS:  PROC  OPTIONS(MAIN);  

 /* INCLUDE  CBLOCK  - common  variables                                  */ 

 % include  CBLOCK;  

 ID.TCPNAME  = ’TCPCS’;                  /* Set  TCP  to use               */ 

 ID.ADSNAME  = ’EZASO6PS’;               /* and address  space  name       */ 

 open  file(driver);  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  INITAPI                                                    */ 

 /*                                                                   */ 

 /*********************************************************************/  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Uncomment  this  code  to set  max  sockets  to the maximum.             */  

 /*                                                                   */ 

 /* MAXSOC_INPUT  = 65535;                                              */ 

 /* MAXSOC_FWD  = MAXSOC_INPUT;                                         */ 

 /*********************************************************************/  

 call  ezasoket(INITAPI,  MAXSOC,  ID,  SUBTASK,  

                       MAXSNO,  ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  initapi’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  SOCKET                                                     */ 

 /*                                                                   */ 

 /*********************************************************************/  

Figure  75.  EZASO6PS  PL/1  sample  server  program  for IPv6  (Part  1 of 6)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 209

|

|



call  ezasoket(SOCKET,  AF_INET6,  TYPE_STREAM,  PROTO,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  socket,  stream,  internet’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 else  sock_stream  = retcode;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  PTON                                                       */ 

 /*                                                                   */ 

 /*********************************************************************/  

 PRESENTABLE_ADDR  = IPV6_LOOPBACK;      /*  Set  IP address  to use        */ 

 PRESENTABLE_ADDR_LEN  = LENGTH(PRESENTABLE_ADDR)  ;  /*  and  its  length  */ 

 call  ezasoket(PTON,  AF_INET6,  PRESENTABLE_ADDR,  

                     PRESENTABLE_ADDR_LEN,  NUMERIC_ADDR,  

                     ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  pton’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 name6_id.address  = NUMERIC_ADDR;       /* IPV6  internet  address        */ 

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  GETHOSTNAME                                                */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(GETHOSTNAME,  HOSTNAME_LEN,  HOSTNAME,  

                     ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  gethostname’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 else  do;  

    msg  = ’gethostname  = ’ || HOSTNAME;  

    write  file(driver)  from  (msg);  

    GAI_NODE  = HOSTNAME;       /* Set  host  name  for getaddrinfo  to use */ 

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  GETADDRINFO                                                */ 

 /*                                                                   */ 

 /*********************************************************************/  

 GAI_SERVLEN  = 0;                     /* set  service  length            */ 

 GAI_HINTS.FLAGS  = ai_CANONNAMEOK;     /* Request  canonical  name        */  

 HINTS  = ADDR(GAI_HINTS);              /* Set  results  pointer           */  

 call  ezasoket(GETADDRINFO,  

                      GAI_NODE,  GAI_NODELEN,  

                      GAI_SERVICE,  GAI_SERVLEN,  

Figure  75.  EZASO6PS  PL/1  sample  server  program  for  IPv6  (Part  2 of 6)

 

210 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



HINTS,  RES,  

                      CANONNAME_LEN,  

                      ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  getaddrinfo’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;                              /* process  returned  RES          */  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Call  EZACIC09  to format  the  returned  result  address  information    */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call   ezacic09(RES,  OPNAMELEN,  OPCANON,  OPNAME,  OPNEXT,  

                  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  ^= 0 then  do;  

    msg  = ’FAIL:  EZACIC09’  ||  RETCODE;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’OPCANON  = ’ || OPCANON;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  FREEADDRINFO                                               */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(FREEADDRINFO,  RES,  

                      ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  freeaddrinfo’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 end;    /* end  from  getaddrinfo  */ 

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  BIND                                                       */ 

 /*                                                                   */ 

 /*********************************************************************/  

 name6_id.port  = 8888;  

 call  ezasoket(BIND,  SOCK_STREAM,  NAME6_ID,  

                     ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  bind’  ||  errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  GETSOCKNAME                                                */ 

Figure  75.  EZASO6PS  PL/1  sample  server  program  for IPv6  (Part  3 of 6)

 

Chapter  7. Using the CALL instruction  application  programming  interface  (API) 211



/*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(GETSOCKNAME,  SOCK_STREAM,  

                      NAME6_ID,  ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  getsockname,  stream,  internet’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  LISTEN                                                     */ 

 /*                                                                   */ 

 /*********************************************************************/  

 backlog  = 5; 

 call  ezasoket(LISTEN,  SOCK_STREAM,  BACKLOG,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  listen  w/ backlog  = 5’ || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  ACCEPT                                                     */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(ACCEPT,  SOCK_STREAM,  

                      NAME6_ID,  ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  accept’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    accpsock  = retcode;  

    msg  = ’accept  socket  = ’ || accpsock;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  NTOP                                                       */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(NTOP,  AF_INET6,  NUMERIC_ADDR,  

                     PRESENTABLE_ADDR,  PRESENTABLE_ADDR_LEN,  

                     ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  ntop’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 else  do;  

Figure  75.  EZASO6PS  PL/1  sample  server  program  for  IPv6  (Part  4 of 6)

 

212 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



msg  = ’presentable  address  = ’ || PRESENTABLE_ADDR;  

    write  file(driver)  from  (msg);  

 end;                                    /*                            */ 

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  READ                                                       */ 

 /*                                                                   */ 

 /*********************************************************************/  

 nbyte  = length(bufin);  

 call  ezasoket(READ,  ACCPSOCK,  

                      NBYTE,  BUFIN,  ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  read’  ||  errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’read  = ’ || bufin;  

    write  file(driver)  from  (msg);  

    bufout  = bufin;  

    nbyte  = retcode;                                                              

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  WRITE                                                      */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(WRITE,  ACCPSOCK,  NBYTE,  BUFOUT,  

                      ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  write’  ||  errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’write  = ’ || bufout;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  CLOSE  accept  socket                                        */ 

 /*                                                                   */ 

 /*********************************************************************/  

 call  ezasoket(CLOSE,  ACCPSOCK,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  close,  accept  sock’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  TERMAPI                                                    */ 

Figure  75.  EZASO6PS  PL/1  sample  server  program  for IPv6  (Part  5 of 6)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 213

|



Sample program for IPv6 client program 

The  EZASO6PC  PL/I  sample  program  is a client  program  that  shows  you  how  to  

use  the  following  calls  provided  by  the  call  socket  interface:  

v   CONNECT  

v   GETNAMEINFO  

v   GETPEERNAME  

v   INITAPI  

v   PTON  

v   READ  

v   SHUTDOWN  

v   SOCKET  

v   TERMAPI  

v   WRITE

  

 /*                                                                   */ 

 /*********************************************************************/  

 getout:  

 call  ezasoket(TERMAPI);  

 close  file(driver);  

 end  EZASO6PS;  

Figure  75.  EZASO6PS  PL/1  sample  server  program  for  IPv6  (Part  6 of 6)

 

214 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



/*********************************************************************/  

 /*                                                                   */ 

 /*   MODULE  NAME:   EZASO6PC  - THIS  IS A VERY  SIMPLE  IPV6  CLIENT       */ 

 /*                                                                   */ 

 /* Copyright:     Licensed  Materials  - Property  of IBM                 */ 

 /*                                                                   */ 

 /*               "Restricted  Materials  of  IBM"                        */ 

 /*                                                                   */ 

 /*               5694-A01                                             */ 

 /*                                                                   */ 

 /*               (C)  Copyright  IBM  Corp.  2002                         */ 

 /*                                                                   */ 

 /*               US Government  Users  Restricted  Rights  -             */  

 /*               Use,  duplication  or disclosure  restricted  by        */ 

 /*               GSA  ADP  Schedule  Contract  with  IBM Corp.             */ 

 /*                                                                   */ 

 /* Status:        CSV1R4                                               */ 

 /*                                                                   */ 

 /*********************************************************************/  

 EZASO6PC:  PROC  OPTIONS(MAIN);  

  

 /* INCLUDE  CBLOCK  - common  variables                                  */ 

 % include  CBLOCK;  

  

 ID.TCPNAME  = ’TCPCS’;                  /* Set  TCP  to use               */ 

 ID.ADSNAME  = ’EZASO6PS’;               /* and address  space  name       */ 

 open  file(driver);  

  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  INITAPI                                                    */ 

 /*                                                                   */ 

 /*********************************************************************/  

  

 call  ezasoket(INITAPI,  MAXSOC,  ID,  SUBTASK,  

                       MAXSNO,  ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  initapi’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  SOCKET                                                     */ 

 /*                                                                   */ 

 /*********************************************************************/  

  

 call  ezasoket(SOCKET,  AF_INET6,  TYPE_STREAM,  PROTO,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  socket,  stream,  internet’  || errno;  

    write  file(driver)  from  (msg);  

Figure  76.  EZASO6PC  PL/1  sample  client  program  for  IPv6  (Part  1 of 4)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 215



goto  getout;  

 end;  

 sock_stream  = retcode;                 /* save  socket  descriptor       */ 

  

 /*********************************************************************/  

 /* Execute  PTON                                                       */ 

 /*                                                                   */ 

 /*********************************************************************/  

 PRESENTABLE_ADDR  = IPV6_LOOPBACK;   /* Set  the  address  to use         */ 

 PRESENTABLE_ADDR_LEN  = LENGTH(PRESENTABLE_ADDR)  ; /* and it’s  length  */  

 call  ezasoket(PTON,  AF_INET6,  PRESENTABLE_ADDR,  

                     PRESENTABLE_ADDR_LEN,  NUMERIC_ADDR,  

                     ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  pton’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

 msg  = ’SUCCESS:  pton  converted  ’ || PRESENTABLE_ADDR;  

 name6_id.address  = NUMERIC_ADDR;       /* IPV6  internet  address        */ 

  

 /*********************************************************************/  

 /* Execute  CONNECT                                                    */ 

 /*                                                                   */ 

 /*********************************************************************/  

  

 name6_id.port  = 8888;  

 call  ezasoket(CONNECT,  SOCK_STREAM,  NAME6_ID,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  connect,  stream,  internet’  || errno;  

    write  file(driver)  from  (msg);  

    goto  getout;  

 end;  

  

 /*********************************************************************/  

 /*                                                                   */ 

 /*   Execute  GETPEERNAME                                              */ 

 /*                                                                   */ 

 /*********************************************************************/  

  

 call  ezasoket(GETPEERNAME,  SOCK_STREAM,  

                      NAME6_ID,  ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  getpeername’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

  

 /*********************************************************************/  

 /*                                                                   */ 

 /*   Execute  GETNAMEINFO                                              */ 

 /*                                                                   */ 

Figure  76.  EZASO6PC  PL/1  sample  client  program  for IPv6  (Part  2 of 4)

 

216 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



/*********************************************************************/  

  

 NAMELEN  = 28 ;                 /*  Set  length  of NAME                  */ 

 GNI_HOST  = blank;               /* Clear  Host  name                     */ 

 GNI_HOSTLEN  = LENGTH(GNI_HOST);  /* Set  Host  name  length               */ 

 GNI_SERVICE  = blank;            /* Clear  Service  name                  */ 

 GNI_SERVLEN  = LENGTH(GNI_SERVICE);  /* Set  Service  name  length         */ 

 GNI_FLAGS  = NI_NAMEREQD;        /* Set  an error  if name  is not  found   */  

 call  ezasoket(GETNAMEINFO,  NAME6_ID,  NAMELEN,  

                      GNI_HOST,  GNI_HOSTLEN,  

                      GNI_SERVICE,  GNI_SERVLEN,  

                      GNI_FLAGS,  

                      ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  getnameinfo’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’getnameinfo  host=’  || GNI_HOST  ; 

    write  file(driver)  from  (msg);  

    msg  = ’getnameinfo  service=’  || GNI_SERVICE  ; 

    write  file(driver)  from  (msg);  

 end;  

  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  WRITE                                                      */ 

 /*                                                                   */ 

 /*********************************************************************/  

  

 bufout  = message;  

 nbyte  = length(message);  

 call  ezasoket(WRITE,  SOCK_STREAM,  NBYTE,  BUFOUT,  

                      ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  write’  ||  errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’write  = ’ || bufout;  

    write  file(driver)  from  (msg);  

 end;  

  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  READ                                                       */ 

 /*                                                                   */ 

 /*********************************************************************/  

  

 nbyte  = length(bufin);  

 call  ezasoket(READ,  SOCK_STREAM,  

                     NBYTE,  BUFIN,  ERRNO,  RETCODE);  

 msg  = blank;                           /* clear  field                  */ 

Figure  76.  EZASO6PC  PL/1  sample  client  program  for  IPv6  (Part  3 of 4)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 217



Common variables used in PL/I sample programs 

The  CBLOCK  common  storage  area  contains  the  variables  that  are  used  in  the  

PL/I  programs  in  this  section.  

 /********************************************************************/  

 /*                                                                  */ 

 /*   MODULE  NAME:  CBLOCK  - SOKET  COMMON  VARIABLES                   */ 

 /*                                                                  */ 

 /* Copyright:     Licensed  Materials  - Property  of IBM               */ 

 /*                                                                  */ 

 /*               "Restricted  Materials  of IBM"                      */ 

 /*                                                                  */ 

 /*               5694-A01                                            */ 

 /*                                                                  */ 

 /*               (C) Copyright  IBM Corp.  1994,  2005                 */          

 /*                                                                  */ 

 /*               US Government  Users  Restricted  Rights  -            */ 

 /*               Use, duplication  or disclosure  restricted  by       */ 

 /*               GSA ADP Schedule  Contract  with IBM Corp.           */ 

 /*                                                                  */ 

 /* Status:        CSV1R7                                              */          

 /*                                                                  */ 

 /********************************************************************/  

 /********************************************************************/

 if retcode  < 0 then  do;  

    msg  = ’FAIL:  read’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

 else  do;  

    msg  = ’read  = ’ || bufin;  

    write  file(driver)  from  (msg);  

 end;  

  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  SHUTDOWN  from/to                                           */ 

 /*                                                                   */ 

 /*********************************************************************/  

  

 getout:  

 how  = 2; 

 call  ezasoket(SHUTDOWN,  SOCK_STREAM,  HOW,  

                      ERRNO,  RETCODE);  

 if retcode  < 0 then  do;  

    msg  = blank;                        /* clear  field                  */ 

    msg  = ’FAIL:  shutdown’  || errno;  

    write  file(driver)  from  (msg);  

 end;  

  

 /*********************************************************************/  

 /*                                                                   */ 

 /* Execute  TERMAPI                                                    */ 

 /*                                                                   */ 

 /*********************************************************************/  

  

 call  ezasoket(TERMAPI);  

  

 close  file(driver);  

 end  ezaso6pc;  

Figure  76.  EZASO6PC  PL/1  sample  client  program  for IPv6  (Part  4 of 4)

 

218 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|

|



/*                                                                  */ 

 /* SOKET COMMON  VARIABLES                                            */ 

 /*                                                                  */ 

 /********************************************************************/  

 DCL ABS     BUILTIN;  

 DCL ADDR    BUILTIN;  

 DCL ACCEPT   CHAR(16)  INIT(’ACCEPT’);  

 DCL ACCPSOCK  FIXED  BIN(15);            /* temporary  ACCEPT  socket     */ 

 DCL AF_INET  FIXED BIN(31)  INIT(2);     /* internet  domain             */ 

 DCL AF_INET6  FIXED  BIN(31)  INIT(19);   /* internet  v6 domain          */ 

 DCL AF_IUCV  FIXED BIN(31)  INIT(17);    /* iucv domain                 */ 

 DCL ai_PASSIVE  FIXED  BIN(31)  INIT(1);  

                                       /* flag: getaddrinfo  hints     */ 

 DCL ai_CANONNAMEOK  FIXED  BIN(31)  INIT(2);  

                                       /* flag: getaddrinfo  hints     */ 

 DCL ai_NUMERICHOST  FIXED  BIN(31)  INIT(4);  

                                       /* flag: getaddrinfo  hints     */ 

 DCL ai_NUMERICSERV  FIXED  BIN(31)  INIT(8);  

                                       /* flag: getaddrinfo  hints     */ 

 DCL ai_V4MAPPED  FIXED BIN(31)  INIT(10);  

                                       /* flag: getaddrinfo  hints     */ 

 DCL ai_ALL  FIXED  BIN(31)  INIT(20);  

                                       /* flag: getaddrinfo  hints     */ 

 DCL ai_ADDRCONFIG  FIXED BIN(31)  INIT(40);  

                                       /* flag: getaddrinfo  hints     */ 

 DCL ALIAS    CHAR(255);                 /* alternate  NAME             */ 

 DCL APITYPE  FIXED BIN(15)  INIT(2);     /* default  API type           */ 

 DCL BACKLOG  FIXED BIN(31);             /* max length  of pending  queue*/  

 DCL BADNAME  CHAR(20);                  /* temporary  name             */ 

 DCL BIND    CHAR(16)  INIT(’BIND’);  

 DCL BIT     BUILTIN;  

 DCL BITZERO  BIT(1);                    /* bit zero value              */ 

 DCL BLANK255  CHAR(255)  INIT(’  ’);     /*                            */ 

 DCL BLANK    CHAR(100)  INIT(’  ’);      /*                            */ 

 DCL BUF     CHAR(80)  INIT(’  ’);       /* macro READ/WRITE  buffer     */ 

 DCL BUFF  CHAR(15)          INIT(’  ’); /* short buffer                */ 

 DCL BUFFER    CHAR(32767)  INIT(’  ’);   /* BUFFER                      */ 

 DCL BUFIN     CHAR(32767)  INIT(’  ’);   /* Read buffer                 */ 

 DCL BUFOUT    CHAR(32767)  INIT(’  ’);   /* WRITE buffer                */ 

 DCL NCHBUFF   CHAR(3200)  INIT(’  ’);    /* BUFFER                      */ 

 DCL CANONNAME_LEN  FIXED BIN(31);/*  getaddrinfo  canonical  name length*/  

 DCL 1 CLIENT,                      /* socket  addr of connection  peer */ 

       2 DOMAIN  FIXED  BIN(31)  INIT(2),  /* domain  of client  (AF_INET)  */ 

       2 NAME   CHAR(8)  INIT(’  ’),     /* addr identifier  for client  */ 

       2 TASK   CHAR(8)  INIT(’  ’),     /* task identifier  for client  */ 

       2 RESERVED  CHAR(20)  INIT(’  ’);  /* reserved                    */ 

 DCL CLOSE    CHAR(16)  INIT(’CLOSE’);  

 DCL COMMAND  FIXED BIN(31)  INIT(3);     /* Query  FNDELAY  flag         */ 

 DCL CONNECT  CHAR(16)  INIT(’CONNECT’);  

 DCL COUNT  FIXED BIN(31)  INIT(100);     /* elements  in GRP_IOCTL_TABLE*/  

 DCL DATA_SOCK  FIXED BIN(15);           /* temporary  datagram  socket   */ 

 DCL DEF     FIXED BIN(31)  INIT(0);     /* default  protocol            */ 

 DCL DONE_SENDING  CHAR(1);              /* ready flag                 */ 

 DCL DRIVER   FILE OUTPUT  UNBUF  ENV(FB  RECSIZE(100))  RECORD;  

 DCL ERETMSK  CHAR(4);                   /* indicate  exception  events   */ 

 DCL ERR     FIXED BIN(31);             /* error  number  variable       */ 

 DCL ERRNO    FIXED  BIN(31)  INIT(0);     /*  error number               */ 

 DCL ESNDMSK  CHAR(4);                   /* check  for pending           */ 

                                       /*   exception  events          */ 

 DCL EXIT    LABEL;                     /* common  exit point          */ 

 DCL EZACIC05  ENTRY  OPTIONS(ASM,INTER)  EXT; /* translate  ascii>ebcdic*/  

 DCL EZACIC09  ENTRY  OPTIONS(ASM,INTER)  EXT; /* format  getaddrinfo  res*/  

 DCL EZASOKET  ENTRY  OPTIONS(ASM,INTER)  EXT;         /* socket  call   */ 

 DCL FCNTL   CHAR(16)  INIT(’FCNTL’);

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 219



DCL FIONBIO  FIXED BIN(31)  INIT(-2147178626);/*  flag:  nonblocking     */ 

 DCL FIONREAD  FIXED  BIN(31)  INIT(+1074046847);/*  flag:#readable  bytes*/  

 DCL FLAGS   FIXED BIN(31)  INIT(0);     /* default:  no flags           */ 

                                       /*   1 = OOB, SEND OUT-OF-BAND*/  

                                       /*   4 = DON’T ROUTE          */ 

 DCL FREEADDRINFO   CHAR(16)  INIT(’FREEADDRINFO’);  

 DCL GAI_NODE  CHAR(255)  INIT(’  ’);    /* getaddrinfo  node            */ 

 DCL GAI_NODELEN  FIXED BIN(31)  INIT(255);/*  getaddrinfo  node length   */ 

 DCL GAI_SERVICE  CHAR(32)  INIT(’  ’);  /* getaddrinfo  service          */ 

 DCL GAI_SERVLEN  FIXED BIN(31)  INIT(32);  /* getaddrinfo  service       */ 

                                       /* length                      */ 

 DCL 1 GAI_HINTS,                  /* getaddrinfo  hints  addrinfo       */ 

       2 FLAGS     FIXED  BIN(31)  INIT(0),   /* hints flags            */ 

       2 AF        FIXED BIN(31)  INIT(0),   /* hints  family            */ 

       2 SOCTYPE    FIXED BIN(31)  INIT(0),   /* hints  socket  type      */ 

       2 PROTO     FIXED  BIN(31)  INIT(0),   /* hints protocol          */ 

       2 NAMELEN    FIXED BIN(31)  INIT(0),  

       2 CANONNAME  FIXED  BIN(31)  INIT(0),  

       2 NAME      FIXED BIN(31)  INIT(0),  

       2 NEXT      FIXED BIN(31)  INIT(0);  

 DCL 1 GAI_ADDRINFO  BASED(RES),  /* getaddrinfo  RES addrinfo           */ 

       2 FLAGS     FIXED  BIN(31),  

       2 AF        FIXED BIN(31),  

       2 SOCTYPE    FIXED BIN(31),  

       2 PROTO     FIXED  BIN(31),  

       2 NAMELEN    FIXED BIN(31),  /* RES socket  address  struct  length*/  

       2 CANONNAME  POINTER,        /* RES canonical  name              */ 

       2 NAME      POINTER,        /* RES socket  address  structure     */ 

       2 NEXT      POINTER;        /* RES next addrinfo,  zero if none.*/  

 DCL 1 GAI_NAME_ID  BASED(GAI_ADDRINFO.NAME),  

       2 LEN    BIT(8),  

       2 FAMILY  BIT(8),  

       2 PORT   FIXED  BIN(15),  

       2 ADDRESS  FIXED  BIN(31),  

       2 RESERVED1  CHAR(8);  

 DCL 1 GAI_NAME6_ID  BASED(GAI_ADDRINFO.NAME),  

       2 LEN    BIT(8),  

       2 FAMILY  BIT(8),  

       2 PORT   FIXED  BIN(15),  

       2 FLOWINFO  FIXED BIN(31),  

       2 ADDRESS  CHAR(16),  

       2 SCOPEID  FIXED  BIN(31);  

 DCL GETADDRINFO   CHAR(16)  INIT(’GETADDRINFO’);  

 DCL GETCLIENTID   CHAR(16)  INIT(’GETCLIENTID’);  

 DCL GETHOSTBYADDR   CHAR(16)  INIT(’GETHOSTBYADDR’);  

 DCL GETHOSTBYNAME  CHAR(16)  INIT(’GETHOSTBYNAME’);  

 DCL GETHOSTNAME  CHAR(16)  INIT(’GETHOSTNAME’);  

 DCL GETHOSTID  CHAR(16)  INIT(’GETHOSTID’);  

 DCL GETIBMOPT  CHAR(16)  INIT(’GETIBMOPT’);  

 DCL GETNAMEINFO   CHAR(16)  INIT(’GETNAMEINFO’);  

 DCL GETPEERNAME  CHAR(16)  INIT(’GETPEERNAME’);  

 DCL GETSOCKNAME  CHAR(16)  INIT(’GETSOCKNAME’);  

 DCL GETSOCKOPT  CHAR(16)  INIT(’GETSOCKOPT’);  

 DCL GIVESOCKET   CHAR(16)  INIT(’GIVESOCKET’);  

 DCL GLOBAL  CHAR(16)  INIT(’GLOBAL’);  

 DCL GNI_FLAGS  FIXED BIN(31);    /* getnameinfo  flags                 */ 

 DCL GNI_HOST  CHAR(255);         /* getnameinfo  host                  */ 

 DCL GNI_HOSTLEN  FIXED BIN(31);  /* getnameinfo  host length            */ 

 DCL GNI_SERVICE  CHAR(32);       /* getnameinfo  service                */ 

 DCL GNI_SERVLEN  FIXED BIN(31);         /* getnameinfo  service  length  */ 

 DCL HINTS POINTER;               /*getaddrinfo  hints  addrinfo  pointer*/  

 DCL 1 HOMEIF,                          /* Home Interface  Structure    */ 

   2 ADDRESS  CHAR(16);                  /* Home Interface  Address      */ 

 DCL HOSTADDR  FIXED  BIN(31);            /* host internet  address       */

 

220 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



DCL HOSTNAME  CHAR(24);                 /* host name from GETHOSTNAME  */ 

 DCL HOSTNAME_LEN  FIXED  BIN(31)  INIT(24);  

                                     /* host name length  GETHOSTNAME  */ 

 DCL HOW     FIXED BIN(31)  INIT(2);     /* how shutdown  is to be done */ 

 DCL I       FIXED BIN(15);             /* loop index                 */ 

 DCL ICMP    FIXED  BIN(31)  INIT(2);     /* prototype  icmp  ???        */ 

 DCL 1 ID,                             /*                            */ 

       2 TCPNAME  CHAR(8)  INIT(’TCPIP’),  /* remote  address  space       */ 

       2 ADSNAME  CHAR(8)  INIT(’USER9’);  /* local  address  space        */ 

 DCL IDENT    POINTER;                   /* TCP/IP  Addr Space          */ 

 DCL IFCONF   CHAR(255);                 /* configuration  structure     */ 

 DCL 1 IF_NAMEINDEX,  

   2 IF_NIHEADER,  

     3 IF_NITOTALIF  FIXED  BIN(31),  /*Total  Active  Interfaces  on Sys. */ 

     3 IF_NIENTRIES  FIXED  BIN(31),      /* Number  of entries  returned  */ 

   2 IF_NITABLE(10)  CHAR(24);  

 DCL 1 IF_NAMEINDEXENTRY,  

   2 IF_NIINDEX  FIXED BIN(31),          /* Interface  Index             */ 

   2 IF_NINAME   CHAR(16),             /* Interface  Name, blank  padded  */ 

   2 IF_NIEXT,  

     3 IF_NINAMETERM  CHAR(1),           /* Null for C for Name len=16  */ 

     3 IF_RESERVED   CHAR(3);            /* Reserved                    */ 

 DCL IFREQ    CHAR(255);                 /* interface  structure         */ 

 DCL INDEX    BUILTIN;  

 DCL IOCTL   CHAR(16)  INIT(’IOCTL’);  

 DCL IOCTL_CMD  FIXED BIN(31);           /* ioctl  command               */ 

 DCL IOCTL_REQARG   POINTER  ;           /* send   pointer  to data area*/  

 DCL IOCTL_RETARG   POINTER  ;           /* return  pointer  to data area*/  

 DCL IOCTL_REQ00    FIXED  BIN(31);       /* command  request  argument    */ 

 DCL IOCTL_REQ04    FIXED  BIN(31);       /* command  request  argument    */ 

 DCL IOCTL_REQ08    FIXED  BIN(31);       /* command  request  argument    */ 

 DCL IOCTL_REQ32    CHAR(32)  INIT(’  ’); /* command  request  argument    */ 

 DCL IOCTL_RET00    FIXED  BIN(31);       /* command  return   argument    */ 

 DCL IOCTL_RET04    FIXED  BIN(31);       /* command  return   argument    */ 

 DCL INITAPI  CHAR(16)  INIT(’INITAPI’);  /*                            */ 

 DCL 1 INTERNET,                        /* internet  address            */ 

       2 NETID1  FIXED  BIN(31)  INIT(9),  /* network  id, part 1         */ 

       2 NETID2  FIXED  BIN(31)  INIT(67),  /* network  id, part 2        */ 

       2 SUBNETID  FIXED  BIN(31)  INIT(30),  /* subnet  id               */ 

       2 HOSTID  FIXED  BIN(31)  INIT(137);  /* host id                  */ 

 DCL IP      FIXED  BIN(31)  INIT(1);     /* prototype  ip   ???         */ 

 DCL 1 IP_MREQ,  

       2 IMR_MULTIADDR,                 /* IP multicast  addr of group  */ 

         3 NETID1  FIXED BIN(31),        /* network  id, part 1         */ 

         3 NETID2  FIXED BIN(31),        /* network  id, part 2         */ 

         3 SUBNETID  FIXED BIN(31),      /* subnet  id                  */ 

         3 HOSTID  FIXED BIN(31),        /* host id                    */ 

       2 IMR_INTERFACE,                 /* local  IP addr of interface  */ 

         3 NETID1  FIXED BIN(31),        /* network  id, part 1         */ 

         3 NETID2  FIXED BIN(31),        /* network  id, part 2         */ 

         3 SUBNETID  FIXED BIN(31),      /* subnet  id                  */ 

         3 HOSTID  FIXED BIN(31);        /* host id                    */ 

 DCL 1 IPV6_MREQ,  

   2 IPV6MR_MULTIADDR  CHAR(16),  

   2 IPV6MR_INTERFACE  FIXED  BIN(31);  

 DCL IP_MULTICAST_TTL  FIXED  BIN(31)  INIT(1048579);  

 DCL IP_MULTICAST_LOOP  FIXED BIN(31)  INIT(1048580);  

 DCL IP_MULTICAST_IF  FIXED BIN(31)  INIT(1048583);  

 DCL IP_ADD_MEMBERSHIP  FIXED BIN(31)  INIT(1048581);  

 DCL IP_DROP_MEMBERSHIP  FIXED  BIN(31)  INIT(1048582);  

 DCL IPRES    POINTER;                 /* EZACIC09  RES addrinfo  ptr    */ 

 DCL IPV6_JOIN_GROUP  FIXED BIN(31)  INIT(65541);  

 DCL IPV6_LEAVE_GROUP  FIXED  BIN(31)  INIT(65542);  

 DCL IPV6_LOOPBACK  CHAR(3)  INIT(’::1’);

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 221



DCL IPV6_MULTICAST_HOPS  FIXED  BIN(31)  INIT(65545);  

 DCL IPV6_MULTICAST_IF  FIXED  BIN(31)  INIT(65543);  

 DCL IPV6_MULTICAST_LOOP  FIXED  BIN(31)  INIT(65540);  

 DCL IPV6_UNICAST_HOPS  FIXED  BIN(31)  INIT(65539);  

 DCL IPV6_V6ONLY  FIXED BIN(31)  INIT(65546);  

 DCL J       FIXED  BIN(15);             /* loop index                  */ 

 DCL K       FIXED  BIN(15);             /* loop index                  */ 

 DCL LENGTH   BUILTIN;  

 DCL LABL    CHAR(9);  

 DCL LISTEN   CHAR(16)  INIT(’LISTEN’);  

 DCL MAXSNO   FIXED  BIN(31)  INIT(0);     /* max descriptor  assigned     */ 

 DCL 1 MAXSOC_INPUT  FIXED BIN(31)  INIT(0);  

 DCL 1 MAXSOC_FWD,  

     2 MAXSOC_IGNORE  FIXED  BIN(15)  INIT(0),  

     2 MAXSOC   FIXED BIN(15)  INIT(255);  /* largest  sock # checked     */ 

 DCL MESSAGE  CHAR(50)  INIT(’I  love my 1 @ Rottweiler!’);  /* message   */ 

 DCL MSG     CHAR(100)  INIT(’  ’);      /*   message  text             */ 

 DCL 1 NAME_ID,                     /* socket  addr of connection  peer */ 

       2 FAMILY  FIXED BIN(15)  INIT(2),  /*addr’g  family   TCP/IP  def   */ 

       2 PORT   FIXED  BIN(15),          /* system  assigned  port #     */ 

       2 ADDRESS  FIXED  BIN(31),         /* 32-bit  internet             */ 

       2 RESERVED  CHAR(8);              /* reserved                    */ 

 DCL 1 NAME6_ID,                    /* socket  addr of connection  peer */ 

       2 FAMILY   FIXED  BIN(15)  INIT(19),   /* NAMELN  IGNORED  & FAMILY  */ 

       2 PORT    FIXED BIN(15),         /* port #                     */ 

       2 FLOWINFO  FIXED BIN(31),        /* Flow info                  */ 

       2 ADDRESS  CHAR(16),              /* IPv6 internet  address       */ 

       2 SCOPEID  FIXED  BIN(31);         /* Scope  ID                   */ 

 DCL NAMEL   CHAR(255)     VARYING;      /* name field,  long           */ 

 DCL NAMES   CHAR(24);                  /* name field,  short          */ 

 DCL NAMELEN  FIXED BIN(31);             /* length  of name/alias  field  */ 

 DCL NBYTE   FIXED BIN(31);             /* Number  of bytes  in buffer   */ 

 DCL 1 NETCONFHDR,                      /* Network  Configuration  Hdr  */ 

   2 NCHEYECATCHER  CHAR(4)  INIT(’6NCH’),  /* Eye Catcher  ’6NCH’        */ 

   2 NCHIOCTL  BIT(32)  INIT(’C014F608’BX),  

                                       /* The IOCTL being  processed  

                                          with this instance  of the 

                                          NetConfHdr.  (RAS item)      */ 

   2 NCHBUFFERLENGTH  FIXED BIN(31)  INIT(3200),  /* Buffer  Length  */ 

   2 NCHBUFFERPTR     POINTER,        /* Buffer  Pointer                 */ 

   2 NCHNUMENTRYRET  FIXED  BIN(31);   /* Number  of HomeIF  returned  via 

                                        SIOCGHOMEIF6  or the number  of 

                                        GRT6RtEntry’s  returned  via 

                                        SIOCGRT6TABLE.                */ 

 DCL NI_NOFQDN  FIXED BIN(31)  INIT(1);  

                                       /* flag:  getnameinfo           */ 

 DCL NI_NUMERICHOST  FIXED  BIN(31)  INIT(2);  

                                       /* flag:  getnameinfo           */ 

 DCL NI_NAMEREQD  FIXED BIN(31)  INIT(4);  

                                       /* flag:  getnameinfo           */ 

 DCL NI_NUMERICSERV  FIXED  BIN(31)  INIT(8);  

                                       /* flag:  getnameinfo           */ 

 DCL NI_DGRAM  FIXED  BIN(31)  INIT(10);  

                                       /* flag:  getnameinfo           */ 

 DCL NOTE(3)  CHAR(25)  INIT(’Now  is the time for 198 g’, 

                           ’ood people  to come to the’,  

                           ’ aid of their parties!’);  

 DCL NS      FIXED  BIN(15);             /* socket  descriptor,  new     */ 

 DCL NTOP    CHAR(16)  INIT(’NTOP’);     /* Numeric  to Presentation     */ 

 DCL NULL    BUILTIN;  

 DCL 1 NUMERIC_ADDR  CHAR(16);           /* NTOP/PTON  Numeric  address   */ 

 DCL OPNAMELEN  FIXED BIN(31);      /* Socket  address  structure  length  */ 

 DCL OPCANON  CHAR(256);                 /* Canonical  name             */ 

 DCL OPNAME   POINTER;                   /* Socket  address  structure    */

 

222 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



DCL OPNEXT   POINTER;            /* Next result  address  info in chain  */ 

 DCL OPTL    FIXED  BIN(31);             /* length  of OPTVAL  string     */ 

 DCL OPTLEN   FIXED BIN(31);             /* length  of OPTVAL  string     */ 

 DCL OPTN    CHAR(15);                  /* OPTNAME  value  (macro)       */ 

 DCL OPTNAME  FIXED BIN(31);             /* OPTNAME  value  (call)        */ 

 DCL OPTVAL   CHAR(255);                 /* GETSOCKOPT  option  data     */ 

 DCL OPTVALD  FIXED BIN(31);             /* SETSOCKOPT  option  data     */ 

 DCL 1 OPT_STRUC,                       /* structure  for option        */ 

       2 ON_OFF  FIXED  BIN(31)  INIT(1),  /* enable  option               */ 

       2 TIME   FIXED BIN(31)  INIT(5);  /* time-out  in seconds         */ 

 DCL 1 OPT_STRUCT,                      /* structure  for option        */ 

       2 ON     FIXED  BIN(31),          /* used for getsockopt         */ 

       2 TIMEOUT  FIXED BIN(31);         /* time-out  in seconds         */ 

 DCL PLITEST  BUILTIN;                   /* debug  tool                 */ 

 DCL PRESENTABLE_ADDR  CHAR(45);      /* NTOP/PTON  presentable  address  */ 

 DCL PRESENTABLE_ADDR_LEN  FIXED  BIN(15);  

                              /* NTOP/PTON  presentable  address  length*/  

 DCL PROTO    FIXED  BIN(31)  INIT(0);     /* prototype  default           */ 

 DCL PTON    CHAR(16)  INIT(’PTON’);     /* Presentation  to numeric     */ 

 DCL READ    CHAR(16)  INIT(’READ’);  

 DCL READV    CHAR(16)  INIT(’READV’);  

 DCL RECV    CHAR(16)  INIT(’RECV’);  

 DCL RECVFROM  CHAR(16)  INIT(’RECVFROM’);  

 DCL RECVMSG  CHAR(16)  INIT(’RECVMSG’);  

 DCL REUSE    FIXED  BIN(31)  INIT(’4’);   /* toggle,  reuse local addr   */ 

 DCL REQARG   FIXED BIN(31);             /* command  request  argument    */ 

 DCL RES     POINTER;                 /* getaddrinfo  RES addrinfo  ptr */ 

 DCL RETC    FIXED  BIN(31);             /* return  code variable        */ 

 DCL RETARG   CHAR(255);                 /* return  argument  data area  */ 

 DCL RETCODE  FIXED BIN(31)  INIT(0);     /* return  code                */ 

 DCL RETLEN   FIXED BIN(31);             /* return  area data length     */ 

 DCL RRETMSK  CHAR(4);                   /* indicate  READ EVENTS        */ 

 DCL RSNDMSK  CHAR(4);                /* check for pending  read events  */ 

 DCL RTENTRY  CHAR(50)  INIT(’dummy  table’);  /* router  entry            */ 

 DCL SAVEFAM   FIXED  BIN(15);            /* temporary  family  name      */ 

 DCL SELECB  CHAR(4)  INIT(’1’);  

 DCL SELECT  CHAR(16)  INIT(’SELECT’);  

 DCL SELECTEX  CHAR(16)  INIT(’SELECTEX’);  

 DCL SEND CHAR(16)  INIT(’SEND’);  

 DCL SENDMSG  CHAR(16)  INIT(’SENDMSG’);  

 DCL SENDTO  CHAR(16)  INIT(’SENDTO’);  

 DCL SETSOCKOPT  CHAR(16)  INIT(’SETSOCKOPT’);  

 DCL SHUTDOWN  CHAR(16)  INIT(’SHUTDOWN’);  

 DCL SIOCADDRT  FIXED BIN(31)  INIT(-2144295158);  

                                           /* flag:  add routing  entry*/  

 DCL SIOCATMARK  FIXED  BIN(31)  INIT(+1074046727);  

                                            /* flag:  out-of-band  data*/  

 DCL SIOCDELRT  FIXED BIN(31)  INIT(-2144295157);  

                                           /* flag:  delete  routing    */ 

 DCL SIOCGIFADDR  FIXED BIN(31)  INIT(-1071601907);  

                                             /*flag:  network  int addr*/  

 DCL SIOCGHOMEIF6  BIT(32)  INIT(’C014F608’BX);  

                                       /* flag: netw int config       */ 

 DCL SIOCGIFBRDADDR  FIXED  BIN(31)  INIT(-1071601902);  

                                                /*flag   net broadcast*/  

 DCL SIOCGIFCONF  FIXED BIN(31)  INIT(-1073174764);  

                                             /* flag:  netw int config*/  

 DCL SIOCGIFDSTADDR  FIXED  BIN(31)  INIT(-1071601905);  

                                                /* flag:  net des addr*/  

 DCL SIOCGIFFLAGS  FIXED  BIN(31)  INIT(-1071601903);  

                                              /* flag: net intf flags*/  

 DCL SIOCGIFMETRIC  FIXED BIN(31)  INIT(-1071601897);  

                                               /* flag:  get rout metr*/  

 DCL SIOCGIFNAMEINDEX  BIT(32)  INIT(’4000F603’BX);

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 223



/* flag:  name and indexes      */ 

 DCL SIOCGIFNETMASK  FIXED  BIN(31)  INIT(-1071601899);  

                                                /* flag: network  mask*/  

 DCL SIOCGIFNONSENSE  FIXED  BIN(31)  INIT(-1234567890);  

                                                 /* flag: nonsense    */ 

 DCL SIOCSIFMETRIC  FIXED BIN(31)  INIT(-2145343720);  

                                               /* flag:  set rout metr*/  

 /* The following  constant  is defined  in EZBZTLS1,  but is also       */ 

 /* included  here for completeness.                                   */ 

 /* DCL SIOCTTLSCTL   BIT(32)  INIT(’C038D90B’BX)                       */ 

                                               /* flag:  ttls         */          

 DCL SOCK     FIXED BIN(15);            /* socket  descriptor           */ 

 DCL SOCKET   CHAR(16)  INIT(’SOCKET’);  

 DCL SOCK_DATAGRAM  FIXED BIN(15);       /* socket  descriptor  datagram  */ 

 DCL SOCK_RAW  FIXED  BIN(15);            /* socket  descriptor  raw      */ 

 DCL SOCK_STREAM  FIXED BIN(15);         /* stream  socket  descriptor    */ 

 DCL SOCK_STREAM_1  FIXED BIN(15);       /* stream  socket  descriptor    */ 

 DCL SO_BROADCAST  FIXED  BIN(31)  INIT(32);  /* toggle,  broadcast  msg   */ 

 DCL SO_ERROR  FIXED  BIN(31)  INIT(4103);  /* check/clear  async error    */ 

 DCL SO_KEEPALIVE  FIXED  BIN(31)  INIT(8);  /* request  status  of stream*/  

 DCL SO_LINGER   FIXED BIN(31)  INIT(128);  /* toggle,  linger  on close  */ 

 DCL SO_OOBINLINE  FIXED  BIN(31)  INIT(256);/*toggle,  out-of-bound  data*/  

 DCL SO_REUSEADDR  FIXED  

                BIN(31)  INIT(4);        /* toggle,  local  address  reuse*/  

 DCL SO_SNDBUF   FIXED BIN(31)  INIT(4097);  

 DCL SO_TYPE  FIXED BIN(31)  INIT(4104);  /* return  type of socket       */ 

 DCL STRING   BUILTIN;  

 DCL SUBSTR   BUILTIN;  

 DCL SUBTASK  CHAR(8)  INIT(’ANYNAME’);   /* task/path  identifier        */ 

 DCL SYNC    CHAR(16)  INIT(’SYNC’);  

 DCL TAKESOCKET  CHAR(16)  INIT(’TAKESOCKET’);  

 DCL TASK    CHAR(16)  INIT(’TASK’);  

 DCL TERMAPI  CHAR(16)  INIT(’TERMAPI’);  /*                            */ 

 DCL TIME    BUILTIN;  

 DCL 1 TIMEOUT,  

       2  TIME_SEC   FIXED  BIN(31),      /* value  in secs              */ 

       2  TIME_MSEC  FIXED  BIN(31);      /* value  in millisecs          */ 

 DCL TYPE_DATAGRAM  FIXED BIN(31)  INIT(2);/*fixed  lengthconnectionless*/  

 DCL TYPE_RAW   FIXED  BIN(31)  INIT(3);  /* internal  protocol  interface  */ 

 DCL TYPE_STREAM  FIXED BIN(31)  INIT(1);  /* two-way  byte stream        */ 

 DCL WRETMSK  CHAR(4);                   /* indicate  WRITE  EVENTS       */ 

 DCL WRITE   CHAR(16)  INIT(’WRITE’);  

 DCL WRITEV    CHAR(16)  INIT(’WRITEV’);  

 DCL WSNDMSK  CHAR(4);                /*check  for pending  write  events  */ 

 DCL TCP_NODELAY  FIXED BIN(31)  INIT(-2147483647);  

COBOL call interface sample IPv6 server program 

The  EZASO6CS  program  is a server  program  that  shows  you  how  to use  the  

following  calls  provided  by  the  call  socket  interface:  

v   ACCEPT  

v   BIND  

v   CLOSE  

v   EZACIC09  

v   FREEADDRINFO  

v   GETADDRINFO  

v   GETCLIENTID  

v   GETHOSTNAME  

v   INITAPI  

v   LISTEN  

v   NTOP  

v   PTON  

 

224 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|
|
|
|



v   READ  

v   SOCKET  

v   TERMAPI  

v   WRITE

  

  

      ***********************************************************************  

      *                                                                     * 

      *   MODULE  NAME:   EZASO6CS  - THIS  IS A VERY  SIMPLE  IPV6  SERVER         * 

      *                                                                     * 

      * Copyright:     Licensed  Materials  - Property  of IBM                  * 

      *                                                                     * 

      *               "Restricted  Materials  of IBM"                          * 

      *                                                                     * 

      *               5694-A01                                               * 

      *                                                                     * 

      *               (C)  Copyright  IBM  Corp.  2002,  2003                     * 

      *                                                                     * 

      *               US Government  Users  Restricted  Rights  -               * 

      *               Use,  duplication  or disclosure  restricted  by          * 

      *               GSA  ADP  Schedule  Contract  with  IBM  Corp.               * 

      *                                                                     * 

      * Status:        CSV1R5                                                 * 

      *                                                                     * 

      *   LANGUAGE:   COBOL  II                                               * 

      *                                                                     * 

      ***********************************************************************  

       Identification  Division.  

      *========================*  

  

       Program-id.  EZASO6CS.  

  

      *=====================*  

       Environment  Division.  

      *=====================*  

  

      *==============*  

       Data  Division.  

      *==============*  

  

       Working-storage  Section.  

      *---------------------------------------------------------------*  

      * Socket  interface  function  codes                                * 

      *---------------------------------------------------------------*  

       01  soket-functions.  

           02 soket-accept           pic  x(16)  value  ’ACCEPT           ’. 

           02 soket-bind             pic  x(16)  value  ’BIND             ’. 

           02 soket-close            pic  x(16)  value  ’CLOSE            ’. 

           02 soket-connect          pic  x(16)  value  ’CONNECT          ’. 

           02 soket-fcntl            pic  x(16)  value  ’FCNTL            ’. 

           02 soket-freeaddrinfo     pic  x(16)  value  ’FREEADDRINFO     ’. 

           02 soket-getaddrinfo      pic  x(16)  value  ’GETADDRINFO      ’. 

           02 soket-getclientid      pic  x(16)  value  ’GETCLIENTID      ’. 

           02 soket-gethostbyaddr    pic  x(16)  value  ’GETHOSTBYADDR    ’. 

           02 soket-gethostbyname    pic  x(16)  value  ’GETHOSTBYNAME    ’. 

           02 soket-gethostid        pic  x(16)  value  ’GETHOSTID        ’. 

           02 soket-gethostname      pic  x(16)  value  ’GETHOSTNAME      ’. 

           02 soket-getnameinfo      pic  x(16)  value  ’GETNAMEINFO      ’. 

           02 soket-getpeername      pic  x(16)  value  ’GETPEERNAME      ’. 

           02 soket-getsockname      pic  x(16)  value  ’GETSOCKNAME      ’. 

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  1 of 13)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 225



02 soket-getsockopt       pic  x(16)  value  ’GETSOCKOPT       ’. 

           02 soket-givesocket       pic  x(16)  value  ’GIVESOCKET       ’. 

           02 soket-initapi          pic  x(16)  value  ’INITAPI          ’. 

           02 soket-ioctl            pic  x(16)  value  ’IOCTL            ’. 

           02 soket-listen           pic  x(16)  value  ’LISTEN           ’. 

           02 soket-ntop             pic  x(16)  value  ’NTOP             ’. 

           02 soket-pton             pic  x(16)  value  ’PTON             ’. 

           02 soket-read             pic  x(16)  value  ’READ             ’. 

           02 soket-recv             pic  x(16)  value  ’RECV             ’. 

           02 soket-recvfrom         pic  x(16)  value  ’RECVFROM         ’. 

           02 soket-select           pic  x(16)  value  ’SELECT           ’. 

           02 soket-send             pic  x(16)  value  ’SEND             ’. 

           02 soket-sendto           pic  x(16)  value  ’SENDTO           ’. 

           02 soket-setsockopt       pic  x(16)  value  ’SETSOCKOPT       ’. 

           02 soket-shutdown         pic  x(16)  value  ’SHUTDOWN         ’. 

           02 soket-socket           pic  x(16)  value  ’SOCKET           ’. 

           02 soket-takesocket       pic  x(16)  value  ’TAKESOCKET       ’. 

           02 soket-termapi          pic  x(16)  value  ’TERMAPI          ’. 

           02 soket-write            pic  x(16)  value  ’WRITE            ’. 

      *---------------------------------------------------------------*  

      * Work  variables                                                 * 

      *---------------------------------------------------------------*  

       01   errno                           pic  9(8)  binary  value  zero.  

       01   retcode                         pic  s9(8)  binary  value  zero.  

       01   client-ipaddr-dotted            pic  x(15)  value  space.  

       01   server-ipaddr-dotted            pic  x(15)  value  space.  

       01   ezaconn-function                pic  x value  space.  

           88 CONNECTED                          value  ’Y’.  

       01   saved-message-id                pic  x(8)  value  space.  

           88  close-down-message-received   value  ’*CLSDWN*’.  

       01   Terminate-Options               pic  x value  space.  

           88 Opened-API                             value  ’A’.  

           88 Opened-Socket                          value  ’S’.  

       01   saved-message-id-len            pic  9(8)  Binary  value  8. 

       01   Cur-time  . 

           02  Hour                        pic  9(2).  

           02  Minute                      pic  9(2).  

           02  Second                      pic  9(2).  

           02  Hund-Sec                    pic  9(2).  

       01   S                              pic  9(4)   comp.  

      *---------------------------------------------------------------*  

      * Variables  used  for  the  INITAPI  call                            * 

      *---------------------------------------------------------------*  

       01   maxsoc-fwd                      pic  9(8)  Binary.  

       01   maxsoc-rdf  redefines  maxsoc-fwd.  

           02 filler                       pic  x(2).  

           02 maxsoc                       pic  9(4)  Binary.  

       01   initapi-ident.  

           05  tcpname                     pic  x(8)  Value  ’TCPCS   ’. 

           05  asname                      pic  x(8)  Value  space.  

       01   subtask                         pic  x(8)  value  ’EZASO6CS’.  

       01   maxsno                          pic  9(8)  Binary  Value  1. 

      *---------------------------------------------------------------*  

      * Variables  returned  by the  GETCLIENTID  Call                     * 

      *---------------------------------------------------------------*  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  2 of 13)

 

226 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



01  clientid.  

           05  clientid-domain             pic  9(8)  Binary  value  19.  

           05  clientid-name               pic  x(8)  value  space.  

           05  clientid-task               pic  x(8)  value  space.  

           05  filler                      pic x(20)  value  low-value.  

      *---------------------------------------------------------------*  

      * Variables  used  for  the  SOCKET  call                             * 

      *---------------------------------------------------------------*  

       01  AF-INET                         pic  9(8)  Binary  Value  2. 

       01  AF-INET6                        pic 9(8)  Binary  Value  19. 

       01  SOCK-STREAM                     pic 9(8)  Binary  Value  1.  

       01  SOCK-DATAGRAM                   pic  9(8)  Binary  Value  2. 

       01  SOCK-RAW                        pic 9(8)  Binary  Value  3. 

       01  IPPROTO-IP                      pic  9(8)  Binary  Value  zero.  

       01  IPPROTO-TCP                     pic 9(8)  Binary  Value  6.  

       01  IPPROTO-UDP                     pic 9(8)  Binary  Value  17.  

       01  IPPROTO-IPV6                    pic  9(8)  Binary  Value  41.  

       01  socket-descriptor               pic 9(4)  Binary  Value  zero.  

      *---------------------------------------------------------------*  

      * Variables  returned  by the  GETHOSTNAME  Call                     * 

      *---------------------------------------------------------------*  

       01  host-name-len                   pic  9(8)  binary.  

       01  host-name                       pic  x(24).  

       01  host-name-char-count            pic 9(4)  binary.  

       01  host-name-unstrung              pic x(24)  value  spaces.  

      *---------------------------------------------------------------*  

      * Variables  used/returned  by the  GETADDRINFO  Call                * 

      *---------------------------------------------------------------*  

       01  node-name                       pic  x(255).  

       01  node-name-len                   pic  9(8)  binary.  

       01  service-name                    pic  x(32).  

       01  service-name-len                pic  9(8)  binary.  

       01  canonical-name-len              pic 9(8)  binary.  

       01  ai-passive                      pic  9(8)  binary  value  1. 

       01  ai-canonnameok                  pic  9(8)  binary  value  2. 

       01  ai-numerichost                  pic  9(8)  binary  value  4. 

       01  ai-numericserv                  pic  9(8)  binary  value  8. 

       01  ai-v4mapped                     pic 9(8)  binary  value  16.  

       01  ai-all                          pic 9(8)  binary  value  32.  

       01  ai-addrconfig                   pic  9(8)  binary  value  64.  

      *---------------------------------------------------------------*  

      * Variables  used  for  the  BIND  call                               * 

      *---------------------------------------------------------------*  

       01  server-socket-address.  

           05  server-family               pic  9(4)  Binary  value  19.  

           05  server-port                 pic  9(4)  Binary  value  1031.  

           05  server-flowinfo             pic  9(8)  Binary  value  0. 

           05  server-ipaddr.  

               10 filler                   pic  9(16)  Binary  value  0.  

               10 filler                   pic  9(16)  Binary  value  0.  

           05  server-scopeid              pic  9(8)  Binary  value  0. 

       01  NBYTE                   PIC  9(8)   COMP  value  80.  

       01  BUF                     PIC  X(80).  

       01  BACKLOG                 PIC  S9(8)  COMP   VALUE  10. 

      *---------------------------------------------------------------*  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  3 of 13)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 227



* Variables  used/returned  by the  EZACIC09  call                   * 

      *---------------------------------------------------------------*  

       01   input-addrinfo-ptr              usage  is pointer.  

       01   output-name-len                 pic  9(8)  binary.  

       01   output-canonical-name           pic  x(256).  

       01   output-name                     usage  is pointer.  

       01   output-next-addrinfo            usage  is pointer.  

      *---------------------------------------------------------------*  

      * Variables  used  for  the  LISTEN  call                             * 

      *---------------------------------------------------------------*  

       01   backlog-level                   pic  9(4)  Binary  Value  zero.  

      *---------------------------------------------------------------*  

      * Variables  used  for  the  ACCEPT  call                             * 

      *---------------------------------------------------------------*  

       01   socket-descriptor-new           pic  9(4)  Binary  Value  zero.  

      *---------------------------------------------------------------*  

      * Variables  used  for  the  NTOP/PTON  call                          * 

      *---------------------------------------------------------------*  

       01   IN6ADDR-ANY                     pic  x(45)  

                               value  ’::’.  

       01   IN6ADDR-LOOPBACK                pic  x(45)  

                               value  ’::1’.  

       01   ntop-family                     pic  9(8)  Binary.  

       01   pton-family                     pic  9(8)  Binary.  

       01   presentable-addr                pic  x(45)  value  spaces.  

       01   presentable-addr-len            pic  9(4)  Binary  value  45.  

       01   numeric-addr.  

           05 filler                       pic  9(16)  Binary  Value  0. 

           05 filler                       pic  9(16)  Binary  Value  0. 

      *---------------------------------------------------------------*  

      * Variables  used  by the  RECV  Call                                * 

      *---------------------------------------------------------------*  

       01   client-socket-address.  

           05  client-family               pic  9(4)  Binary  Value  19.  

           05  client-port                 pic  9(4)  Binary  Value  1032.  

           05  client-flowinfo             pic  9(8)  Binary  Value  zero.  

           05  client-ipaddr.  

               10 filler                   pic  9(16)  Binary  Value  0. 

               10 filler                   pic  9(16)  Binary  Value  0. 

           05  client-scopeid              pic  9(8)  Binary  Value  zero.  

      *---------------------------------------------------------------*  

      * Buffer  and  length  field  for  recv  and  send  operation            * 

      *---------------------------------------------------------------*  

       01   send-request-len                pic  9(8)  Binary  Value  zero.  

       01   read-request-len                pic  9(8)  Binary  Value  zero.  

       01   read-buffer                     pic  x(4000)  value  space.  

       01   filler  redefines  read-buffer.  

           05  message-id                  pic  x(8).  

           05  filler                      pic  x(3992).  

      *---------------------------------------------------------------*  

      * recv  and  send  flags                                            * 

      *---------------------------------------------------------------*  

       01   send-flag                       pic  9(8)  Binary  value  zero.  

       01   recv-flag                       pic  9(8)  Binary  value  zero.  

      *---------------------------------------------------------------*  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  4 of 13)

 

228 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



* Error  message  for  socket  interface  errors                      * 

      *---------------------------------------------------------------*  

       77  failure                         pic  S9(8)  comp.  

       01  ezaerror-msg.  

           05  filler                      pic x(9)  Value  ’Function=’.  

           05  ezaerror-function           pic x(16)  Value  space.  

           05  filler                      pic x value  ’ ’. 

           05  filler                      pic x(8)  Value  ’Retcode=’.  

           05  ezaerror-retcode            pic  ---99.  

           05  filler                      pic x value  ’ ’. 

           05  filler                      pic x(9)  Value  ’Errorno=’.  

           05  ezaerror-errno              pic  zzz99.  

           05  filler                      pic x value  ’ ’. 

           05  ezaerror-text               pic  x(50)  value  ’ ’. 

  

      *================  

       Linkage  Section.  

      *================  

       01  L1.  

           03  hints-addrinfo.  

               05  hints-ai-flags          pic  9(8)  binary.  

               05  hints-ai-family         pic  9(8)  binary.  

               05  hints-ai-socktype       pic 9(8)  binary.  

               05  hints-ai-protocol       pic 9(8)  binary.  

               05  filler                  pic 9(8)  binary.  

               05  filler                  pic 9(8)  binary.  

               05  filler                  pic 9(8)  binary.  

               05  filler                  pic 9(8)  binary.  

           03  hints-addrinfo-ptr          usage  is pointer.  

           03  results-addrinfo-ptr        usage  is pointer.  

      * 

      * Results  address  info  

      * 

       01  results-addrinfo.  

           05  results-ai-flags            pic  9(8)  binary.  

           05  results-ai-family           pic 9(8)  binary.  

           05  results-ai-socktype         pic  9(8)  binary.  

           05  results-ai-protocol         pic  9(8)  binary.  

           05  results-ai-addr-len         pic  9(8)  binary.  

           05  results-ai-canonical-name   usage  is pointer.  

           05  results-ai-addr-ptr         usage  is pointer.  

           05  results-ai-next-ptr         usage  is pointer.  

      * 

      * Socket  address  structure  from  EZACIC09.  

      * 

       01  output-name-ptr                 usage  is pointer.  

       01  output-ip-name.  

           03  output-ip-family            pic  9(4)  Binary.  

           03  output-ip-port              pic  9(4)  Binary.  

           03  output-ip-sock-data         pic  x(24).  

           03  output-ipv4-sock-data  redefines  

               output-ip-sock-data.  

               05  output-ipv4-ipaddr      pic  9(8)  Binary.  

               05  filler                  pic x(20).  

           03  output-ipv6-sock-data  redefines  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  5 of 13)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 229



output-ip-sock-data.  

               05  output-ipv6-flowinfo    pic  9(8)  Binary.  

               05  output-ipv6-ipaddr.  

                   10 filler               pic  9(16)  Binary.  

                   10 filler               pic  9(16)  Binary.  

               05  output-ipv6-scopeid     pic  9(8)  Binary.  

  

      *=============================================*  

       Procedure  Division  using  L1.  

      *=============================================*  

  

      *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*  

      *           P R O C E D U R E     C O N T R O L S              * 

      *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*  

  

           Perform  Initialize-API       thru     Initialize-API-Exit.  

           Perform  Get-ClientID         thru     Get-ClientID-Exit.  

           Perform  Sockets-Descriptor   thru     Sockets-Descriptor-Exit.  

           Perform  Presentation-To-Numeric  thru  

                                     Presentation-To-Numeric-Exit.  

           Perform  Get-Host-Name        thru     Get-Host-Name-Exit.  

           Perform  Get-Address-Info     thru     Get-Address-Info-Exit.  

           Perform  Bind-Socket          thru     Bind-Socket-Exit.  

           Perform  Listen-To-Socket     thru     Listen-To-Socket-Exit.  

           Perform  Accept-Connection    thru     Accept-Connection-Exit.  

           Move  45 to  presentable-addr-len.  

           Move  spaces  to presentable-addr.  

           Move  server-ipaddr  to numeric-addr.  

           Move  19 to  ntop-family.  

           Perform  Numeric-TO-Presentation  thru  

                                     Numeric-To-Presentation-Exit.  

           Perform  Read-Message         thru     Read-Message-Exit.  

           Perform  Write-Message        thru     Write-Message-Exit.  

           Perform  Close-Socket         thru     Exit-Now.  

  

      *---------------------------------------------------------------*  

      * Initialize  socket  API                                          * 

      *---------------------------------------------------------------*  

       Initialize-API.  

           Move  soket-initapi  to ezaerror-function.  

      *---------------------------------------------------------------*  

      * If you  want  to set  maxsoc  to the  max,  uncomment  the  next  line.*  

      *---------------------------------------------------------------*  

      *    Move  65535  to maxsoc-fwd.  

           Call  ’EZASOKET’  using  soket-initapi  maxsoc  initapi-ident  

              subtask  maxsno  errno  retcode.  

           Move  ’Initapi  failed’  to ezaerror-text.  

           If retcode  < 0  move  12 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

           Move  ’A’  to Terminate-Options.  

       Initialize-API-Exit.  

            Exit.  

  

      *---------------------------------------------------------------*  

      * Let  us  see  the  client-id                                       * 

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  6 of 13)

 

230 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



*---------------------------------------------------------------*  

       Get-ClientID.  

           move  soket-getclientid  to  ezaerror-function.  

           Call  ’EZASOKET’  using  soket-getclientid  clientid  errno  

                             retcode.  

           Display  ’Client  ID = ’ clientid-name  

                   ’task=’  clientid-task.  

           Move  ’Getclientid  failed’  to ezaerror-text.  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Get-ClientID-Exit.  

            Exit.  

  

      *---------------------------------------------------------------*  

      * Get  us a stream  socket  descriptor.                             * 

      *---------------------------------------------------------------*  

       Sockets-Descriptor.  

           move  soket-socket  to ezaerror-function.  

           Call  ’EZASOKET’  using  soket-socket  AF-INET6  SOCK-STREAM  

              IPPROTO-IP  errno  retcode.  

           Move  ’Socket  call  failed’  to ezaerror-text.  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

           Move  retcode  to socket-descriptor.  

           Move  ’S’  to Terminate-Options.  

       Sockets-Descriptor-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Use  PTON  to create  an IP address  to bind  to.                  * 

      *---------------------------------------------------------------*  

       Presentation-To-Numeric.  

           move  soket-pton  to ezaerror-function.  

           move  IN6ADDR-LOOPBACK  to presentable-addr.  

           Call  ’EZASOKET’  using  soket-pton  AF-INET6  

              presentable-addr  presentable-addr-len  

              numeric-addr  

              errno  retcode.  

           Move  ’PTON  call  failed’  to ezaerror-text.  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

           move  numeric-addr  to server-ipaddr.  

       Presentation-To-Numeric-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Get  the  host  name.                                             * 

      *---------------------------------------------------------------*  

       Get-Host-Name.  

           move  soket-gethostname  to  ezaerror-function.  

           move  24 to host-name-len.  

           Call  ’EZASOKET’  using  soket-gethostname  

              host-name-len  host-name  

              errno  retcode.  

           display  ’Host  name  = ’ host-name.  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  7 of 13)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 231



Move  ’GETHOSTNAME  call  failed’  to ezaerror-text.  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Get-Host-Name-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Get  address  information                                        * 

      *---------------------------------------------------------------*  

       Get-Address-Info.  

           move  soket-getaddrinfo  to ezaerror-function.  

           move  0 to host-name-char-count.  

           inspect  host-name  tallying  host-name-char-count  

              for  characters  before  x’00’.  

           unstring  host-name  delimited  by x’00’  

              into  host-name-unstrung  

              count  in host-name-char-count.  

           string  host-name-unstrung  delimited  by  ’ ’ 

              into  node-name.  

           move  host-name-char-count  to node-name-len  

           display  ’node-name-len:  ’ node-name-len.  

           move  spaces  to service-name.  

           move  0 to service-name-len.  

           move  0 to hints-ai-family.  

           move  ai-canonnameok  to hints-ai-flags  

           move  0 to hints-ai-socktype.  

           move  0 to hints-ai-protocol.  

           display  ’GETADDRINFO  Input  fields:  ’ 

           display  ’Node  name  = ’ node-name.  

           display  ’Node  name  length  = ’ node-name-len.  

           display  ’Service  name  = ’ service-name.  

           display  ’Service  name  length  = ’ service-name-len.  

           display  ’Hints  family  = ’ hints-ai-family.  

           display  ’Hints  flags  = ’ hints-ai-flags.  

           display  ’Hints  socktype  = ’ hints-ai-socktype.  

           display  ’Hints  protocol  = ’ hints-ai-protocol.  

           set  address  of results-addrinfo  to results-addrinfo-ptr.  

           move  soket-getaddrinfo  to ezaerror-function.  

           set  hints-addrinfo-ptr  to address  of hints-addrinfo.  

           Call  ’EZASOKET’  using  soket-getaddrinfo  

              node-name  node-name-len  

              service-name  service-name-len  

              hints-addrinfo-ptr  

              results-addrinfo-ptr  

              canonical-name-len  

              errno  retcode.  

           Move  ’GETADDRINFO  call  failed’  to ezaerror-text.  

           If retcode  < 0  move  24 to failure  

               Perform  Return-Code-Check  thru  Return-Code-Exit  

           else  

               Perform  Return-Code-Check  thru  Return-Code-Exit  

               display  ’Address  of results  addrinfo  is ’ 

                   results-addrinfo-ptr.  

               set  address  of results-addrinfo  to results-addrinfo-ptr  

               set  input-addrinfo-ptr  to address  of results-addrinfo  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  8 of 13)

 

232 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



display  ’Address  of input-addrinfo-ptr  is ’ 

                   input-addrinfo-ptr.  

               Perform  Format-Result-AI  thru  Format-Result-AI-Exit  

               Perform  Set-Next-Addrinfo  thru  

                   Set-Next-Addrinfo-Exit  until  

                       output-next-addrinfo  is equal  to NULLS  

               Perform  Free-Address-Info  thru  Free-Address-Info-Exit.  

       Get-Address-Info-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Set  next  addrinfo  address                                      * 

      *---------------------------------------------------------------*  

       Set-Next-Addrinfo.  

           display  ’Setting  next  addrinfo  address  as ’ 

               results-ai-next-ptr.  

           display  ’Address  of output-next-addrinfo  as ’ 

               output-next-addrinfo.  

           set  address  of results-addrinfo  to output-next-addrinfo.  

           set  input-addrinfo-ptr  to  address  of results-addrinfo.  

           display  ’Address  of input-addrinfo-ptr  is  ’ 

               input-addrinfo-ptr.  

           Perform  Format-Result-AI  thru  Format-Result-AI-Exit.  

       Set-Next-Addrinfo-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Format  result  address  information                              * 

      *---------------------------------------------------------------*  

       Format-Result-AI.  

           move  ’EZACIC09’  to ezaerror-function.  

           move  zeros  to output-name-len.  

           move  spaces  to output-canonical-name.  

           set  output-name  to nulls.  

           set  output-next-addrinfo  to nulls.  

           Call  ’EZACIC09’  using  input-addrinfo-ptr  

                  output-name-len  

                  output-canonical-name  

                  output-name  

                  output-next-addrinfo  

                  retcode.  

           Move  ’EZACIC09  call  failed’  to ezaerror-text.  

           display  ’EZACIC09  output:’  

           display  ’Canonical  name  = ’ output-canonical-name.  

           display  ’name  length     = ’ output-name-len.  

           display  ’name            = ’ output-name.  

           display  ’next  addrinfo   = ’ output-next-addrinfo.  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

           display  ’Formatting  result  address  ip address’.  

           set  address  of output-ip-name  to  output-name.  

           move  results-ai-family  to  ntop-family.  

           display  ’ntop-family  = ’ ntop-family.  

           if ntop-family  = AF-INET  then  

               display  ’Formatting  ipv4  addres’  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  9 of 13)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 233



move  output-ipv4-ipaddr  to numeric-addr  

               move  16 to  presentable-addr-len  

           else  

               display  ’Formatting  ipv6  addres’  

               move  output-ipv6-ipaddr  to numeric-addr  

               move  45 to  presentable-addr-len.  

           move  spaces  to presentable-addr.  

           Perform  Numeric-To-Presentation  thru  

                                     Numeric-To-Presentation-Exit.  

       Format-Result-AI-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Release  resolver  storage                                       * 

      *---------------------------------------------------------------*  

       Free-Address-Info.  

           move  soket-freeaddrinfo  to ezaerror-function.  

           Call  ’EZASOKET’  using  soket-freeaddrinfo  

              results-addrinfo-ptr  

              errno  retcode.  

           Move  ’FREEADDRINFO  call  failed’  to ezaerror-text.  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Free-Address-Info-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Bind  socket  to our  server  port  number                          * 

      *---------------------------------------------------------------*  

       Bind-Socket.  

           Move  soket-bind  to ezaerror-function.  

           Call  ’EZASOKET’  using  soket-bind  socket-descriptor  

                          server-socket-address  errno  retcode.  

           Display  ’Port  = ’ server-port  

               ’ Address  = ’ presentable-addr.  

           Move  ’Bind  call  failed’  to ezaerror-text  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Bind-Socket-Exit.  

            Exit.  

  

      *---------------------------------------------------------------*  

      *   Listen  to the  socket                                         * 

      *---------------------------------------------------------------*  

       Listen-To-Socket.  

           Move  soket-listen  to ezaerror-function.  

           Call  ’EZASOKET’  using  soket-listen  socket-descriptor  

                          backlog  errno  retcode.  

           Display  ’Backlog=’  backlog.  

           Move  ’Listen  call  failed’  to ezaerror-text.  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Listen-To-Socket-Exit.  

            Exit.  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  10 of 13)

 

234 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



*---------------------------------------------------------------*  

      *   Accept  a connection  request                                  * 

      *---------------------------------------------------------------*  

       Accept-Connection.  

           Move  soket-accept  to ezaerror-function.  

           Call  ’EZASOKET’  using  soket-accept  socket-descriptor  

                          server-socket-address  errno  retcode.  

           Move  retcode  to socket-descriptor-new.  

           Display  ’New  socket=’  retcode.  

           Move  ’Accept  call  failed’  to ezaerror-text  . 

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Accept-Connection-Exit.  

            Exit.  

  

      *---------------------------------------------------------------*  

      * Use  NTOP  to display  the  IP address.                            * 

      *---------------------------------------------------------------*  

       Numeric-To-Presentation.  

           move  soket-ntop  to ezaerror-function.  

           Call  ’EZASOKET’  using  soket-ntop  ntop-family  

              numeric-addr  

              presentable-addr  presentable-addr-len  

              errno  retcode.  

           Display  ’Presentable  address  = ’ presentable-addr.  

           Move  ’NTOP  call  failed’  to ezaerror-text.  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Numeric-TO-Presentation-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Read  a message  from  the  client.                                * 

      *---------------------------------------------------------------*  

       Read-Message.  

           move  soket-read  to ezaerror-function.  

           move  spaces  to buf.  

           display  ’New  socket  desciptor  = ’ socket-descriptor-new.  

           Call  ’EZASOKET’  using  soket-read  socket-descriptor-new  

              nbyte  buf  

              errno  retcode.  

           display  ’Message  received  = ’ buf.  

           Move  ’Read  call  failed’  to ezaerror-text.  

            If retcode  < 0 move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Read-Message-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Write  a message  to the  client.                                 * 

      *---------------------------------------------------------------*  

       Write-Message.  

           move  soket-write  to ezaerror-function.  

           move  ’Message  from  EZASO6SC’  to buf.  

           Call  ’EZASOKET’  using  soket-write  socket-descriptor-new  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  11 of 13)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 235



nbyte  buf  

              errno  retcode.  

           Move  ’Write  call  failed’  to ezaerror-text  

            If retcode  < 0 move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Write-Message-Exit.  

           Exit.  

  

  

      *---------------------------------------------------------------*  

      * Close  connected  socket                                         * 

      *---------------------------------------------------------------*  

       Close-Socket.  

           move  soket-close  to ezaerror-function  

           Call  ’EZASOKET’  using  soket-close  socket-descriptor-new  

                                 errno  retcode.  

           Accept  cur-time  from  time.  

           Display  cur-time  ’ EZASO6CS  : CLOSE  RETCODE=’  RETCODE  

               ’ ERRNO=  ’ ERRNO.  

           If retcode  < 0 move  24 to failure  

              move  ’Close  call  Failed’  to ezaerror-text  

              perform  write-ezaerror-msg  thru  write-ezaerror-msg-exit.  

       Close-Socket-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Terminate  socket  API                                           * 

      *---------------------------------------------------------------*  

  

       exit-term-api.  

           Call  ’EZASOKET’  using  soket-termapi.  

  

      *---------------------------------------------------------------*  

      * Terminate  program                                              * 

      *---------------------------------------------------------------*  

  

       exit-now.  

           move  failure  to return-code.  

           Goback.  

  

      *---------------------------------------------------------------*  

      * Subroutine                                                     * 

      * ----------                                                     * 

      *                                                               * 

      * Write  out  an error  message                                     * 

      *---------------------------------------------------------------*  

  

       write-ezaerror-msg.  

           move  errno  to ezaerror-errno.  

           move  retcode  to ezaerror-retcode.  

           display  ezaerror-msg.  

       write-ezaerror-msg-exit.  

           exit.  

  

      *---------------------------------------------------------------*  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  12 of 13)

 

236 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



COBOL call interface sample IPv6 client program 

The  EZASO6CC  program  is a client  module  that  shows  you  how  to  use  the  

following  calls  provided  by  the  call  socket  interface:  

v   CLOSE  

v   CONNECT  

v   GETCLIENTID  

v   GETNAMEINFO  

v   INITAPI  

v   NTOP  

v   PTON  

v   READ  

v   SHUTDOWN  

v   SOCKET  

v   TERMAPI  

v   WRITE

  

      * Check  Return  Code  after  each  Socket  Call                       * 

      *---------------------------------------------------------------*  

       Return-Code-Check.  

            Accept  Cur-Time  from  TIME.  

            move  errno  to ezaerror-errno.  

            move  retcode  to ezaerror-retcode.  

            Display  Cur-Time  ’ EZASO6CS:  ’ ezaerror-function  

                              ’ RETCODE=  ’ ezaerror-retcode  

                              ’ ERRNO=  ’ ezaerror-errno.  

            IF RETCODE  < 0 

               Perform  Write-ezaerror-msg  thru  write-ezaerror-msg-exit  

               Move  zeros  to errno  retcode  

               IF Opened-Socket  Go to Close-Socket  

               ELSE  IF Opened-API  Go to exit-term-api  

                    ELSE  Go to exit-now.  

            Move  zeros  to errno  retcode.  

       Return-Code-Exit.  

           Exit.  

Figure  77.  EZASO6CS  COBOL  call  interface  sample  IPv6  server  program  (Part  13  of 13)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 237



***********************************************************************  

      *                                                                     * 

      *   MODULE  NAME:   EZASO6CC  - THIS  IS A VERY  SIMPLE  IPV6  CLIENT         * 

      *                                                                     * 

      * Copyright:     Licensed  Materials  - Property  of IBM                  * 

      *                                                                     * 

      *               "Restricted  Materials  of IBM"                          * 

      *                                                                     * 

      *               5694-A01                                               * 

      *                                                                     * 

      *               (C)  Copyright  IBM  Corp.  2002,  2003                     * 

      *                                                                     * 

      *               US Government  Users  Restricted  Rights  -               * 

      *               Use,  duplication  or disclosure  restricted  by          * 

      *               GSA  ADP  Schedule  Contract  with  IBM  Corp.               * 

      *                                                                     * 

      * Status:        CSV1R5                                                 * 

      *                                                                     * 

      *   LANGUAGE:   COBOL  II                                               * 

      *                                                                     * 

      ***********************************************************************  

  

       Identification  Division.  

      *========================*  

  

       Program-id.  EZASO6CC.  

  

      *=====================*  

       Environment  Division.  

      *=====================*  

  

      *==============*  

       Data  Division.  

      *==============*  

  

       Working-storage  Section.  

      *---------------------------------------------------------------*  

      * Socket  interface  function  codes                                * 

      *---------------------------------------------------------------*  

       01   soket-functions.  

           02 soket-accept           pic  x(16)  value  ’ACCEPT           ’. 

           02 soket-bind             pic  x(16)  value  ’BIND             ’. 

           02 soket-close            pic  x(16)  value  ’CLOSE            ’. 

           02 soket-connect          pic  x(16)  value  ’CONNECT          ’. 

           02 soket-fcntl            pic  x(16)  value  ’FCNTL            ’. 

           02 soket-freeaddrinfo     pic  x(16)  value  ’FREEADDRINFO     ’. 

           02 soket-getaddrinfo      pic  x(16)  value  ’GETADDRINFO      ’. 

           02 soket-getclientid      pic  x(16)  value  ’GETCLIENTID      ’. 

           02 soket-gethostbyaddr    pic  x(16)  value  ’GETHOSTBYADDR    ’.  

           02 soket-gethostbyname    pic  x(16)  value  ’GETHOSTBYNAME    ’.  

           02 soket-gethostid        pic  x(16)  value  ’GETHOSTID        ’. 

           02 soket-gethostname      pic  x(16)  value  ’GETHOSTNAME      ’. 

           02 soket-getnameinfo      pic  x(16)  value  ’GETNAMEINFO      ’. 

           02 soket-getpeername      pic  x(16)  value  ’GETPEERNAME      ’. 

Figure  78.  EZASO6CC  COBOL  call  interface  sample  IPv6  client  program  (Part  1 of 9)

 

238 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



02 soket-getsockname      pic  x(16)  value  ’GETSOCKNAME      ’. 

           02 soket-getsockopt       pic  x(16)  value  ’GETSOCKOPT       ’. 

           02 soket-givesocket       pic  x(16)  value  ’GIVESOCKET       ’. 

           02 soket-initapi          pic  x(16)  value  ’INITAPI          ’. 

           02 soket-ioctl            pic  x(16)  value  ’IOCTL            ’. 

           02 soket-listen           pic  x(16)  value  ’LISTEN           ’. 

           02 soket-ntop             pic  x(16)  value  ’NTOP             ’. 

           02 soket-pton             pic  x(16)  value  ’PTON             ’. 

           02 soket-read             pic  x(16)  value  ’READ             ’. 

           02 soket-recv             pic  x(16)  value  ’RECV             ’. 

           02 soket-recvfrom         pic  x(16)  value  ’RECVFROM         ’. 

           02 soket-select           pic  x(16)  value  ’SELECT           ’. 

           02 soket-send             pic  x(16)  value  ’SEND             ’. 

           02 soket-sendto           pic  x(16)  value  ’SENDTO           ’. 

           02 soket-setsockopt       pic  x(16)  value  ’SETSOCKOPT       ’. 

           02 soket-shutdown         pic  x(16)  value  ’SHUTDOWN         ’. 

           02 soket-socket           pic  x(16)  value  ’SOCKET           ’. 

           02 soket-takesocket       pic  x(16)  value  ’TAKESOCKET       ’. 

           02 soket-termapi          pic  x(16)  value  ’TERMAPI          ’. 

           02 soket-write            pic  x(16)  value  ’WRITE            ’. 

      *---------------------------------------------------------------*  

      * Work  variables                                                 * 

      *---------------------------------------------------------------*  

       01  errno                           pic 9(8)  binary  value  zero.  

       01  retcode                         pic  s9(8)  binary  value  zero.  

       01  index-counter                   pic  9(8)  binary  value  zero.  

       01  buffer-element.  

           05  buffer-element-nbr          pic  9(5).  

           05  filler                      pic x(3)  value  space.  

       01  server-ipaddr-dotted            pic x(15)  value  space.  

       01  client-ipaddr-dotted            pic x(15)  value  space.  

       01  close-server                    pic  9(8)  Binary  value  zero.  

           88  close-server-down           value  1. 

       01  Connect-Flag                    pic  x value  space.  

           88 CONNECTED                          value  ’Y’.  

       01  Client-Server-Flag              pic x value  space.  

           88 CLIENTS                            value  ’C’.  

           88 SERVERS                            value  ’S’.  

       01  Terminate-Options               pic x value  space.  

           88 Opened-API                         value  ’A’.  

           88 Opened-Socket                      value  ’S’.  

       01  timer-accum                     pic 9(8)  Binary  value  zero.  

       01  timer-interval                  pic  9(8)  Binary  value  2000.  

       01  Cur-time.  

           02  Hour                        pic  9(2).  

           02  Minute                      pic 9(2).  

           02  Second                      pic 9(2).  

           02  Hund-Sec                    pic 9(2).  

       77  Failure                         Pic  S9(8)  comp.  

      *---------------------------------------------------------------*  

      * Variables  used  for  the  INITAPI  call                            * 

      *---------------------------------------------------------------*  

       01  maxsoc-fwd                      pic  9(8)  Binary.  

       01  maxsoc-rdf  redefines  maxsoc-fwd.  

           02 filler                       pic x(2).  

Figure  78.  EZASO6CC  COBOL  call  interface  sample  IPv6  client  program  (Part  2 of 9)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 239



02 maxsoc                       pic  9(4)  Binary.  

       01   initapi-ident.  

           05  tcpname                     pic  x(8)  Value  ’TCPCS   ’. 

           05  asname                      pic  x(8)  Value  space.  

       01   subtask                         pic  x(8)  value  ’EZSO6CC’.  

       01   maxsno                          pic  9(8)  Binary  Value  1. 

      *---------------------------------------------------------------*  

      * Variables  used  by the  SHUTDOWN  Call                            * 

      *---------------------------------------------------------------*  

       01   how                             pic  9(8)  Binary.  

      *---------------------------------------------------------------*  

      * Variables  returned  by the  GETCLIENTID  Call                     * 

      *---------------------------------------------------------------*  

       01   clientid.  

           05  clientid-domain             pic  9(8)  Binary  value  19.  

           05  clientid-name               pic  x(8)  value  space.  

           05  clientid-task               pic  x(8)  value  space.  

           05  filler                      pic  x(20)  value  low-value.  

      *---------------------------------------------------------------*  

      * Variables  returned  by the  GETNAMEINFO  Call                     * 

      *---------------------------------------------------------------*  

       01   name-len                        pic  9(8)  binary.  

       01   host-name                       pic  x(255).  

       01   host-name-len                   pic  9(8)  binary.  

       01   service-name                    pic  x(32).  

       01   service-name-len                pic  9(8)  binary.  

       01   name-info-flags                 pic  9(8)  binary  value  0. 

       01   ni-nofqdn                       pic  9(8)  binary  value  1. 

       01   ni-numerichost                  pic  9(8)  binary  value  2. 

       01   ni-namereqd                     pic  9(8)  binary  value  4. 

       01   ni-numericserver                pic  9(8)  binary  value  8.  

       01   ni-dgram                        pic  9(8)  binary  value  16. 

      *---------------------------------------------------------------*  

      * Variables  used  for  the  SOCKET  call                             * 

      *---------------------------------------------------------------*  

       01   AF-INET                         pic  9(8)  Binary  Value  2. 

       01   AF-INET6                        pic  9(8)  Binary  Value  19. 

       01   SOCK-STREAM                     pic  9(8)  Binary  Value  1. 

       01   SOCK-DATAGRAM                   pic  9(8)  Binary  Value  2. 

       01   SOCK-RAW                        pic  9(8)  Binary  Value  3. 

       01   IPPROTO-IP                      pic  9(8)  Binary  Value  zero.  

       01   IPPROTO-TCP                     pic  9(8)  Binary  Value  6. 

       01   IPPROTO-UDP                     pic  9(8)  Binary  Value  17.  

       01   IPPROTO-IPV6                    pic  9(8)  Binary  Value  41.  

       01   socket-descriptor               pic  9(4)  Binary  Value  zero.  

      *---------------------------------------------------------------*  

      * Server  socket  address  structure                                * 

      *---------------------------------------------------------------*  

       01   server-socket-address.  

           05  server-afinet               pic  9(4)  Binary  Value  19.  

           05  server-port                 pic  9(4)  Binary  Value  1031.  

           05  server-flowinfo             pic  9(8)  Binary  Value  zero.  

           05  server-ipaddr.  

               10 filler                   pic  9(16)  Binary  Value  0. 

               10 filler                   pic  9(16)  Binary  Value  0. 

Figure  78.  EZASO6CC  COBOL  call  interface  sample  IPv6  client  program  (Part  3 of 9)

 

240 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



05  server-scopeid              pic  9(8)  Binary  Value  zero.  

       01  NBYTE                   PIC  9(8)   COMP  value  80.  

       01  BUF                     PIC  X(80).  

      *---------------------------------------------------------------*  

      * Variables  used  by the  BIND  Call                                * 

      *---------------------------------------------------------------*  

       01  client-socket-address.  

           05  client-family               pic  9(4)  Binary  Value  19.  

           05  client-port                 pic  9(4)  Binary  Value  1032.  

           05  client-flowinfo             pic  9(8)  Binary  Value  0. 

           05  client-ipaddr.  

               10 filler                   pic  9(16)  Binary  Value  0.  

               10 filler                   pic  9(16)  Binary  Value  0.  

           05  client-scopeid              pic  9(8)  Binary  Value  0. 

      *---------------------------------------------------------------*  

      * Buffer  and  length  fields  for  send  operation                    * 

      *---------------------------------------------------------------*  

       01  send-request-length             pic  9(8)  Binary  value  zero.  

       01  send-buffer.  

           05  send-buffer-total           pic x(4000)  value  space.  

           05  closedown-message  redefines  send-buffer-total.  

               10  closedown-id            pic  x(8).  

               10  filler                  pic x(3992).  

           05  send-buffer-seq  redefines  send-buffer-total  

                                          pic  x(8)  occurs  500 times.  

      *---------------------------------------------------------------*  

      * Variables  used  for  the  NTOP/PTON  call                          * 

      *---------------------------------------------------------------*  

       01  IN6ADDR-ANY                     pic x(45)  

                               value  ’::’.  

       01  IN6ADDR-LOOPBACK                pic  x(45)  

                               value  ’::1’.  

       01  presentable-addr                pic  x(45)  value  spaces.  

       01  presentable-addr-len            pic 9(4)  Binary  value  45. 

       01  numeric-addr.  

           05 filler                       pic 9(16)  Binary  Value  0. 

           05 filler                       pic 9(16)  Binary  Value  0. 

      *---------------------------------------------------------------*  

      * Buffer  and  length  fields  for  recv  operation                    * 

      *---------------------------------------------------------------*  

       01  read-request-length             pic  9(8)  Binary  value  zero.  

       01  read-buffer                     pic x(4000)  value  space.  

      *---------------------------------------------------------------*  

      * Other  fields  for  send  and  reccfrom  operation                   * 

      *---------------------------------------------------------------*  

       01  send-flag                       pic  9(8)  Binary  value  zero.  

       01  recv-flag                       pic  9(8)  Binary  value  zero.  

      *---------------------------------------------------------------*  

      * Error  message  for  socket  interface  errors                      * 

      *---------------------------------------------------------------*  

       01  ezaerror-msg.  

           05  filler                      pic x(9)  Value  ’Function=’.  

           05  ezaerror-function           pic x(16)  Value  space.  

           05  filler                      pic x value  ’ ’. 

           05  filler                      pic x(8)  Value  ’Retcode=’.  

Figure  78.  EZASO6CC  COBOL  call  interface  sample  IPv6  client  program  (Part  4 of 9)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 241



05  ezaerror-retcode            pic  ---99.  

           05  filler                      pic  x value  ’ ’. 

           05  filler                      pic  x(9)  Value  ’Errorno=’.  

           05  ezaerror-errno              pic  zzz99.  

           05  filler                      pic  x value  ’ ’. 

           05  ezaerror-text               pic  x(50)  value  ’ ’. 

  

       Linkage  Section.  

      *================  

  

      *=============================================*  

       Procedure  Division.  

      *=============================================*  

  

      *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*  

      *          P R O C E D U R E    C O N T R O L S            * 

      *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*  

  

            Perform  Initialize-API      thru    Initialize-API-Exit.  

            Perform  Get-Client-ID       thru    Get-Client-ID-Exit.  

            Perform  Sockets-Descriptor  thru    Sockets-Descriptor-Exit.  

            Perform  Presentation-To-Numeric  thru  

                                     Presentation-To-Numeric-Exit.  

            Perform  CONNECT-Socket      thru    CONNECT-Socket-Exit.  

            Perform  Numeric-TO-Presentation  thru  

                                     Numeric-To-Presentation-Exit.  

            Perform  Get-Name-Information  thru  

                                     Get-Name-Information-Exit.  

            Perform  Write-Message       thru    Write-Message-Exit.  

            Perform  Shutdown-Send       thru    Shutdown-Send-Exit.  

            Perform  Read-Message        thru    Read-Message-Exit.  

            Perform  Shutdown-Receive    thru    Shutdown-Receive-Exit.  

            Perform  Close-Socket        thru    Exit-Now.  

  

      *---------------------------------------------------------------*  

      * Initialize  socket  API                                          * 

      *---------------------------------------------------------------*  

       Initialize-API.  

           Move  soket-initapi  to ezaerror-function.  

           Call  ’EZASOKET’  using  soket-initapi  maxsoc  initapi-ident  

                                 subtask  maxsno  errno  retcode.  

           Move  ’Initapi  failed’  to ezaerror-text.  

           If retcode  < 0 move  12 to failure.  

           Perform  Return-Code-Check   thru  Return-Code-Exit.  

           Move  ’A’  to Terminate-Options.  

       Initialize-API-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Let  us  see  the  client-id                                       * 

      *---------------------------------------------------------------*  

       Get-Client-ID.  

            Move  soket-getclientid  to ezaerror-function.  

            Call  ’EZASOKET’  using  soket-getclientid  clientid  errno  

                                  retcode.  

Figure  78.  EZASO6CC  COBOL  call  interface  sample  IPv6  client  program  (Part  5 of 9)

 

242 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Display  ’Our  client  ID = ’ clientid-name  ’ ’ clientid-task.  

            Move  ’Getclientid  failed’  to ezaerror-text.  

            If retcode  < 0 move  24 to failure.  

            Perform  Return-Code-Check  thru  Return-Code-Exit.  

            Move  ’C’  to client-server-flag.  

       Get-Client-ID-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Get  us a stream  socket  descriptor                              * 

      *---------------------------------------------------------------*  

       Sockets-Descriptor.  

            Move  soket-socket  to ezaerror-function.  

            Call  ’EZASOKET’  using  soket-socket  AF-INET6  SOCK-STREAM  

                IPPROTO-IP  errno  retcode.  

            Move  ’Socket  call  failed’  to ezaerror-text.  

            If retcode  < 0 move  60 to failure.  

            Perform  Return-Code-Check  thru  Return-Code-Exit.  

            Move  ’S’  to Terminate-Options.  

            Move  retcode  to socket-descriptor.  

       Sockets-Descriptor-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Use  PTON  to create  an IP address  to bind  to.                  * 

      *---------------------------------------------------------------*  

       Presentation-To-Numeric.  

            move  soket-pton  to ezaerror-function.  

            move  IN6ADDR-LOOPBACK  to presentable-addr.  

            Call  ’EZASOKET’  using  soket-pton  AF-INET6  

               presentable-addr  presentable-addr-len  

               numeric-addr  

               errno  retcode.  

            Move  ’PTON  call  failed’  to ezaerror-text.  

            If retcode  < 0  move  24 to failure.  

            Perform  Return-Code-Check  thru  Return-Code-Exit.  

            move  numeric-addr  to server-ipaddr.  

       Presentation-To-Numeric-Exit.  

           Exit.  

  

      *------------------------------------------------------------*  

      * CONNECT                                                     * 

      *------------------------------------------------------------*  

       Connect-Socket.  

            Move  space  to Connect-Flag.  

            Move  zeros  to errno  retcode.  

            move  soket-connect  to ezaerror-function.  

            CALL  ’EZASOKET’  USING  SOKET-CONNECT  socket-descriptor  

                              server-socket-address  errno  retcode.  

            Move  ’Connection  call  failed’  to ezaerror-text.  

            If retcode  < 0  move  24 to failure.  

            Perform  Return-Code-Check  thru  Return-Code-Exit.  

            If retcode  = 0  Move  ’Y’  to Connect-Flag.  

       Connect-Socket-Exit.  

           Exit.  

Figure  78.  EZASO6CC  COBOL  call  interface  sample  IPv6  client  program  (Part  6 of 9)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 243



*---------------------------------------------------------------*  

      * Use  NTOP  to  display  the  IP address.                            * 

      *---------------------------------------------------------------*  

       Numeric-To-Presentation.  

           move  soket-ntop  to ezaerror-function.  

           move  server-ipaddr  to numeric-addr.  

           move  soket-ntop  to ezaerror-function.  

           Call  ’EZASOKET’  using  soket-ntop  AF-INET6  

              numeric-addr  

              presentable-addr  presentable-addr-len  

              errno  retcode.  

           Display  ’Presentable  address  = ’ presentable-addr.  

           Move  ’NTOP  call  failed’  to ezaerror-text.  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Numeric-TO-Presentation-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Use  GETNAMEINFO  to get  the  host  and  service  names              * 

      *---------------------------------------------------------------*  

       Get-Name-Information.  

           move  28 to  name-len.  

           move  255  to host-name-len.  

           move  32 to  service-name-len.  

           move  ni-namereqd  to name-info-flags.  

           move  soket-getnameinfo  to ezaerror-function.  

           Call  ’EZASOKET’  using  soket-getnameinfo  

              server-socket-address  name-len  

              host-name  host-name-len  

              service-name  service-name-len  

              name-info-flags  

              errno  retcode.  

           Display  ’Host  name  = ’ host-name.  

           Display  ’Service  = ’ service-name.  

           Move  ’Getaddrinfo  call  failed’  to ezaerror-text.  

           If retcode  < 0  move  24 to failure.  

           Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Get-Name-Information-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Write  a message  to  the  server                                  * 

      *---------------------------------------------------------------*  

       Write-Message.  

            Move  soket-write  to  ezaerror-function.  

            Move  ’Message  from  EZASO6CC’  to buf.  

            Call  ’EZASOKET’  using  soket-write  socket-descriptor  

                nbyte  buf  

                errno  retcode.  

            Move  ’Write  call  failed’  to ezaerror-text.  

            If retcode  < 0 move  84 to failure.  

            Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Write-Message-Exit.  

Figure  78.  EZASO6CC  COBOL  call  interface  sample  IPv6  client  program  (Part  7 of 9)

 

244 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Exit.  

  

      *---------------------------------------------------------------*  

      * Shutdown  to pipe                                               * 

      *---------------------------------------------------------------*  

       Shutdown-Send.  

            Move  soket-shutdown  to ezaerror-function.  

            move  1 to how.  

            Call  ’EZASOKET’  using  soket-shutdown  socket-descriptor  

                how  

                errno  retcode.  

            Move  ’Shutdown  call  failed’  to ezaerror-text.  

            If retcode  < 0 move  99 to failure.  

            Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Shutdown-Send-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Read  a message  from  the  server.                                * 

      *---------------------------------------------------------------*  

       Read-Message.  

            Move  soket-read  to ezaerror-function.  

            Move  spaces  to buf.  

            Call  ’EZASOKET’  using  soket-read  socket-descriptor  

                  nbyte  buf  

                  errno  retcode.  

            If retcode  < 0 

               Move  ’Read  call  failed’  to ezaerror-text  

               move  120  to failure  

               Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Read-Message-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Shutdown  receive  pipe                                          * 

      *---------------------------------------------------------------*  

       Shutdown-Receive.  

            Move  soket-shutdown  to ezaerror-function.  

            move  0 to how.  

            Call  ’EZASOKET’  using  soket-shutdown  socket-descriptor  

                how  

                errno  retcode.  

            Move  ’Shutdown  call  failed’  to ezaerror-text.  

            If retcode  < 0 move  99 to failure.  

            Perform  Return-Code-Check  thru  Return-Code-Exit.  

       Shutdown-Receive-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Close  socket                                                   * 

      *---------------------------------------------------------------*  

       Close-Socket.  

             Move  soket-close  to ezaerror-function.  

             Call  ’EZASOKET’  using  soket-close  socket-descriptor  

                                   errno  retcode.  

Figure  78.  EZASO6CC  COBOL  call  interface  sample  IPv6  client  program  (Part  8 of 9)

 

Chapter  7. Using the CALL  instruction  application  programming interface (API) 245



Move  ’Close  call  failed’  to ezaerror-text.  

             If retcode  < 0 move  132  to failure  

                perform  write-ezaerror-msg  thru  write-ezaerror-msg-exit.  

             Accept  Cur-Time  from  TIME.  

             Display  Cur-Time  ’ EZASO6CC:  ’ ezaerror-function  

                          ’ RETCODE=’  RETCODE  ’ ERRNO=  ’ ERRNO.  

       Close-Socket-Exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Terminate  socket  API                                           * 

      *---------------------------------------------------------------*  

       exit-term-api.  

           ACCEPT  cur-time  from  TIME.  

           Display  cur-time  ’  EZASO6CC:   TERMAPI  ’ 

                   ’ RETCODE=  ’ RETCODE  ’ ERRNO=  ’ ERRNO.  

           Call  ’EZASOKET’  using  soket-termapi.  

  

      *---------------------------------------------------------------*  

      * Terminate  program                                              * 

      *---------------------------------------------------------------*  

       exit-now.  

           Move  failure  to return-code.  

           Goback.  

  

      *---------------------------------------------------------------*  

      * Subroutine.                                                    * 

      * -----------                                                    * 

      * Write  out  an error  message                                     * 

      *---------------------------------------------------------------*  

       write-ezaerror-msg.  

           Move  errno  to ezaerror-errno.  

           Move  retcode  to ezaerror-retcode.  

           Display  ezaerror-msg.  

       write-ezaerror-msg-exit.  

           Exit.  

  

      *---------------------------------------------------------------*  

      * Check  Return  Code  after  each  Socket  Call                       * 

      *---------------------------------------------------------------*  

       Return-Code-Check.  

            Accept  Cur-Time  from  TIME.  

            Display  Cur-Time  ’ EZASO6CC:  ’ ezaerror-function  

                                  ’ RETCODE=’  RETCODE  ’ ERRNO=  ’ ERRNO.  

            IF RETCODE  < 0 

               Perform  Write-ezaerror-msg  thru  write-ezaerror-msg-exit  

               Move  zeros  to errno  retcode  

               IF Opened-Socket  Go to Close-Socket  

               ELSE  IF Opened-API  Go  to exit-term-api  

                    ELSE  Go to exit-now.  

            Move  zeros  to errno  retcode.  

       Return-Code-Exit.  

           Exit.  

Figure  78.  EZASO6CC  COBOL  call  interface  sample  IPv6  client  program  (Part  9 of 9)

 

246 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Chapter  8.  IMS  Listener  samples  

This  chapter  includes  sample  programs  using  the  IMS  Listener.  The  following  

samples  are  included:  

v   “IMS  TCP/IP  control  statements”  

v   “Sample  program  explicit-mode”  on  page  251  

v   “Sample  program  implicit-mode”  on  page  261  

v   “Sample  program  - IMS  MPP  client”  on  page  270

IMS TCP/IP control statements 

This  chapter  contains  examples  of  the  control  statements  required  to define  and  

initiate  the  various  IMS  TCP/IP  components.  

JCL for starting a message processing region 

The  following  is an  example  of  the  JCL  that  is  required  to start  an  IMS  message  

processing  region  in  which  TCP/IP  servers  can  operate.  Note  the  STEPLIB  

statements  that  point  to  TCP/IP  and  the  C  run-time  library.  A  C run-time  library  is 

required  when  you  use  the  GETHOSTBYADDR  or  GETHOSTBYNAME  call.  For  

more  information,  refer  to the  z/OS  Program  Directory  or  the  section  on  C compilers  

and  run-time  libraries  in  the  z/OS  Communications  Server:  IP  Sockets  Application  

Programming  Interface  Guide  and  Reference. 

This  sample  is based  on  the  IMS  procedure  (DFSMPR).  You might  have  to  modify  

the  language  run-time  libraries  to  match  your  programming  language  

requirements.  

//        PROC  SOUT=A,RGN=2M,SYS2=,  

//              CL1=001,CL2=000,CL3=000,CL4=000,  

//              OPT=N,OVLA=0,SPIE=0,VALCK=0,TLIM=00,  

//              PCB=000,PRLD=,STIMER=,SOD=,DBLDL=,  

//              NBA=,OBA=,IMSID=IMS1,AGN=,VSFX=,VFREE=,  

//              SSM=,PREINIT=,ALTID=,PWFI=N,  

//              APARM=  

//*  

//REGION  EXEC   PGM=DFSRRC00,REGION=&RGN,;  

//              TIME=1440,DPRTY=(12,0),  

//              PARM=(MSG,&CL1&CL2&CL3&CL4,;  

//              &OPT&OVLA&SPIE&VALCK&TLIM&PCB,;  

//              &PRLD,&STIMER,&SOD,&DBLDL,&NBA,;  

//              &OBA,&IMSID,&AGN,&VSFX,&VFREE,;  

//              &SSM,&PREINIT,&ALTID,&PWFI,;  

//              ’&APARM’)  

//&*;  

//STEPLIB   DD  DSN=IMS31.&SYS2;RESLIB,DISP=SHR  

//          DD  DSN=IMS31.&SYS2;PGMLIB,DISP=SHR  

//          DD  DSN=PLI.LL.V2R3M0.SIBMLINK,DISP=SHR  

//          DD  DSN=PLI.LL.V2R3M0.PLILINK,DISP=SHR    

//          DD  DSN=C370.LL.V2R2M0.SEDCLINK,DISP=SHR  

//*         Use  the  following  for  LE/370  C run-time  libraries:  

//*         DD  DSN=CEE.V1R3M0.SCEERUN,DISP=SHR  

//          DD  DSN=TCPIP.SEZATCP,DISP=SHR

 

© Copyright  IBM Corp. 1994, 2005 247



//PROCLIB   DD DSN=IMS31.&SYS2;PROCLIB,DISP=SHR  

//SYSUDUMP  DD  SYSOUT=&SOUT,DCB=(LRECL=121,BLKSIZE=3129,RECFM=VBA),;  

//             SPACE=(125,(2500,100),RLSE,,ROUND)  

// 

JCL for linking the IMS Listener 

The  following  examples  are  JCL  that  can  be  used  to  link  the  IMS  Listener.  

EZAIMSCZ JCLIN 

  

 

248 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



//EZAIMSCZ  JOB  (accounting,information),programmer.name,  

//             MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A  

//***************************************************************  

//*NOTE:  ANY  ZONE  UPDATED  WITH  THE  LINK  COMMAND  OR CROSS-ZONE    * 

//*       INFORMATION  CANNOT  BE PROCESSED  BY SMP/E  R6  OR EARLIER.*  

//***************************************************************  

//*  

//*    5694-A01  (C)  Copyright  IBM  Corp.  1997,  2002  

//*    Licensed  Materials  - Property  of IBM  

//*    This  product  contains  "Restricted  Materials  of IBM"  

//*    All  rights  reserved.  

//*    US Government  Users  Restricted  Rights  - 

//*    Use,  duplication  or disclosure  restricted  by 

//*    GSA  ADP  Schedule  Contract  with  IBM  Corp.  

//*    See  IBM  Copyright  Instructions.  

//*  

//*  

//*     Function:  Perform  SMP/E  LINK  for  IMS  module  

//*  

//*     Instructions:  

//*          Change  all  lower  case  characters  to values  

//*          suitable  for  your  installation.  

//*  

//*     targetzone:    z/OS  Target  Zone  

//*       imszone  :   IMS  Target  Zone  

//*  

//*  

//*    Change  the  high-level  qualifier  ’imshlq’  to match  the 

//*    high-level  qualifier  for  your  installation’s  IMS target  

//*    data  set.  

//*  

//*    Beginning  with  IMS  V1R7  the  target  lib has  changed  from  

//*    RESLIB  to SDFSRESL.  If you  are  running  IMS  V1R7  or higher,  

//*    you  must  comment  or delete  the  RESLIB  DD card  and uncomment  

//*    the  SDFSRESL  DD card.  

//*  

//EZAIMSCZ  EXEC  PGM=GIMSMP,REGION=4096K  

//***************************************************************  

//RESLIB    DD DISP=SHR,DSN=imshlq.RESLIB  

//*SDFSRESL  DD DISP=SHR,DSN=imshlq.SDFSRESL  

//***************************************************************  

//*  

//SMPCSI      dd  dsn=zos.global.csi,disp=old  

//*  

//SYSUT1    DD UNIT=SYSDA,SPACE=(1700,(900,200))  

//SYSUT2    DD UNIT=SYSDA,SPACE=(1700,(600,100))  

//SYSUT3    DD UNIT=SYSDA,SPACE=(1700,(600,100))  

//SYSUT4    DD UNIT=SYSDA,SPACE=(1700,(600,100))  

//SMPWRK1   DD UNIT=SYSDA,SPACE=(8800,(75,0,216)),  

//          DCB=(BLKSIZE=8800,LRECL=80)  

//SMPWRK2   DD UNIT=SYSDA,SPACE=(8800,(75,0,216)),  

//          DCB=(BLKSIZE=8800,LRECL=80)  

//SMPWRK3   DD UNIT=SYSDA,SPACE=(3200,(75,0,216)),  

//          DCB=(BLKSIZE=3200,LRECL=80)  

Figure  79.  Cross  zone  Lnk  IMS  application  interface  (Part  1 of 2)

 

Chapter  8. IMS Listener  samples  249



EZAIMSPL JCLIN 

//LINKIMS  JOB  (accounting,information),programmer.name,  

//           MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A  

//**************************************************************  

//*                                                             * 

//*    THIS  JOB  SERVES  AS  AN ALTERNATIVE  TO  THE CROSS  ZONE  LINK  * 

//*    PERFORMED  BY RUNNING  EZAIMSCZ.                            * 

//*                                                             * 

//*    UPDATE  THE  JOB,  SYSLMOD  AND RESLIB  DD CARDS  TO SUIT  YOUR  * 

//*    INSTALLATION  .                                           * 

//*                                                             * 

//**************************************************************  

//LNKIMS    EXEC  PGM=IEWL,PARM=’XREF,LIST,REUS’  

//SYSPRINT   DD SYSOUT=*  

//SYSUT1     DD  UNIT=SYSDA,SPACE=(CYL,(1,1))  

//SYSLMOD   DD DSN=tcpip.v3r1.SEZALINK,DISP=SHR  

//RESLIB    DD DSN=ims.RESLIB,DISP=SHR  

//SYSLIN     DD  * 

  ORDER  CMCOPYR  

  INCLUDE  RESLIB(DFSLI000)  

  INCLUDE  SYSLMOD(EZAIMSLN)  

  ENTRY  EZAIMSLN  

  MODE  RMODE(24)  AMODE(31)  

  NAME  EZAIMSLN(R)  

/* 

Listener IMS definitions 

The  following  statements  define  the  Listener  as an  IMS  BMP  application  and  the  

PSB  that  it  uses.  Note  that  the  name  ALTPCB  is required.  

PSB definition 

ALTPCB    PCB     TYPE=TP,MODIFY=YES  

         PSBGEN  PSBNAME=EZAIMSLN,IOASIZE=1000  

         SSASIZE=1000,LANG=ASSEM  

TRANSACT  MODE=SNGL  

//SMPWRK4   DD UNIT=SYSDA,SPACE=(3200,(75,0,216)),  

//         DCB=(BLKSIZE=3200,LRECL=80)  

//SMPWRK6   DD UNIT=SYSDA,SPACE=(3200,(75,0,216))  

//*  

//SMPLIST      DD  SYSOUT=*  

//SMPOUT       DD  SYSOUT=*  

//SMPRPT       DD  SYSOUT=*  

//SMPSNAP      DD  SYSOUT=*  

//SMPHOLD      DD  DUMMY  

//SYSPRINT     DD  SYSOUT=*  

//*  

//***************************************************************  

//*  

//SMPCNTL    DD  * 

SET  BDY(targetzone).       /* z/OS  target  zone   */ 

LINK  MODULE(DFSLI000)  

FROMZONE(imszone)          /* IMS  target  zone      */ 

INTOLMOD(EZAIMSLN)  

RC(LINK=00).  

Figure  79.  Cross  zone  Lnk  IMS  application  interface  (Part  2 of 2)

 

250 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Application definition 

         APPLCTN   PSB=EZAIMSLN,PGMTYPE=BATCH  

Sample program explicit-mode 

The  following  is an  example  of  an  explicit-mode  client  server  program  pair. The  

client  program  name  is EZAIMSC2;  you  can  find  it in  SEZAINST(EZAIMSC2).  The  

server  program  name  is  EZASVAS2;  its  IMS  trancode  is DLSI102.  You can  find  the  

sample  in  SEZAINST(EZASVAS2).  

Program flow 

The  client  begins  execution  and  obtains  the  host  name  and  port  number  from  

startup  parameters.  It then  issues  SOCKET  and  CONNECT  calls  to establish  

connectivity  to  the  specified  host  and  port.  Upon  successful  completion  of  the  

connect,  the  client  sends  the  TRM,  which  tells  the  Listener  to  schedule  the  

specified  transaction  (DLSI102).  The  Listener  schedules  that  transaction  and  places  

a TIM  on  the  IMS  message  queue.  Finally,  it issues  a GIVESOCKET  call  and  waits  

for  the  server  to  take  the  socket.  

When  the  requested  server  (EZASVAS2)  begins  execution,  it issues  a GU  call  to  

obtain  the  TIM.  Using  addressability  information  from  the  TIM,  it  issues  INITAPI  

and  TAKESOCKET  calls.  The  server  then  sends  SERVER  MSG  #1  to  the  client.  

When  the  client  receives  the  message,  it displays  SERVER  MSG  #1 on  stdout  and  then  

sends  END  CLIENT  MSG  #2  to  the  server,  and  displays  a success  message  on  stdout.  

It  then  blocks  on  another  receive()  until  the  server  responds.  

The  server,  upon  receipt  of a message  with  the  characters  END  as  the  first  3 

characters,  sends  SERVER  MSG  #2  back  to the  client  and  closes  the  socket.  

When  the  client  receives  this  message,  it prints  SERVER  MSG  #2  on  stdout,  closes  the  

socket,  and  ends.  

Sample explicit-mode client program (C language) 

  

 

Chapter  8. IMS Listener  samples  251



/* 

 * Include  Files.  

 */ 

/*  #define  RESOLVE_VIA_LOOKUP  */ 

#pragma  runopts(NOSPIE  NOSTAE)  

#define  lim  50 

#include  <manifest.h>  

#include  <bsdtypes.h>  

#include  <in.h>  

#include  <socket.h>  

#include  <netdb.h>  

#include  <stdio.h>  

/* 

 * Client  Main.  

 */ 

main(argc,  argv)  

int  argc;  

char  **argv;  

{ 

    unsigned  short  port;        /* port  client  will  connect  to         */ 

    char  buf  ??(lim??);         /* sned  receive  buffers  0 -3            */ 

    char  buf1  ??(lim??);  

    char  buf2  ??(lim??);  

    char  buf3  ??(lim??);  

    struct  hostent  *hostnm;     /* server  host  name  information         */ 

    struct  sockaddr_in  server;  /* server  address                       */ 

    int  s;                     /* client  socket                        */ 

    /* 

     * Check  Arguments  Passed.  Should  be hostname  and port.  

     */ 

    if (argc  != 3) 

    { 

    /*  fprintf(stderr,  "Usage:  %s hostname  port\n",  argv[0]);  */ 

         printf("Usage:  %s  hostname  port\n",  argv         [0]);  

        exit(1);  

    } 

         printf("Usage:  %s  hostname  port\n",  argv         [0]);  

    /* 

     * The  host  name  is the  first  argument.  Get the server  address.  

     */ 

    hostnm  = gethostbyname(argv[1]);  

    if (hostnm  == (struct  hostent  *) 0) 

    { 

    /*  fprintf(stderr,  "Gethostbyname  failed\n");  */ 

         printf("Gethostbyname  failed\n");  

        exit(2);  

    } 

    /* 

Figure  80.  Sample  C client  to drive  IMS  Listener  (Part  1 of 3)

 

252 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



* The  port  is the  second  argument.  

     */ 

    port  = (unsigned  short)  atoi(argv[2]);  

    /* 

     * Put  a message  into  the  buffer.  

     */ 

    strcpy(buf,"2000*TRNREQ*DLSI102  ");  

    /* 

     * Put  the  server  information  into  the  server  structure.  

     * The  port  must  be put  into  network  byte  order.  

     */ 

    server.sin_family       = AF_INET;  

    server.sin_port         = htons(port);  

    server.sin_addr.s_addr  = *((unsigned  long  *)hostnm->h_addr);  

    /* 

     * Get  a stream  socket.  

     */ 

    if ((s  = socket(AF_INET,  SOCK_STREAM,  0)) < 0) 

    { 

        tcperror("Socket()");  

        exit(3);  

    } 

    /* 

     * Connect  to the  server.  

     */ 

    if (connect(s,  (struct  sockaddr  *)&server,  sizeof(server))  < 0) 

    { 

        tcperror("Connect()");  

        exit(4);  

    } 

    if (send(s,  buf,  sizeof(buf),  0) < 0) 

    { 

        tcperror("Send()");  

        exit(5);  

    } 

    printf("send  one  complete\n");  

    /* 

     * The  server  sends  message  #1.  Receive  it into  buffer1  

     */ 

    if (recv(s,  buf1,  sizeof(buf1),  0) < 0) 

    { 

        tcperror("Recv()");  

        exit(6);  

    } 

    printf("receive  one  complete\n");  

Figure  80.  Sample  C client  to drive  IMS  Listener  (Part  2 of 3)

 

Chapter  8. IMS Listener  samples  253



Sample explicit-mode server program (Assembler language) 

  

    printf(buf1,"\n");  

    /* fprintf(stdout,buf1,"\n");  */ 

    /* 

     * Put  end  message  into  the  buffer.  

     */ 

     strcpy(buf2,  "END  CLIENT  MESSAGE  #2 ");  

    if (send(s,  buf2,  sizeof(buf2),  0) < 0) 

    { 

        tcperror("Send()");  

        exit(7);  

    } 

    printf("send  two  complete\n");  

    /* 

     * The  server  sends  back  message  #2.  Receive  it  into  buffer  2. 

     */ 

    if (recv(s,  buf3,  sizeof(buf3),  0) < 0) 

    { 

        tcperror("Recv()");  

        exit(8);  

    } 

    printf("receive  two  complete\n");  

    /* fprintf(stdout,buf3,"\n");  */ 

    printf(buf3,"\n");  

    /* 

     * Close  the  socket.  

     */ 

    close(s);  

    printf("Client  Ended  Successfully\n");  

    exit(0);  

} 

Figure  80.  Sample  C client  to drive  IMS  Listener  (Part  3 of 3)

 

254 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



EZASVAS2   CSECT                         ENTRY  POINT  

          USING  EZASVAS2,BASE           ADDRESSABILITY  

          SAVE   (14,12)                 SAVE  DL/I  REGS  

          LR    BASE,15  

          ST    R13,SAVEAREA+4          SAVE  AREA  CHAINING  

          LA    R13,SAVEAREA            NEW  SAVE  AREA  

          MVC    PSBS(L’PSBS*3),0(1)     SAVE  PCB  LIST  

* 

* REG  1 CONTAINS  PTR  TO PCB  ADDR  LIST  

* REG  13 CONTAINS  PTR  TO DL/I  SAVE  AREA  

* REG  14 CONTAINS  PTR  DL/I  RETURN  ADDRESS  

* REG  15 CONTAINS  PROGRAMS  ENTRY  POINT  

* 

          L     R2,0(R0,R1)              LOAD  ADDR  OF I/O PCB  

* 

          USING  IOPCB,R2                 ADDRESSABILITY  

* 

          L     R3,4(R0,R1)              LOAD  ADDR  OF ALT PCB  

* 

          USING  ALTPCB1,R3               ADDRESSABILITY  

* 

          L     R4,8(R0,R1)              LOAD  ADDR  OF ALT PCB  

          LA    R4,0(R0,R4)              REMOVE  HIGH  ORDER  BIT  

* 

          USING  ALTPCB2,R4               ADDRESSABILITY  

* 

          LA    R5,IOAREAIN  

          LA    R7,IOAREAOT              POINT  TO OUTPUT  AREA  FOR TCPIP  

* 

GUCALL     DS    0H                      GET  UNIQUE  CALL  

*******************************************************************  

*  Get  Transaction-initiation  message  containing  Sockets  data      * 

*******************************************************************  

          CALL   ASMTDLI,(GUFUNCT,(2),(5)),VL      GET  TIM  

          CLC    STATUS(L’STATUS),=CL2’QC’     IF NO MESSAGES  

          BE    GOBACK                        RETURN  TO IMS 

*                                            ELSE  NEXT  INSTR  

          CLC    STATUS(L’STATUS),=CL2’   ’    IF BLANK  OK 

          BNE    ERRRTN                        SOME  WRONG  HERE  

*                                            ELSE  NEXT  INSTR  

* 

          XR  R6,R6                           CLEAR  REG  

          BAL  R6,INITAPI                      GO INSERT  SEGMENT  

          B   GUCALL                          SET  RETURN  ADDRESS  

* 

* 

INITAPI    DS   0H  

* Set  up for  INITAPI  

          MVC   TCPNAME(L’TCPNAME),TIMTCPAS      TCP  Address  space  

          MVC   ASDNAME(L’ASDNAME),TIMSAS        Server  address  space  

          MVC   SUBTASK(L’SUBTASK),TIMSTD        Server  task  id 

* Set  up for  takeSOCKET  

          MVC   NAME(L’NAME),TIMLAS              Listener  address  space  

Figure  81.  Sample  assembler  IMS  server  (Part  1 of 6)

 

Chapter  8. IMS Listener  samples  255



MVC   TASK(L’TASK),TIMLTD              Listener  task  id 

          MVC   S(L’S),TIMSD                     Socket  descriptor  

* 

          XC   ERRNO(L’ERRNO),ERRNO  

          XC   RETCODE(L’RETCODE),RETCODE  

*         EX   0,*  

***********************************************************************  

*    Issue  INITAPI                                                   * 

***********************************************************************  

          CALL  EZASOKET,(INITFUNC,MAXSOC,IDENT,SUBTASK,                 X         

               MAXSNO,ERRNO,RETCODE),VL  

          L    R9,RETCODE  

          LTR   R9,R9  

          BNM   TAKESOC  

* 

INITERR    DC    CL21’INITAPI  COMMAND  ERROR’  

* 

TAKESOC    DS    0H 

***********************************************************************  

*   Issue  takeSOCKET                                                 * 

***********************************************************************  

          CALL  EZASOKET,(TAKEFUNC,S,CLIENT,ERRNO,RETCODE),VL  

* 

          L    R9,RETCODE  

          LTR   R9,R9  

          BNM   SENDTEXT  

* 

TAKERR     DC   CL16’TAKESOCKET  ERROR’  

*Set  up to send  "SERVER  MSG  #1"  

SENDTEXT   DS   0H 

* 

          MVC   S(L’S),RETCODE+2  

          XC   BUF(LENG),BUF  

          MVC   BUF(13),=CL13’SERVER  MSG  #1’  

*Translate  to ASCII,  if necessary  

*         CALL  EZACIC04,(BUF,LENGTH),VL  

*********************************************************************  

*     Send  "SERVER  MSG  #1"                                           * 

*********************************************************************  

          CALL  EZASOKET,(SENDFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE),     X 

               VL 

          L    R9,RETCODE  

          LTR   R9,R9  

          BNM   RECVTEXT  

* 

SENDERR1   DC   CL16’SEND  ERROR’                Abend  on error  

RECVTEXT   DS   0H 

***********************************************************************  

*     Receive  client  message  #2                                       * 

***********************************************************************  

          CALL  EZASOKET,(RECVFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE),     X 

               VL 

* Translate  to EBCDIC  if necessary  

Figure  81.  Sample  assembler  IMS  server  (Part  2 of 6)

 

256 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|



*         CALL  EZACIC05,(BUF,LENGTH),VL  

* 

          L    R9,RETCODE  

          LTR   R9,R9  

          BNM   CHECKTXT  

* 

          DC   CL16’RECEIVE  ERROR’             Abend  on error  

* 

CHECKTXT   DS   0H 

* 

          CLC   BUF(3),=CL3’END’                Test  for end  of message  

          BNE   RECVTEXT                        If not  eom,  read  again  

* 

*    Set  up to  send  shutdown  message  

SENDEND    DS   0H  

* 

          XC   BUF(LENG),BUF  

          MVC   BUF(13),=CL13’SERVER  MSG  #2’  

*    Translate  to ASCII  if necessary  

*         CALL  EZACIC04,(BUF,LENGTH),VL  

*********************************************************************  

*    Send  "SERVER  MSG  #2"  to indicate  shutdown                       * 

*********************************************************************  

          CALL  EZASOKET,(SENDFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE),     X 

               VL 

          L    R9,RETCODE  

          LTR   R9,R9  

          BNM   SOCKCLOS  

* 

SENDERR2   DC   CL16’SEND  ERROR’                Abend  on error  

* 

SOCKCLOS   DS   0H 

*******************************************************************  

*    Close  the  socket                                              * 

*******************************************************************  

          CALL  EZASOKET,(CLOSFUNC,S,ERRNO,RETCODE),VL  

* 

          L    R9,RETCODE  

          LTR   R9,R9  

          BNM   TERMAPI  

* 

CLOSERR    DC   CL16’CLOSE  ERROR’  

* 

TERMAPI    DS   0H  

*******************************************************************  

*    Terminate  the  API                                             * 

*******************************************************************  

          CALL  EZASOKET,(TERMFUNC),VL  

* 

PROCTCP    DS    0H                        Talk  to TCPIP  Client  

*                                                AND  ALTERNATE  

*                                                SUCESSFUL  MSG  

          XR    R9,R9                             CLEAR  REG  

          LA    R9,OTLEN                          LOAD  LENGTH  

          STH    R9,OTLTH                          STORE  LEN THERE  

Figure  81.  Sample  assembler  IMS  server  (Part  3 of 6)

 

Chapter  8. IMS Listener  samples  257



XC    OTRSV(L’OTRSV),OTRSV              CLEAR  RESERVE  DATA  

          MVC    OTMSG(L’OTMSG),DCINMSG            MOVE  IN MSG  

          MVC    OTLITDT(L’OTLITDT),DCDATE         MOVE  IN DATE  

          MVC    OTLITIME(L’OTLITIME),DCTIME       MOVE  IN TIME  

          UNPK   OTDATE,CDATE                      MAKE  TIME  & DATE  

          OI    OTDATE+7,X’F0’                     EBCDIC  

          UNPK   OTTIME,CTIME  

          OI    OTTIME+7,X’F0’  

          XR    R9,R9                              GET  READY  

          L     R9,INPUTMSN                        INPUT  COUNT  

          CVD    R9,DLBWORK                         INPUT  COUNT  

          UNPK   OTINPUTN,DLBWORK                   INPUT  COUNT  

          OI    OTINPUTN+7,X’F0’                  FIX  SIGN  

          MVC    OTFILL(L’OTFILL),=28X’40’          FILL  CHAR  

          MVC    OTLTERM(L’OTLTERM),LTERMN          ADD  TERMINAL  

* 

* 

          CALL   ASMTDLI,(ISRTFUNCT,(3),(7),,USER1),VL  

* 

          XC   IOAREAOT(L’IOAREAOT),IOAREAOT  

          BR    R6 

* 

ERRRTN     DS    0H                      SOME  WRONG  HERE  

* 

          L     R13,4(R13)  

          RETURN  (14,12),RC=8            RELOAD  DL/I  REGS  & RETURN  

*                                       ERROR  

GOBACK     DS    0H                      RETURN  TO IMS  

* 

          L     R13,4(R13)  

          RETURN  (14,12),RC=0            RELOAD  DL/I  REGS  & RETURN  

* 

         DS    0D 

PSBS      DS    3F 

         SPACE  1 

BASE      EQU    12 

RC       EQU    15 

R0       EQU    0 

R1       EQU    1 

R2       EQU    2 

R3       EQU    3 

R4       EQU    4 

R5       EQU    5 

R6       EQU    6 

R7       EQU    7 

R8       EQU    8 

R9       EQU    9 

R10       EQU    10 

R11       EQU    11 

R12       EQU    12 

R13       EQU    13 

R14       EQU    14 

R15       EQU    15 

         SPACE  1 

* 

Figure  81.  Sample  assembler  IMS  server  (Part  4 of 6)

 

258 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



DS    0F 

SAVEAREA   DC    18F’0’  

* 

GUFUNCT    DC    CL4’GU   ’              GET  UNIQUE  CALL  

GNFUNCT    DC    CL4’GN   ’              GET  NEXT  

PURGFUNCT  DC    CL4’PURG’               PURGE  CALL  

ISRTFUNCT  DC    CL4’ISRT’               INSERT  CALL  

BADCALL    DC    CL8’BAD  CALL’           BAD  LIT  

ERROPT     DC    F’0’                    1=nodump  0=dump  

* 

DCINMSG    DC    CL26’  INPUT  MESSAGE  SUCESSFUL  ’ 

DCDATE     DC    CL6’  DATE  ’ 

DCTIME     DC    CL6’  TIME  ’ 

USER1      DC     CL8’USER1    ’ 

USER2      DC     CL8’USER2    ’ 

WTOR       DC    CL8’WTOR     ’ 

* 

INITFUNC   DC    CL16’INITAPI’  

TAKEFUNC   DC    CL16’TAKESOCKET’  

SENDFUNC   DC    CL16’SEND’  

RECVFUNC   DC    CL16’RECV’  

CLOSFUNC   DC    CL16’CLOSE’  

TERMFUNC   DC    CL16’TERMAPI’  

SELEFUNC   DC    CL16’SELECT’  

* 

WORKTCPIP  DC    CL27’TCPIP  WORK  DATA  BEGINS  HERE’  

APITYPE    DC    AL2(2)  

MAXSOC     DC    AL2(MAX)  

MAX        EQU    50 

MAXSNO     DS    F’00’  

* 

IDENT      DS     0CL16  

TCPNAME    DS    CL8  

ASDNAME    DS    CL8  

* 

CLIENT     DS    0CL38  

DOMAIN     DC    F’2’  

NAME       DS    CL8  

TASK       DS    CL8  

RESERVED   DS    20B’0’  

* 

SUBTASK    DS    CL8  

ERRNO      DS     F 

RETCODE    DS    F 

FLAGS      DC     F’0’  

NBYTE      DC     F’50’  

BUF        DS    CL(LENG)  

LENG       EQU    50 

LENGTH     DC    AL4(LENG)  

TIMEOUT    DS    0D 

SECONDS    DS    F 

MILLISEC   DS    F 

RSNDMASK    DS    CL(MAX)  

WSNDMASK    DS    CL(MAX)  

ESNDMASK    DS    CL(MAX)  

Figure  81.  Sample  assembler  IMS  server  (Part  5 of 6)

 

Chapter  8. IMS Listener  samples  259



RRETMASK    DS    CL(MAX)  

WRETMASK    DS    CL(MAX)  

ERETMASK    DS    CL(MAX)  

S          DS    H 

* 

          DS    0D 

DLBWORK    DS     D 

          DS    0F 

IOAREAIN   DS    0CL56                   I/O  AREA  INPUT  

TIMLEN     DS    H                      Length  of trans  init  msg  

TIMRSV     DS    H                      reserved  set  to zeros  

TIMID      DS    CL8                     LISTENER  ID set  to LISTNR  

TIMLAS     DS    CL8                     LISTENER  addr  space  name  

TIMLTD     DS    CL8                     LISTENER  taskid  for  takesocket  

TIMSAS     DS    CL8                     SERVER  addr  space  name  

TIMSTD     DS    CL8                     SERVER  TASK  ID  user  in initapi  

TIMSD      DS    H                      socket  given  in LISTENER  used  in 

*                                                      tasksocket  

TIMTCPAS   DS    CL8                     TCPIP  addr  space  name  

TIMDT      DS    H                      Data  type  of  client  

*                                      ASCII(0)  or EBCDIC(1)  

          DS    0F 

IOAREAOT   DS    0CL119                  I/O  AREA  OUTPUT  

OTLTH      DS    BL2  

OTRSV      DS    BL2  

OTLTERM    DS     CL8  

OTINPUTN   DS    CL8  

OTMSG      DS    CL25  

OTLITDT    DS     CL6  

OTDATE     DS    CL8  

OTLITIME   DS    CL6  

OTTIME     DS    CL8  

OTFILL     DS    CL28  

OTLEN      EQU    (*-IOAREAOT)  

* 

IOPCB      DSECT                         I/O  AREA  

LTERMN     DS    CL8                     LOGICAL  TERMINAL  NAME  

          DS    CL2                     RESERVED  FOR  IMS  

STATUS     DS    CL2                     STATUS  CODE  

CDATE      DS    PL4                     CURRENT  DATE  YYDDD  

CTIME      DS    PL4                     CURRENT  TIME  HHMMSST  

INPUTMSN   DS    BL4                     SEQUENCE  NUMBER  

MSGOUTDN   DS    CL8                     MESSAGE  OUT  DESC  NAME  

USERID     DS    CL8                     USER  ID  OF SOURCE  

* 

ALTPCB1    DSECT                         ALTERNATE  PCB  

ALTERM1    DS     CL8                     DESTINATION  NAME  

          DS    CL2                     RESERVED  FOR  IMS  

ALSTAT1    DS     CL2                     STATUS  CODE  

* 

ALTPCB2    DSECT                         ALTERNATE  PCB  

ALTERM2    DS     CL8                     DESTINATION  NAME  

          DS    CL2                     RESERVED  FOR  IMS  

ALSTAT2    DS     CL2                     STATUS  CODE  

* 

          END  

Figure  81.  Sample  assembler  IMS  server  (Part  6 of 6)

 

260 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Sample program implicit-mode 

The  following  is an  example  of  an  implicit-mode  client  server  program  pair. The  

client  program  name  is EZAIMSC1;  you  can  find  it in  hlq.SEZAINST(EZAIMSC1).  

The  server  program  name  is EZASVAS1;  its  IMS  trancode  is DLSI101.  The  sample  

program  is located  in hlq.SEZAINST(EZASVAS1).  When  link  editing  the  sample  

program,  module  EZAIMSAS  should  be  included  from  the  SEZALOAD  target  

library.  

Program flow 

The  client  begins  execution  and  obtains  the  host  name  and  port  number  from  the  

startup  parameters.  It then  issues  SOCKET  and  CONNECT  calls  to establish  

connectivity  to  the  specified  host  and  port.  Upon  successful  completion  of  the  

CONNECT,  the  client  sends  the  TRM,  which  tells  the  Listener  to  schedule  the  

specified  transaction  (DLSI101).  Because  implicit-mode  protocol  requires  that  all 

input  data  segments  be  transmitted  before  the  server  application  is scheduled,  the  

client  follows  the  TRM  with  2 segments  of application  data  and  an  end-of-message  

(EOM)  segment.  The  Listener  schedules  DLSI101  and  places  a TIM  on  the  IMS  

message  queue,  followed  by  the  2 segments  of  application  data.  Finally,  the  

Listener  issues  a GIVESOCKET  call  and  waits  for  the  server  to  take  the  socket.  

When  the  requested  server  (EZASVAS1)  begins  execution,  it issues  a GU  call  to  

ASMADLI.  Behind  the  scenes,  the  Assist  module  issues  its  own  GU  and  retrieves  

the  TIM  from  the  IMS  message  queue.  Using  addressability  information  from  the  

TIM,  it issues  INITAPI  and  takeSOCKET  calls,  which  establish  connectivity  with  

the  client.  

Once  connectivity  is established,  the  Assist  module  issues  a GN  to the  IMS  

message  queue,  which  returns  the  first  segment  of  application  data  sent  by  the  

client.  This  data  is  returned  to  the  server  mainline.  (Thus,  to  the  server  mainline,  

the  first  segment  of application  data  is returned  in  response  to  its  GU.)  In  the  

sample  program,  the  first  segment  of application  data  is the  data  record:  THIS  IS 

FIRST  TEXT  MESSAGE  SEND  TO  SERVER. This  record  is echoed  back  to the  client  by  

means  of  an  IMS  ISRT  call  to  ASMADLI.  The  IMS  Assist  module  intercepts  the  

ISRT  and  issues  a TCP/IP  write()  to  echo  the  segment  back  to  the  client.  The  

server  mainline  then  issues  a GN  ASMADLI  (which  the  Assist  module  intercepts  

and  executes  another  GN  ASMTDLI)  to  receive  the  second  segment  of user  data.  

This  segment  is  also  echoed  back  to  the  client,  using  an  IMS  ISRT  call,  which  the  

Assist  module  intercepts  and  replaces  with  a TCP/IP  write()  to  the  client.  

After  the  second  client  data  segment,  the  message  queue  contains  an  EOM  

segment,  denoting  the  client’s  end-of-message.  When  the  server  has  echoed  the  

second  input  segment  to  the  client,  it issues  another  GN  to  ASMADLI.  ASMADLI  

receives  an  end-of-message  indication  from  the  message  queue  and  passes  a QD  

status  code  back  to  the  server  mainline.  

At  this  point,  the  server  mainline  has  completed  processing  that  message  and  

issues  a GU  to  see  whether  another  message  has  arrived  for  that  trancode.  This  GU  

triggers  the  Assist  module  to  send  a final  CSMOKY  message  to  the  client,  

indicating  successful  completion.  It then  issues  another  GU  to the  IMS  message  

queue  to  determine  whether  another  message  for  that  trancode  has  been  queued.  If 

so,  the  server  program  repeats  itself;  if not,  the  server  issues  a GOBACK  and  ends.  

Sample implicit-mode client program (C language) 

  

 

Chapter  8. IMS Listener  samples  261



/* 

 * Include  Files.  

 */ 

/*  #define  RESOLVE_VIA_LOOKUP  */ 

#pragma  runopts(NOSPIE  NOSTAE)  

#define  lim  119  

#include  <manifest.h>  

#include  <bsdtypes.h>  

#include  <in.h>  

#include  <socket.h>  

#include  <netdb.h>  

#include  <stdio.h>  

/* 

 * Client  Main.  

 */ 

main(argc,  argv)  

int  argc;  

char  **argv;  

{ 

    unsigned  short  port;        /* port  client  will  connect  to         */ 

    struct  sktmsg  

           { 

              short  msglen;  

              short  msgrsv;  

              char   msgtrn??(8??);  

              char   msgdat??(lim??);  

           }  msgbuff;  

    struct  datmsg  

           { 

              short  datlen;  

              short  datrsv;  

              char   datdat??(lim??);  

           }  datbuff;  

  

    char  buf  ??(lim??);         /* send  receive  buffer                  */ 

    struct  hostent  *hostnm;     /* server  host  name  information         */ 

    struct  sockaddr_in  server;  /* server  address                       */ 

    int  s;                     /* client  socket                        */ 

    int  len;                    /* length  for  send                      */ 

    /* 

     * Check  Arguments  Passed.  Should  be hostname  and port.  

     */ 

    if (argc  != 3) 

    { 

        printf("Invalid  parameter  count\n");  

        exit(1);  

    } 

    printf("Usage:  %s program  name\n",argv??(0??));  

  

    /* 

Figure  82.  Sample  C client  to drive  IMS  Listener  (Part  1 of 5)

 

262 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



* The  host  name  is the  first  argument.  Get  the  server  address.  

     */ 

  

    printf("Usage:  %s host  name\n",argv??(1??));  

  

    hostnm  = gethostbyname(argv[1]);  

    if (hostnm  == (struct  hostent  *) 0) 

    { 

         printf("Gethostbyname  failed\n");  

        exit(2);  

    } 

    /* 

     * The  port  is the  second  argument.  

     */ 

  

    printf("Usage:  %s port  name\n",argv??(2??));  

  

    port  = (unsigned  short)  atoi(argv[2]);  

    /* 

     * Put  the  server  information  into  the  server  structure.  

     * The  port  must  be put  into  network  byte  order.  

     */ 

    server.sin_family       = AF_INET;  

    server.sin_port         = htons(port);  

    server.sin_addr.s_addr  = *((unsigned  long  *)hostnm->h_addr);  

    /* 

     * Get  a stream  socket.  

     */ 

    if ((s  = socket(AF_INET,  SOCK_STREAM,  0)) < 0) 

    { 

        tcperror("Socket()");  

        exit(3);  

    } 

    /* 

     * Connect  to the  server.  

     */ 

    if (connect(s,  (struct  sockaddr  *)&server,  sizeof(server))  < 0) 

    { 

        tcperror("Connect()");  

        exit(4);  

    } 

    /* 

     * Put  a message  into  the  buffer.  

     */ 

   msgbuff.msgdat??(0??)=’\0’;  

   msgbuff.msgrsv  = 0; 

   msgbuff.msglen  = 20;  

   strncat(msgbuff.msgtrn,"*TRNREQ*",  

           lim-strlen(msgbuff.msgdat)-1);  

   strncat(msgbuff.msgdat,"DLSI101  ", 

Figure  82.  Sample  C client  to drive  IMS  Listener  (Part  2 of 5)

 

Chapter  8. IMS Listener  samples  263



lim-strlen(msgbuff.msgdat)-1);  

   len=20;  

    if (send(s,  (char  *)&msgbuff,  len,  0) < 0) 

    { 

        tcperror("Send()");  

        exit(5);  

    } 

    printf("\n");  

    printf(msgbuff.msgdat);  

    printf("send  one  complete\n");  

  

    /* 

     * Put  a text  message  into  the  buffer.  

     */ 

   datbuff.datdat??(0??)=’\0’;  

   datbuff.datlen  = 46;  

   datbuff.datrsv  = 0; 

   strncat(datbuff.datdat,"THIS  IS FIRST  TEXT  MESSAGE  SEND  TO SERVER  ", 

           lim-strlen(datbuff.datdat)-1);  

   len=46;  

    if (send(s,  (char  *)&datbuff,  len,  0) < 0) 

    { 

        tcperror("Send()");  

        exit(6);  

    } 

    printf("\n");  

    printf(datbuff.datdat);  

    printf("\n");  

    printf("send  for  first  text  message  complete\n");  

  

    /* 

     * Put  a text  message  into  the  buffer.  

     */ 

  

   datbuff.datdat??(0??)=’\0’;  

   datbuff.datlen  = 47;  

   strncat(datbuff.datdat,"THIS  IS 2ND  TEXT  MESSAGE  SENDING  TO SERVER",  

           lim-strlen(datbuff.datdat)-1);  

   len=47;  

    if (send(s,  (char  *)&datbuff,  len,  0) < 0) 

    { 

        tcperror("Send()");  

        exit(7);  

    } 

    printf("\n");  

    printf(datbuff.datdat);  

    printf("\n");  

    printf("send  for  2nd  test  message  complete\n");  

Figure  82.  Sample  C client  to drive  IMS  Listener  (Part  3 of 5)

 

264 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



/* 

     * Put  a end  message  into  the  buffer.  

     */ 

  

   datbuff.datdat??(0??)=’\0’;  

   datbuff.datlen  = 4; 

   strncpy(datbuff.datdat,"  ",lim);  

    len=4;  

    if (send(s,  (char  *)&datbuff,  len,  0) < 0)  

    { 

        tcperror("Send()");  

        exit(8);  

    } 

    printf("\n");  

    printf(datbuff.datdat);  

    printf("\n");  

    printf("send  for  end  message  complete\n");  

  

    /* 

     * The  server  sends  back  the  same  message.  Receive  it into  the 

     * buffer.  

     */ 

    strncpy(datbuff.datdat,"  ",lim);  

    if (recv(s,(char  *)&datbuff,  lim,  0) < 0) 

    { 

        tcperror("Recv()");  

        exit(9);  

    } 

    printf("receive  one  text  complete\n");  

    printf(datbuff.datdat);  

    printf("\n");  

    /* 

     * The  server  sends  back  the  same  message.  Receive  it into  the 

     * buffer.  

     */ 

    strncpy(datbuff.datdat,"  ",lim);  

    if (recv(s,(char  *)&datbuff,  lim,  0) < 0) 

    { 

        tcperror("Recv()");  

        exit(10);  

    } 

    printf("receive  two  text  complete\n");  

    printf(datbuff.datdat);  

    printf("\n");  

    /* 

Figure  82.  Sample  C client  to drive  IMS  Listener  (Part  4 of 5)

 

Chapter  8. IMS Listener  samples  265



Sample implicit-mode server program (Assembler language) 

  

     * The  server  sends  eof  message.  Receive  it into  the  

     * buffer.  

     */ 

    strncpy(datbuff.datdat,"  ",lim);  

    if (recv(s,(char  *)&datbuff,  4,  0) < 0) 

    { 

        tcperror("Recv()");  

        exit(11);  

    } 

    printf("receive  eof  complete\n");  

    printf("\n");  

    printf(datbuff.datdat);  

    printf("\n");  

    strncpy(datbuff.datdat,"  ",lim);  

    if (recv(s,(char  *)&datbuff,  12,  0) < 0) 

    { 

        tcperror("Recv()");  

        exit(12);  

    } 

    printf("receive  CSMOKY  complete\n");  

    printf("\n");  

    printf(datbuff.datdat);  

    printf("\n");  

    /* 

     * Close  the  socket.  

     */ 

    close(s);  

    printf("Client  Ended  Successfully\n");  

    exit(0);  

} 

Figure  82.  Sample  C client  to drive  IMS  Listener  (Part  5 of 5)

 

266 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



EZASVAS1   CSECT                         ENTRY  POINT  

          USING  EZASVAS1,BASE           ADDRESSABILITY  

          SAVE   (14,12)                 SAVE  DL/I  REGS  

          LR    BASE,15  

          ST    R13,SAVEAREA+4          SAVE  AREA  CHAINING  

          LA    R13,SAVEAREA            NEW  SAVE  AREA  

          MVC    PSBS(L’PSBS*3),0(1)     SAVE  PCB  LIST  

* 

* REG  1 CONTAINS  PTR  TO PCB  ADDR  LIST  

* REG  13 CONTAINS  PTR  TO DL/I  SAVE  AREA  

* REG  14 CONTAINS  PTR  DL/I  RETURN  ADDRESS  

* REG  15 CONTAINS  PROGRAMS  ENTRY  POINT  

* 

          L     R2,0(R0,R1)              LOAD  ADDR  OF I/O PCB  

* 

          USING  IOPCB,R2                 ADDRESSABILITY  

* 

          L     R3,4(R0,R1)              LOAD  ADDR  OF ALT PCB  

* 

          USING  ALTPCB1,R3               ADDRESSABILITY  

* 

          L     R4,8(R0,R1)              LOAD  ADDR  OF ALT PCB  

          LA    R4,0(R0,R4)              REMOVE  HIGH  ORDER  BIT  

* 

          USING  ALTPCB2,R4               ADDRESSABILITY  

* 

          LA    R5,IOAREAIN  

          LA    R7,IOAREAOT                       POINT  TO OUTPUT  AREA  

* 

GUCALL     DS    0H                      GET  UNIQUE  CALL  

* 

* 

          CALL   ASMADLI,(GUFUNCT,(2),(5)),VL  

* 

          CLC    STATUS(L’STATUS),=CL2’QC’     IF NO MESSAGES  

          BE    GOBACK                        RETURN  TO IMS 

*                                            ELSE  NEXT  INSTR  

          CLC    STATUS(L’STATUS),=CL2’   ’    IF BLANK  OK 

          BNE    ERRRTN                        SOME  WRONG  HERE  

*                                            ELSE  NEXT  INSTR  

* 

          XR  R6,R6                           CLEAR  REG  

          LA  R6,GNCALL                       SET  RETURN  ADDRESS  

          BAL  R6,ISRTCALL                     GO  INSERT  SEGMENT  

* 

GNCALL     DS    0H                      GET  NEXT  CALL  

* 

* 

          CALL   ASMADLI,(GNFUNCT,(2),(5)),VL  

* 

          CLC    STATUS(L’STATUS),=CL2’QD’     IF NO MORE  SEGMENTS  

          BE    GUCALL                        RETURN  TO IMS 

          CLC    STATUS(L’STATUS),=CL2’   ’    IF NO MORE  SEGMENTS  

          BNE    ERRRTN                        SOME  WRONG  HERE  

Figure  83.  Sample  assembler  IMS  server  (Part  1 of 4)

 

Chapter  8. IMS Listener  samples  267



* 

          XR  R6,R6                           CLEAR  REG  

          LA  R6,GNLOOP                       SET RETURN  ADDRESS  

          BAL  R6,ISRTCALL                     GO INSERT  SEGMENT  

* 

GNLOOP     B     GNCALL  

* 

ISRTCALL   DS    0H                      INSERT  - WRITE  TO  TERMINAL  

*                                                AND ALTERNATE  

*                                                SUCESSFUL  MSG  

          XR    R9,R9                             CLEAR  REG  

          LA    R9,OTLEN                          LOAD  LENGTH  

          STH    R9,OTLTH                          STORE  LEN THERE  

          XC    OTRSV(L’OTRSV),OTRSV              CLEAR  RESERVE  DATA  

          MVC    OTMSG(L’OTMSG),DCINMSG            MOVE  IN MSG  

          MVC    OTLITDT(L’OTLITDT),DCDATE          "    " DATE  

          MVC    OTLITIME(L’OTLITIME),DCTIME        "    " TIME  

          UNPK   OTDATE,CDATE                       MAKE  TIME  & DATE  

          OI    OTDATE+7,X’F0’                     EBCDIC  

          UNPK   OTTIME,CTIME  

          OI    OTTIME+7,X’F0’  

          XR    R9,R9                              GET  READY  

          L     R9,INPUTMSN                        INPUT  COUNT  

          CVD    R9,DLBWORK                         INPUT  COUNT  

          UNPK   OTINPUTN,DLBWORK                   INPUT  COUNT  

          OI    OTINPUTN+7,X’F0’                  FIX  SIGN  

          MVC    OTFILL(L’OTFILL),=28X’40’          FILL  CHAR  

          MVC    OTLTERM(L’OTLTERM),LTERMN          ADD  TERMINAL  

* 

* For  LTERM  USER1....  

* 

          CALL   ASMADLI,(ISRTFUNCT,(2),(7)),VL  

* 

* For  LTERM  USER2....  

* 

          XC   IOAREAOT(L’IOAREAOT),IOAREAOT  

          BR   R6 

* 

ERRRTN     DS    0H                      SOME  WRONG  HERE  

* 

          L     R13,4(R13)  

          RETURN  (14,12),RC=8            RELOAD  DL/I  REGS  & RETURN  

*                                       ERROR  

* 

GOBACK     DS    0H                      RETURN  TO IMS  

* 

          L     R13,4(R13)  

          RETURN  (14,12),RC=0            RELOAD  DL/I  REGS  & RETURN  

* 

         DS    0D 

PSBS      DS    3F 

         SPACE  1 

BASE      EQU    12 

RC       EQU    15 

R0       EQU    0 

Figure  83.  Sample  assembler  IMS  server  (Part  2 of 4)

 

268 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



R1        EQU    1 

R2        EQU    2 

R3        EQU    3 

R4        EQU    4 

R5        EQU    5 

R6        EQU    6 

R7        EQU    7 

R8        EQU    8 

R9        EQU    9 

R10       EQU    10 

R11       EQU    11 

R12       EQU    12 

R13       EQU    13 

R14       EQU    14 

R15       EQU    15 

         SPACE  1 

* 

          DS    0F 

SAVEAREA   DC    18F’0’  

GUFUNCT    DC    CL4’GU   ’              GET  UNIQUE  CALL  

GNFUNCT    DC    CL4’GN   ’              GET  NEXT  

PURGFUNCT  DC    CL4’PURG’               PURGE  CALL  

ISRTFUNCT  DC    CL4’ISRT’               INSERT  CALL  

BADCALL    DC    CL8’BAD  CALL’           BAD  LIT  

ERROPT     DC    F’1’                    1=NODUMP  2=DUMP  

DCINMSG    DC    CL26’  INPUT  MESSAGE  SUCESSFUL  ’ 

DCDATE     DC    CL6’  DATE  ’ 

DCTIME     DC    CL6’  TIME  ’ 

USER1      DC     CL8’USER1    ’ 

USER2      DC     CL8’USER2    ’ 

WTOR       DC    CL8’WTOR     ’ 

* 

          DS    0D 

DLBWORK    DS    D 

          DS    0F 

IOAREAIN   DS    CL119                   I/O  AREA  INPUT  

          DS    0F 

IOAREAOT   DS    0CL119                  I/O  AREA  OUTPUT  

OTLTH      DS     BL2  

OTRSV      DS     BL2  

OTLTERM    DS    CL8  

OTINPUTN   DS    CL8  

OTMSG      DS     CL25  

OTLITDT    DS    CL6  

OTDATE     DS    CL8  

OTLITIME   DS    CL6  

OTTIME     DS    CL8  

OTFILL     DS    CL46  

OTLEN      EQU    (*-IOAREAOT)  

* 

IOPCB      DSECT                         I/O AREA  

LTERMN     DS    CL8                     LOGICAL  TERMINAL  NAME  

          DS    CL2                     RESERVED  FOR IMS  

STATUS     DS    CL2                     STATUS  CODE  

CDATE      DS     PL4                     CURRENT  DATE  YYDDD  

Figure  83.  Sample  assembler  IMS  server  (Part  3 of 4)

 

Chapter  8. IMS Listener  samples  269



Sample program - IMS MPP client 

Most  of  the  discussion  in  this  book  assumes  that  the  IMS  system  is the  server;  

however,  some  applications  require  that  the  server  be  a TCP/IP  host.  The  

following  is  an  example  of  a program  in  which  the  client  is an  IMS  MPP,  and  the  

server  is  a TCP/IP  host.  

For  simplicity,  we  have  coded  both  client  and  server  to  execute  on  an  MVS  host.  

The  client  (EZAIMSC3)  is initiated  by  a 3270-driven  IMS  MPP;  the  server  

(EZASVAS3)  is  a TSO  job  which  is already  running  when  the  client  starts.  

The  samples  are  located  in  hlq.SEZAINST(EZAIMSC3)  and  

hlq.SEZAINST(EZASVAS3).  

Program flow 

A TSO  Submit  command  is used  to  start  the  server.  Once  started,  it  executes  the  

TCP/IP  connection  sequence  for  an  iterative  server  (INITAPI,  SOCKET,  BIND,  

LISTEN,  SELECT,  and  ACCEPT)  and  then  waits  for  the  client  to  request  

connection.  

Note  that  the  BIND  call  returns  a socket  descriptor  which  is  then  used  to  listen  for  

a connection  request.  The  ACCEPT  call  also  returns  a socket  descriptor,  which  is  

used  for  the  application  data  connection.  Meanwhile,  the  original  listener  socket  is 

available  to  receive  additional  connection  requests.  

The  client  is  started  by  calling  an  IMS  transaction  which,  in  turn,  executes  the  

TCP/IP  connection  sequence  for  a client  (INITAPI,  SOCKET,  and  CONNECT).  

Upon  receiving  the  connection  request  from  the  client,  the  server  issues  a READ  

and  waits  for  the  client  to WRITE  the  initial  message.  The  server  contains  a 

READ/WRITE  loop  which  echoes  client  transmissions  until  an  ″END″ message  is 

received.  When  this  message  is received,  it sets  a ’last  record’  switch,  echoes  the  

end  message  to  the  client,  and  terminates.  

CTIME      DS    PL4                     CURRENT  TIME  HHMMSST  

INPUTMSN   DS    BL4                     SEQUENCE  NUMBER  

MSGOUTDN   DS    CL8                     MESSAGE  OUT  DESC  NAME  

USERID     DS    CL8                     USER  ID  OF SOURCE  

* 

ALTPCB1    DSECT                         ALTERNATE  PCB  

ALTERM1    DS     CL8                     DESTINATION  NAME  

          DS    CL2                     RESERVED  FOR  IMS  

ALSTAT1    DS     CL2                     STATUS  CODE  

* 

ALTPCB2    DSECT                         ALTERNATE  PCB  

ALTERM2    DS     CL8                     DESTINATION  NAME  

          DS    CL2                     RESERVED  FOR  IMS  

ALSTAT2    DS     CL2                     STATUS  CODE  

* 

* 

          END  

Figure  83.  Sample  assembler  IMS  server  (Part  4 of 4)

 

270 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Note  that  in  order  for  the  server  to  terminate,  it must  close  two  sockets:  one  -- the  

socket  on  which  it listens  for  connection  requests;  the  other  --  the  socket  on  which  

the  data  transfers  took  place.  

The  client  and  server  both  include  Write  To Operator  macros,  which  allow  you  to  

monitor  progress  through  the  application  logic  flow. At  the  end  of  this  appendix  

you  will  find  a sample  of  the  WTO  output  from  the  client  and  the  server.  

Sample client program for non-IMS server 

  

 

Chapter  8. IMS Listener  samples  271



EZAIMSC3  CSECT  

EZAIMSC3  AMODE  ANY  

EZAIMSC3  RMODE  ANY  

         GBLB   &TRACE   ASSEMBLER  VARIABLE  TO CONTROL  TRACE  GENERATION  

&TRACE    SETB   1       1=TRACE  ON  0=TRACE  OFF  

         GBLB   &SUBTR   ASSEMBLER  VARIABLE  TO CONTROL  SUBTRACE  

&SUBTR    SETB   0       1=SUBTRACE  ON  0=SUBTRACE  OFF 

*---------------------------------------------------------------------*  

*                                                                     * 

* MODULE  NAME:   EZAIMSC3                                               * 

*                                                                     * 

* Copyright:     Licensed  Materials  - Property  of IBM                  * 

*                                                                     * 

*               "Restricted  Materials  of IBM"                          * 

*                                                                     * 

*               5694-A01                                               * 

*                                                                     * 

*               (C)  Copyright  IBM  Corp.  2003                           * 

*                                                                     * 

*               US Government  Users  Restricted  Rights  -               * 

*               Use,  duplication  or disclosure  restricted  by          * 

*               GSA  ADP  Schedule  Contract  with  IBM  Corp.               * 

*                                                                     * 

* Status:        CSV1R5                                                 * 

*                                                                     * 

* MODULE  FUNCTION:  Sample  program  of an IMS  MPP  TCP  client.  This       * 

*                  module  connects  with  a TCP/IP  server  and            * 

*                  exchanges  msgs  with  it.  The  number  of msgs          * 

*                  exchanged  is determined  by a constant  and          * 

*                  the  length  of the  messages  is also  determined       * 

*                  by a constant.                                      * 

*                  Note:  If an error  occurs  during  processing,  this    * 

*                  module  will  send  an error  message  to the system     * 

*                  console  and  then  Abends0c1.                         * 

*                                                                     * 

* LANGUAGE:   Assembler                                                 * 

*                                                                     * 

* ATTRIBUTES:  Reusable                                                 * 

*                                                                     * 

* INPUT:  None                                                          * 

*                                                                     * 

* Change  History:                                                      * 

*                                                                     * 

* Flag  Reason    Release   Date    Origin     Description                  * 

* ----  --------  --------  ------  --------   ---------------------------  * 

* $Q1=  D316.15   CSV1R5    020604  BKELSEY  : Support  64K  sockets          * 

*                                                                     * 

*---------------------------------------------------------------------*  

SOC0000   DS    0H 

         USING  *,R15               Tell  assembler  to use  reg 15 

         B     SOC00100            Branch  to startup  address  

         DC    CL16’IMSTCPCLEYECATCH’  

BUFLEN    EQU    1000                Set  length  of I/O  buffers  

R4BASE    DC    A(SOC0000+4096)  

Figure  84.  Sample  of IMS  program  as a client  (Part  1 of 10)

 

272 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



*---------------------------------------------------------------------*  

*        Control  Variables  for  this  program                            * 

*---------------------------------------------------------------------*  

SOCMSGN   DC    F’005’              Number  of messages  to be exchanged  

SOCMSGL   DC    F’200’              Length  of messages  to be exchanged  

SERVPORT  DC    H’5000’             Port  Address  of  Server  

SOCTASK   DC    F’0’                Task  number  for  this  client  

SERVLEN   DC    H’0’                Length  of server’s  name  

SERVNAME  DC    CL24’  ’            Internet  name  of server  

SENDINT   DC    CL8’00000010’       Delay  interval  between  sends  

*---------------------------------------------------------------------*  

*        Constants  used  for  call  functions                             * 

*---------------------------------------------------------------------*  

INITAPI   DC    CL16’INITAPI’  

GETHSTID  DC    CL16’GETHOSTID’  

SOCKET    DC    CL16’SOCKET’  

GHBN      DC     CL16’GETHOSTBYNAME’  

CONNECT   DC    CL16’CONNECT’  

READ      DC     CL16’READ’  

WRITE     DC    CL16’WRITE’  

CLOSE     DC    CL16’CLOSE’  

TERMAPI   DC    CL16’TERMAPI’  

*---------------------------------------------------------------------*  

*        Beginning  of program  execution  statements                     * 

*---------------------------------------------------------------------*  

SOC00100  DS    0H                 Beginning  of  program  

         STM    R14,R12,12(R13)     Save  callers  registers  

         LR    R3,R15              Move  base  reg to R3 

         L     R4,R4BASE           Add  R4 as second  base  reg  

         DROP   R15                 Tell  assembler  to drop  R15  as base  

         USING  SOC0000,R3,R4       Tell  assembler  to use  R3 and R4  as   X 

                                  base  registers  

         LR    R7,R13              Save  address  of previous  save  area  

         LA    R12,SOCSTG          Move  address  of program  stg to R12  

         LA    R13,SOCSTGL         Move  length  of program  stge  to R13  

         SR    R14,R14             Clear  R14  

         SR    R15,R15             Clear  R15  

         MVCL   R12,R14             Clear  program  storage  

         LA    R13,SOCSTG          Move  address  of program  stg to R13  

         USING  SOCSTG,R13          Tell  Assembler  about  storage  

         ST    R7,SOCSAVEL         Save  address  of lower  save  area  

         ST    R13,8(R7)           Complete  save  area  chain  

SOC00200  DS    0H 

* 

*   Build  message  for  console  

* 

         MVC    MSG1D,MSG1C         Initialize  first  part  of message  

         L     R0,SOCTASK          Get  task  number  

         CVD    R0,DWORK            Convert  task  number  to decimal  

         UNPK   MSGTD,DWORK+5(3)    Convert  decimal  to character  

         OI    MSGTD+4,X’F0’       Clear  sign  

         MVC    MSG2D,MSG2CS        Move  ’Started’  to message  

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg hdr.  

         MVC    WTOLIST,WTOPROT     Move  prototype  WTO to list  form  

Figure  84.  Sample  of IMS  program  as a client  (Part  2 of 10)

 

Chapter  8. IMS Listener  samples  273



WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

* 

*        Issue  INITAPI  Call  to connect  to interface  

* 

         MVC    SOCTASKC(3),=CL3’SOC’   Build  Task  Identifier  

         MVC    SOCTASKC+3(5),MSGTD  

         MVC    MSG2D,MSG2C1        Move  ’INITAPI’to  message  

         MVC    MAXSOC,=AL2(50)     Initialize  MAXSOC  field  

         MVC    ASTCPNAM,=CL8’TCPV3    ’  Initialize  TCP Name  

         MVC    ASCLNAME,=CL8’TCPCLINT’   Initialize  AS Name  

* 

         CALL   EZASOKET,                                                X 

               (INITAPI,MAXSOC,ASIDENT,SOCTASKC,HISOC,ERRNO,            X 

               RETCODE),                                                X 

               VL                 Specify  variable  parameter  list  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE01  

*  TRACE  ENTRY  FOR  INITAPI   TRACE  TYPE  = 1 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE01  ANOP  

* 

*        Issue  GETHOSTID  Call   to obtain  internet  address  of host  

* 

         MVC    MSG2D,MSG2C8        Move  ’GTHSTID’to  message  

* 

         CALL   EZASOKET,           Issue  GETHOSTID  Call                  X 

               (GETHSTID,SERVIADD),                                     X 

               VL                 Specify  Variable  parameter  list  

* 

         AIF    (NOT  &TRACE).TRACE08  

*  TRACE  ENTRY  FOR  GETHOSTID   TRACE  TYPE  = 8 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE08  ANOP  

* 

*        Issue  SOCKET  Call  to obtain  a socket  descriptor  

* 

         MVC    MSG2D,MSG2C2        Move  ’SOCKET’  to message  

         MVC    AF,=F’2’            Address  Family  = Internet  

         MVC    SOCTYPE,=F’1’       Type  = Stream  Sockets  

         XC    PROTO,PROTO         Clear  protocol  field  

* 

         CALL   EZASOKET,           Issue  SOCKET  Call                     X 

               (SOCKET,AF,SOCTYPE,PROTO,ERRNO,RETCODE),                 X 

               VL                 Specify  variable  parameter  list  

* 

Figure  84.  Sample  of IMS  program  as a client  (Part  3 of 10)

 

274 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE02  

*  TRACE  ENTRY  FOR  SOCKET   TRACE  TYPE  = 2 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE02  ANOP  

* 

*        Get  socket  descriptor  number  

* 

         L     R6,RETCODE          Descriptor  number  returned  

         STH    R6,SOCDESC          Save  it 

* 

*        Issue  CONNECT  Command  to Connect  to Server  

* 

         MVC    SSOCAF,=H’2’        Set  AF=INET  

         MVC    SSOCPORT,SERVPORT   Move  Port  Number  

         MVC    SSOCINET,SERVIADD   Move  Internet  Address  of Server  

         MVC    MSG2D,MSG2C4        Move  ’CONNECT’  to message  

* 

         CALL   EZASOKET,           Issue  CONNECT  Call                    X 

               (CONNECT,SOCDESC,SERVSOC,ERRNO,RETCODE),                 X 

               VL                 Specify  variable  parameter  list  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE04  

*  TRACE  ENTRY  FOR  CONNECT   TRACE  TYPE  = 4 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE04  ANOP  

* 

*        Send  initial  message  to server  

* 

         MVC    BUFFER(L’MSG1),MSG1   Move  Message  to Buffer  

         LA    R6,L’MSG1           Get  length  of message  

         ST    R6,DATALEN          Put  length  in data  field  

         MVC    MSG2D,MSG2C5        Move  ’WRITE’  to message  

* 

         CALL   EZASOKET,           Issue  WRITE  Call                      X 

               (WRITE,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE),            X 

               VL 

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE05  

*  TRACE  ENTRY  FOR  WRITE   TRACE  TYPE  = 5 

         MVC    MSGLEN,=AL2(MSGTL+18)  Put  length  of text  in msg  hdr.  

Figure  84.  Sample  of IMS  program  as a client  (Part  4 of 10)

 

Chapter  8. IMS Listener  samples  275



MVC    MSG3D,ERR3C         ’ RETCODE=  ’ 

         MVI    MSG3S,C’+’          Move  sign  

         L     R6,RETCODE          Get  return  code  value  

         CVD    R6,DWORK            Convert  it  to decimal  

         UNPK   MSG4D,DWORK+4(4)    Unpack  it 

         OI    MSG4D+6,X’F0’       Correct  the  sign  

         LA    R6,MSG              Put  text  address  in R6 

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE05  ANOP  

* 

*        Read  response  to initial  message  

* 

         MVC    MSG2D,MSG2C6        Move  ’READ’  to message  

         LA    R6,L’BUFFER         Get  length  of buffer  

         ST    R6,DATALEN          Put  length  in data  field  

* 

         CALL   EZASOKET,           Issue  READ  Call                       X 

               (READ,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE),             X 

               VL                 Specify  variable  parameter  list  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE06  

*  TRACE  ENTRY  FOR  READ   TRACE  TYPE  = 6 

         MVC    MSGLEN,=AL2(MSGTL+18)  Put  length  of text  in msg  hdr.  

         MVC    MSG3D,ERR3C         ’ RETCODE=  ’ 

         MVI    MSG3S,C’+’          Move  sign  

         L     R6,RETCODE          Get  return  code  value  

         CVD    R6,DWORK            Convert  it  to decimal  

         UNPK   MSG4D,DWORK+4(4)    Unpack  it 

         OI    MSG4D+6,X’F0’       Correct  the  sign  

         LA    R6,MSG              Put  text  address  in R6 

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE06  ANOP  

* 

*        Send  second  message  to server  

* 

         MVC    BUFFER(L’MSG2),MSG2   Move  Message  to Buffer  

         LA    R6,L’MSG2           Get  length  of message  

         ST    R6,DATALEN          Put  length  in data  field  

         MVC    MSG2D,MSG2C5        Move  ’WRITE’  to message  

* 

         CALL   EZASOKET,           Issue  WRITE  Call                      X 

               (WRITE,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE),            X 

               VL 

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE15  

*  TRACE  ENTRY  FOR  WRITE   TRACE  TYPE  = 5 

         MVC    MSGLEN,=AL2(MSGTL+18)  Put  length  of text  in msg  hdr.  

Figure  84.  Sample  of IMS  program  as a client  (Part  5 of 10)

 

276 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



MVC    MSG3D,ERR3C         ’ RETCODE=  ’ 

         MVI    MSG3S,C’+’          Move  sign  

         L     R6,RETCODE          Get  return  code  value  

         CVD    R6,DWORK            Convert  it to decimal  

         UNPK   MSG4D,DWORK+4(4)    Unpack  it 

         OI    MSG4D+6,X’F0’       Correct  the sign  

         LA    R6,MSG              Put  text  address  in R6 

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE15  ANOP  

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

* 

*        Read  response  to second  message  

* 

         MVC    MSG2D,MSG2C6        Move  ’READ’  to message  

* 

         CALL   EZASOKET,           Issue  READ  Call                       X 

               (READ,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE),             X 

               VL                 Specify  variable  parameter  list  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

* 

         AIF    (NOT  &TRACE).TRACE16  

*  TRACE  ENTRY  FOR  READ   TRACE  TYPE  = 6 

         MVC    MSGLEN,=AL2(MSGTL+18)  Put  length  of text  in msg  hdr.  

         MVC    MSG3D,ERR3C         ’ RETCODE=  ’ 

         MVI    MSG3S,C’+’          Move  sign  

         L     R6,RETCODE          Get  return  code  value  

         CVD    R6,DWORK            Convert  it to decimal  

         UNPK   MSG4D,DWORK+4(4)    Unpack  it 

         OI    MSG4D+6,X’F0’       Correct  the sign  

         LA    R6,MSG              Put  text  address  in R6 

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE16  ANOP  

* 

*        Send  End  message  to server  

* 

         MVC    BUFFER(L’ENDMSG),ENDMSG   Move  end  message  to buffer  

         LA    R6,L’ENDMSG         Get  length  of message  

         ST    R6,SOCMSGL          Put  length  in length  field  

         MVC    MSG2D,MSG2C5        Move  ’WRITE’  to message  

* 

         CALL   EZASOKET,           Issue  WRITE  Call                      X 

               (WRITE,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE),            X 

               VL 

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE25  

Figure  84.  Sample  of IMS  program  as a client  (Part  6 of 10)

 

Chapter  8. IMS Listener  samples  277



*  TRACE  ENTRY  FOR  WRITE   TRACE  TYPE  = 5 

         MVC    MSGLEN,=AL2(MSGTL+18)  Put  length  of text  in msg  hdr.  

         MVC    MSG3D,ERR3C         ’ RETCODE=  ’ 

         MVI    MSG3S,C’+’          Move  sign  

         L     R6,RETCODE          Get  return  code  value  

         CVD    R6,DWORK            Convert  it  to decimal  

         UNPK   MSG4D,DWORK+4(4)    Unpack  it 

         OI    MSG4D+6,X’F0’       Correct  the  sign  

         LA    R6,MSG              Put  text  address  in R6 

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE25  ANOP  

* 

*        Read  response  to end  message  

* 

         MVC    MSG2D,MSG2C6        Move  ’READ’  to message  

* 

         CALL   EZASOKET,           Issue  READ  Call                       X 

               (READ,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE),             X 

               VL                 Specify  variable  parameter  list  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE26  

*  TRACE  ENTRY  FOR  READ   TRACE  TYPE  = 6 

         MVC    MSGLEN,=AL2(MSGTL+18)  Put  length  of text  in msg  hdr.  

         MVC    MSG3D,ERR3C         ’ RETCODE=  ’ 

         MVI    MSG3S,C’+’          Move  sign  

         L     R6,RETCODE          Get  return  code  value  

         CVD    R6,DWORK            Convert  it  to decimal  

         UNPK   MSG4D,DWORK+4(4)    Unpack  it 

         OI    MSG4D+6,X’F0’       Correct  the  sign  

         LA    R6,MSG              Put  text  address  in R6 

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE26  ANOP  

* 

*        Close  socket  

* 

         MVC    MSG2D,MSG2C7        Move  ’CLOSE’  to message  

* 

         CALL   EZASOKET,           Issue  CLOSE  Call                      X 

               (CLOSE,SOCDESC,ERRNO,RETCODE),                           X 

               VL                 Specify  variable  parameter  list  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE07  

*  TRACE  ENTRY  FOR  CLOSE  TRACE  TYPE  = 7 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

Figure  84.  Sample  of IMS  program  as a client  (Part  7 of 10)

 

278 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



.TRACE07  ANOP  

* 

*        Terminate  Connection  to API  

* 

         CALL   EZASOKET,           Issue  TERMAPI  Call                    X 

               (TERMAPI),                                               X 

               VL                 Specify  variable  parameter  list  

* 

*        Issue  console  message  for  task  termination  

* 

         MVC    MSG2D,MSG2CE        Move  ’Ended’  to message  

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

* 

*        Return  to Caller  

* 

         L     R13,SOCSAVEL  

         LM    R14,R12,12(R13)  

         BR    R14  

* 

*        Write  error  message  to operator  and  ABENDS0C1  

* 

SOCERR    DS    0H                 Write  error  message  to operator  

         MVC    ERR1D,MSG1D         ’IMSTCPCL,  TASK  #’ 

         MVC    ERRTD,MSGTD         Move  task  number  to message  

         MVC    ERR2D,MSG2D         Call  Type  

         MVC    ERR3D,ERR3C         ’ RETCODE=  ’ 

         MVI    ERR3S,C’-’          Move  sign  which  is always  minus  

         MVC    ERR5D,ERR5C         ’ ERRNO=  ’ 

         L     R6,RETCODE          Get  return  code  value  

         CVD    R6,DWORK            Convert  it to decimal  

         UNPK   ERR4D,DWORK+4(4)    Unpack  it 

         OI    ERR4D+6,X’F0’       Correct  the sign  

         L     R6,ERRNO            Get  errno  value  

         CVD    R6,DWORK            Convert  it to decimal  

         UNPK   ERR6D,DWORK+4(4)    Unpack  it 

         OI    ERR6D+6,X’F0’       Correct  the sign  

         LA    R6,ERR              Put  text  address  in R6 

         MVC    ERRLEN,=AL2(ERRTL)  Put  length  of text  in msg hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

ABEND     DS    0H 

         DC    H’0’                Force  ABEND  

WTOPROT   WTO    TEXT=,              List  form  of WTO Macro                X 

               MF=L  

WTOPROTL  EQU    *-WTOPROT           Length  of  WTO  Prototype  

MSG1C     DC    CL17’IMSTCPCL,  TASK  # ’ 

MSG2CS    DC    CL8’  STARTED’  

MSG2CE    DC    CL8’  ENDED   ’ 

ERR3C     DC    CL10’  RETCODE=  ’ 

ERR5C     DC    CL8’  ERRNO=  ’ 

MSG2C1    DC    CL8’  INITAPI’  

MSG2C2    DC    CL8’  SOCKET  ’ 

Figure  84.  Sample  of IMS  program  as a client  (Part  8 of 10)

 

Chapter  8. IMS Listener  samples  279



MSG2C4    DC    CL8’  CONNECT’  

MSG2C5    DC    CL8’  WRITE   ’ 

MSG2C6    DC    CL8’  READ    ’ 

MSG2C7    DC    CL8’  CLOSE   ’ 

MSG2C8    DC    CL8’  GTHSTID’  

MSG2C35   DC    CL8’  SYNC    ’ 

MSG1      DC    CL16’CLIENT  MESSAGE  1’     First  msg  to server  

MSG2      DC    CL16’CLIENT  MESSAGE  2’     2nd  msg  to server  

ENDMSG    DS    0CL48               End  Message  for Server  

         DC    CL3’END’            End  indicator  for  SRV1  

         DC    CL45’  ’            Pad  with  blanks  

         DS    0D 

SOCSTG    DS    0F                 PROGRAM  STORAGE  

SOCSAVE   DS    0F                 Save  Area  

SOCSAVE1  DS    F                  Word  for  high-level  languages  

SOCSAVEL  DS    F                  Address  of  previous  save  area  

SOCSAVEH  DS    F                  Address  of  next  save  area  

SOCSAV14  DS    F                  Reg 14 

SOCSAV15  DS    F                  Reg 15 

SOCSAV0   DS    F                  Reg  0 

SOCSAV1   DS    F                  Reg  1 

SOCSAV2   DS    F                  Reg  2 

SOCSAV3   DS    F                  Reg  3 

SOCSAV4   DS    F                  Reg  4 

SOCSAV5   DS    F                  Reg  5 

SOCSAV6   DS    F                  Reg  6 

SOCSAV7   DS    F                  Reg  7 

SOCSAV8   DS    F                  Reg  8 

SOCSAV9   DS    F                  Reg  9 

SOCSAV10  DS    F                  Reg 10 

SOCSAV11  DS    F                  Reg 11 

SOCSAV12  DS    F                  Reg 12 

SOCSAV13  DS    F                  Reg 13 

MAXSOC    DS    H                  Maximum  number  of sockets  for this    X 

                                          application  

SOCTASKC  DS    CL8                 Character  task  identifier  

SOCDESC   DS    H                  Socket  Descriptor  Number  

HISOC     DS    F                  Highest  socket  descriptor  available  

AF       DS    F                  Address  family  for  socket  call  

SOCTYPE   DS    F                  Type  of socket  

NS       DS    F                  New  socket  number  for socket  call  

SERVAL    DS    12F                 Alias  array  for  server  

SERVSOC   DS    0F                 Socket  Address  of Server  

SSOCAF    DS    H                  Address  Family  of Server  = 2 

SSOCPORT  DS    H                  Port  number  for  Server  

SSOCINET  DS    F                  Internet  address  for  Server  

         DC    D’0’                Reserved  

MSG       DS    0F                 Message  area  

MSGLEN    DS    H                  Length  of message  

MSG1D     DS    CL17                ’IMSTCPCL,  TASK  #’ 

MSGTD     DS    CL5                 Task  Number  

MSG2D     DS    CL8                 Last  part  of message  

MSGE      EQU    *                  End  of message  

MSGTL     EQU    MSGE-MSG1D          Length  of message  text  

MSG3D     DS    CL10                ’ RETCODE  = ’ 

Figure  84.  Sample  of IMS  program  as a client  (Part  9 of 10)

 

280 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Sample server program for IMS MPP client 

  

MSG3S     DS    C                  Sign  which  is always  - 

MSG4D     DS    CL7                 Return  code  

ERR       DS    0F                 Error  message  area  

ERRLEN    DS    H                  Length  of message  

ERR1D     DS    CL17                ’IMSTCPCL,  TASK  #’ 

ERRTD     DS    CL5                 Task  Number  

ERR2D     DS    CL8                 Last  part  of message  

ERR3D     DS    CL10                ’ RETCODE  = ’ 

ERR3S     DS    C                  Sign  which  is always  - 

ERR4D     DS    CL7                 Return  code  

ERR5D     DS    CL8                 ’ ERRNO  =’  

ERR6D     DS    CL7                 Error  number  

ERRE      EQU    *                  End  of message  

ERRTL     EQU    ERRE-ERR1D          Length  of message  text  

BUFFER    DS    CL(BUFLEN)          Socket  I/O  Buffer  

DATALEN   DS    F                  Length  of buffer  data  

DWORK     DS    D                  Double  word  work  area  

RECNO     DS    PL4                 Record  Number  

ERRNO     DS    F                  Error  number  returned  from  call  

RETCODE   DS    F                  Return  code  from  call  

PROTO     DS    F                  Protocol  field  for  socket  

ASIDENT   DS    0F                 Address  space  identifier  for  initapi  

ASTCPNAM  DS    CL8                 Name  of TCP/IP  Address  Space  

SERVIADD  DS    F                  Internet  address  for  Server  

ASCLNAME  DS    CL8                 Our  name  as  known  to TCP/IP  

WTOLIST   DS    CL(WTOPROTL)        List  form  of WTO  Macro  

SOCSTGE   EQU    *                  End  of Program  Storage  

SOCSTGL   EQU    SOCSTGE-SOCSTG      Length  of Program  Storage  

         LTORG  

R0        EQU    0 

R1        EQU    1 

R2        EQU    2 

R3        EQU    3 

R4        EQU    4 

R5        EQU    5 

R6        EQU    6 

R7        EQU    7 

R8        EQU    8 

R9        EQU    9 

R10       EQU    10 

R11       EQU    11 

R12       EQU    12 

R13       EQU    13 

R14       EQU    14 

R15       EQU    15 

GWABAR    EQU    13  

         END  

Figure  84.  Sample  of IMS  program  as a client  (Part  10 of 10)

 

Chapter  8. IMS Listener  samples  281



EZASVAS3  CSECT  

EZASVAS3  AMODE  ANY  

EZASVAS3  RMODE  ANY  

         GBLB   &TRACE   ASSEMBLER  VARIABLE  TO CONTROL  TRACE  GENERATION  

&TRACE    SETB   1       1=TRACE  ON  0=TRACE  OFF  

         GBLB   &SUBTR   ASSEMBLER  VARIABLE  TO CONTROL  SUBTRACE  

&SUBTR    SETB   0       1=SUBTRACE  ON  0=SUBTRACE  OFF 

*---------------------------------------------------------------------*  

*                                                                     * 

* MODULE  NAME:   EZASVAS3                                              * 

*                                                                     * 

* Copyright:     Licensed  Materials  - Property  of IBM                  * 

*                                                                     * 

*               "Restricted  Materials  of IBM"                          * 

*                                                                     * 

*               5694-A01                                               * 

*                                                                     * 

*               (C)  Copyright  IBM  Corp.  2003                           * 

*                                                                     * 

*               US Government  Users  Restricted  Rights  -               * 

*               Use,  duplication  or disclosure  restricted  by          * 

*               GSA  ADP  Schedule  Contract  with  IBM  Corp.               * 

*                                                                     * 

* Status:        CSV1R5                                                 * 

*                                                                     * 

* MODULE  FUNCTION:  Test  module  for  Extended  Sockets.   This  module      * 

*                  accepts  connection  request  from  IMS  client          * 

*                  program  named  EZAIMSC3.                             * 

*                                                                     * 

* LANGUAGE:   Assembler                                                 * 

*                                                                     * 

* ATTRIBUTES:  Non-reusable                                             * 

*                                                                     * 

* Change  History:                                                      * 

*                                                                     * 

* Flag  Reason    Release   Date    Origin     Description                  * 

* ----  --------  --------  ------  --------   ---------------------------  * 

* $Q1=  D316.15   CSV1R5    020604  BKELSEY  : Support  64K  sockets          * 

*                                                                     * 

*---------------------------------------------------------------------*  

SOC0000   DS    0H 

         USING  *,R15               Tell  assembler  to use  reg 15 

         B     SOC00100            Branch  to startup  address  

         DC    CL14’SERVEREYECATCH’  

ASIDENT   DS    0F                 Address  Space  Identifier  for  initapi  

ASTCPNAM  DC    CL8’TCPV3     ’     Name  of TCP/IP  Address  Space  

ASCLNAME  DC    CL8’CALLSRVER’      Our  name  as known  to TCP/IP  

TIMEOUT   DS    0F                 Timeout  value  for  select  

TIMESEC   DC    F’180’              Timeout  value  in seconds  

TIMEMSEC  DC    F’0’                Timeout  value  in milliseconds  

BUFLEN    EQU    1000                Set  length  of I/O  buffers  

R4BASE    DC    A(SOC0000+4096)  

SOC00100  DS    0H                 Beginning  of program  

         STM    R14,R12,12(R13)     Save  callers  registers  

Figure  85.  Sample  of IMS  program  as a server  (Part  1 of 11)

 

282 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



LR    R3,R15              Move  base  reg to R3 

         L     R4,R4BASE           Add  R4 as second  base  reg  

         DROP   R15                 Tell  assembler  to drop  R15  as base  

         USING  SOC0000,R3,R4       Tell  assembler  to use  R3 and R4  as   X 

                                  base  registers  

         LA    R6,SOCSTG           Clear  program  storage  

         LA    R7,SOCSTGL  

         SR    R14,R14  

         SR    R15,R15  

         MVCL   R6,R14  

         ST    R13,SOCSAVEH        Save  address  of higher  save  area  

         LA    R7,SOCSAVE          Complete  save  area  chain  

         ST    R7,8(R13)           Tell  caller  where  our save  area  is 

         LA    R13,SOCSAVE         Point  R13  at  our save  area  

         MVI    ENDSW,X’00’         Clear  end-of-transmission  switch  

* 

*   Build  message  for  console  

* 

         MVC    MSG1D,MSG1C         Initialize  first  part  of message  

         MVC    MSGTD,=CL5’00000’   Move  subtask  number  from  clientid  

         MVC    MSG2D,MSG2CS        Move  ’Started’  to message  

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg hdr.  

         MVC    WTOLIST,WTOPROT     Move  prototype  WTO to list  form  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

* 

*        Issue  INITAPI  Call  to connect  to interface  

* 

         MVC    SOCTASKC,=CL8’TAS00000’  Give  subtask  a name  

         MVC    MSG2D,MSG2C00       Move  ’INITAPI’to  message  

         MVC    MAXSOC,=AL2(50)     Initialize  MAXSOC  parameter  

* 

         CALL   EZASOKET,                                                X 

               (INITAPI,MAXSOC,ASIDENT,SOCTASKC,HISOC,ERRNO,            X 

               RETCODE),                                                X 

               VL 

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE00  

*  TRACE  ENTRY  FOR  INITAPI   TRACE  TYPE  = 0 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE00  ANOP  

* 

*        Issue  SOCKET  Call  to obtain  socket  to  listen  on 

* 

         MVC    MSG2D,MSG2C25       Move  ’SOCKET’to  message  

         MVC    AF,=F’2’            Initialize  AF to ’2’ (INET)  

         MVC    SOCTYPE,=F’1’       Specify  stream  sockets  

         MVC    PROTO,=F’0’         Protocol  is ignored  for  stream  

Figure  85.  Sample  of IMS  program  as a server  (Part  2 of 11)

 

Chapter  8. IMS Listener  samples  283



* 

         CALL   EZASOKET,           Issue  SOCKET  CALL                     X 

               (SOCKET,AF,SOCTYPE,PROTO,ERRNO,RETCODE),                 X 

               VL 

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminate  

         AIF    (NOT  &TRACE).TRACE25  

*  TRACE  ENTRY  FOR  SOCKET  TRACE  TYPE  = 25 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE25  ANOP  

         L     R0,RETCODE          Get  descriptor  number  of socket  

         STH    R0,LISTSOC          Save  it 

* 

*        Issue  GETHOSTID  call  to determine  our  internet  address  

* 

         MVC    MSG2D,MSG2C07       Move  ’GETHSTID’to  message  

* 

         CALL   EZASOKET,           Issue  GETHOSTID  Call                  X 

               (GETHSTID,RETCODE),VL  

* 

         AIF    (NOT  &TRACE).TRACE07  

*  TRACE  ENTRY  FOR  SOCKET  TRACE  TYPE  = 07 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE07  ANOP  

         L     R0,RETCODE          Get  internet  address  of host  

         ST    R0,SINETADR         Save  it 

* 

*        Issue  BIND  call  to establish  port  

* 

         MVC    MSG2D,MSG2C02       Move  ’BIND’  to message  

         MVC    SPORT,=H’5000’      Move  port  number  to structure  

         MVC    SAF,=H’2’           Move  AF (INET)  to structure  

* 

         CALL   EZASOKET,           Issue  BIND  Call                       X 

               (BIND,LISTSOC,SOCKNAME,ERRNO,RETCODE),                   X 

               VL 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

* 

         AIF    (NOT  &TRACE).TRACE02  

*  TRACE  ENTRY  FOR  BIND  TRACE  TYPE  = 02 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE02  ANOP  

Figure  85.  Sample  of IMS  program  as a server  (Part  3 of 11)

 

284 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



* 

* 

*        Issue  LISTEN  call  to establish  backlog  of connection  requests  

* 

         MVC    MSG2D,MSG2C13       Move  ’LISTEN’  to message  

         MVC    BACKLOG,=F’5’       Set  backlog  to 5 

* 

         CALL   EZASOKET,           Issue  LISTEN  Call                     X 

               (LISTEN,LISTSOC,BACKLOG,ERRNO,RETCODE),VL  

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminate  

* 

         AIF    (NOT  &TRACE).TRACE13  

*  TRACE  ENTRY  FOR  LISTEN  TRACE  TYPE  = 13 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE13  ANOP  

* 

*        Issue  SELECT  call  to wait  on  connection  request  

* 

         MVC    MSG2D,MSG2C19       Move  ’SELECT’  to message  

         MVC    SELSOC,=F’31’       Maximum  number  of sockets  

         MVC    WSNDMASK,=F’0’      Not  checking  for  writes  

         MVC    ESNDMASK,=F’0’      Not  checking  for  exceptions  

         LA    R0,1                Put  1 in  rightmost  position  of R0 

         LH    R1,LISTSOC          Put  listener  socket  number  in  R1 

         SLL    R0,0(R1)            Create  mask  for read  

         ST    R0,RSNDMASK         Put  value  in  mask  field  

* 

         CALL   EZASOKET,           Issue  SELECT  Call                     X 

               (SELECT,SELSOC,TIMEOUT,RSNDMASK,WSNDMASK,ESNDMASK,       X 

               RRETMASK,WRETMASK,ERETMASK,ERRNO,RETCODE),               X 

               VL 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

* 

         AIF    (NOT  &TRACE).TRACE19  

*  TRACE  ENTRY  FOR  SELECT  TRACE  TYPE  = 19 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE19  ANOP  

* 

*        Issue  ACCEPT  call  to accept  a new  connection  

* 

         MVC    MSG2D,MSG2C01       Move  ’ACCEPT’  to message  

         MVC    NS,=F’4’            Use  socket  4 for  connection  socket  

* 

         CALL   EZASOKET,           Issue  ACCEPT  Call                     X 

               (ACCEPT,LISTSOC,SOCKNAME,ERRNO,RETCODE),                 X 

Figure  85.  Sample  of IMS  program  as a server  (Part  4 of 11)

 

Chapter  8. IMS Listener  samples  285



VL 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

* 

         AIF    (NOT  &TRACE).TRACE01  

*  TRACE  ENTRY  FOR  ACCEPT  TRACE  TYPE  = 01 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE01  ANOP  

         L    R0,RETCODE           Get  descriptor  number  of new  socket  

         STH   R0,CONNSOC           Save  it for  future  use  

* 

*        Issue  READ  call  to get  first  message  from  client  

* 

         LA    R6,L’BUFFER         Get  length  of buffer  

         ST    R6,DATALEN          Put  length  in data  field  

         MVC    MSG2D,MSG2C14       Move  ’READ’  to message  

         XC    FLAGS,FLAGS         Clear  the  FLAGS  field  

* 

         CALL   EZASOKET,           Issue  READ  Call                       X 

               (READ,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL  

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

* 

         AIF    (NOT  &TRACE).TRAC14A  

*  TRACE  ENTRY  FOR  READ  TRACE  TYPE  = 14 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRAC14A  ANOP  

* 

*        Send  Initial  Message  to client  to continue  transaction  

* 

         MVC    BUFFER(L’RESPMSG),RESPMSG   Move  Message  to Buffer  

         LA    R6,L’RESPMSG        Get  length  of message  

         ST    R6,DATALEN          Put  length  in data  field  

         XC    FLAGS,FLAGS         Clear  FLAGS  field  

         MVC    MSG2D,MSG2C26       Move  ’WRITE’  to message  

* 

         CALL   EZASOKET,           Issue  WRITE  call                      X 

               (WRITE,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRAC26A  

*  TRACE  ENTRY  FOR  WRITE  TRACE  TYPE  = 22 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

Figure  85.  Sample  of IMS  program  as a server  (Part  5 of 11)

 

286 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



MF=(E,WTOLIST)  

.TRAC26A  ANOP  

SOC0300   DS    0H 

* 

*        Read  Message  from  Client  

* 

         MVC    MSG2D,MSG2C14       Move  ’READ’  to message  

         LA    R0,L’BUFFER         Get  length  of buffer  

         ST    R0,DATALEN          Use  it for  data  length  

         XC    FLAGS,FLAGS         Clear  FLAGS  field  

* 

         CALL   EZASOKET,                                                X 

               (READ,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BNH    SOCERR              Yes,  go display  error  and  terminat  

         AIF    (NOT  &TRACE).TRAC14B  

*  TRACE  ENTRY  FOR  RECV   TRACE  TYPE  = 14  

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRAC14B  ANOP  

         CLC    BUFFER(3),=CL3’END’  Was  this  last  record  

         BNE    SOC0350             No 

         MVI    ENDSW,C’E’          Yes,  set  end-of-transmission  switch  

SOC0350   DS    0H 

* 

*        Send  Response  to Client  

* 

         MVC    MSG2D,MSG2C26       Move  ’WRITE’  to message  

         MVC    DATALEN,RETCODE     Get  message  length  from  previous  call  

         XC    FLAGS,FLAGS         Clear  FLAGS  field  

* 

         CALL   EZASOKET,                                                X 

               (WRITE,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BNH    SOCERR              Yes,  go display  error  and  terminat  

         AIF    (NOT  &TRACE).TRAC26B  

*  TRACE  ENTRY  FOR  SEND    TRACE  TYPE  = 26 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRAC26B  ANOP  

* 

         CLI    ENDSW,C’E’          Have  we received  last  record  

         BNE    SOC0300             No,  so go back  and  do another  

* 

*        Close  sockets  

* 

         MVC    MSG2D,MSG2C03       Move  ’CLOSE1’  to message  

Figure  85.  Sample  of IMS  program  as a server  (Part  6 of 11)

 

Chapter  8. IMS Listener  samples  287



* 

         CALL   EZASOKET,           Issue  CLOSE  call  for connection  skt   X 

               (CLOSE,CONNSOC,ERRNO,RETCODE),VL  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRACE03  

*  TRACE  ENTRY  FOR  CLOSE  TRACE  TYPE  = 3 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRACE03  ANOP  

* 

         MVC    MSG2D,MSG2C03A      Move  ’CLOSE2’  to message  

* 

         CALL   EZASOKET,           Issue  CLOSE  call  for listen  socket    X 

               (CLOSE,LISTSOC,ERRNO,RETCODE),VL  

* 

         L     R6,RETCODE          Check  for  sucessful  call  

         C     R6,=F’0’            Is it less  than  zero  

         BL    SOCERR              Yes,  go display  error  and terminat  

         AIF    (NOT  &TRACE).TRAC103  

*  TRACE  ENTRY  FOR  CLOSE  TRACE  TYPE  = 3 

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

.TRAC103  ANOP  

* 

*        Terminate  Connection  to API  

* 

         CALL   EZASOKET,                                                X 

               (TERMAPI),VL  

* 

*        Issue  console  message  for  task  termination  

* 

         MVC    MSG2D,MSG2CE        Move  ’Ended’  to message  

         LA    R6,MSG              Put  text  address  in R6 

         MVC    MSGLEN,=AL2(MSGTL)  Put  length  of text  in msg  hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

* 

*        Return  to Caller  

* 

         L     R13,SOCSAVEH  

         LM    R14,R12,12(R13)  

         BR    R14  

* 

*        Write  error  message  to operator  

* 

SOCERR    DS    0H                 Write  error  message  to operator  

         MVC    ERR1D,MSG1D         ’SERVER,  TASK  #’ 

         MVC    ERRTD,MSGTD         Move  task  number  to message  

Figure  85.  Sample  of IMS  program  as a server  (Part  7 of 11)

 

288 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



MVC    ERR2D,MSG2D         Call  Type  

         MVC    ERR3D,ERR3C         ’ RETCODE=  ’ 

         MVI    ERR3S,C’-’          Move  sign  which  is always  minus  

         MVC    ERR5D,ERR5C         ’ ERRNO=  ’ 

         L     R6,RETCODE          Get  return  code  value  

         CVD    R6,DWORK            Convert  it to decimal  

         UNPK   ERR4D,DWORK+4(4)    Unpack  it 

         OI    ERR4D+6,X’F0’       Correct  the sign  

         L     R6,ERRNO            Get  errno  value  

         CVD    R6,DWORK            Convert  it to decimal  

         UNPK   ERR6D,DWORK+4(4)    Unpack  it 

         OI    ERR6D+6,X’F0’       Correct  the sign  

         LA    R6,ERR              Put  text  address  in R6 

         MVC    ERRLEN,=AL2(ERRTL)  Put  length  of text  in msg hdr.  

         WTO    TEXT=(R6),          Write  message  to operator             X 

               MF=(E,WTOLIST)  

* 

*        Return  to Caller  

* 

*        L     R13,SOCSAVEH  

*        LM    R14,R12,12(R13)  

*        BR    R14  

ABEND     DS    0H 

         DC    H’0’                Force  ABEND  

*---------------------------------------------------------------------*  

*        Constants                                                     * 

*---------------------------------------------------------------------*  

WTOPROT   WTO    TEXT=,              List  form  of WTO Macro                X 

               MF=L  

WTOPROTL  EQU    *-WTOPROT           Length  of  WTO  Prototype  

MSG1C     DC    CL17’SERVER,    TASK  # ’ 

MSG2CS    DC    CL8’  STARTED’  

MSG2CE    DC    CL8’  ENDED   ’ 

ERR3C     DC    CL10’  RETCODE=  ’ 

ERR5C     DC    CL8’  ERRNO=  ’ 

MSG2C00   DC    CL8’  INITAPI’  

MSG2C01   DC    CL8’  ACCEPT  ’ 

MSG2C02   DC    CL8’  BIND    ’ 

MSG2C03   DC    CL8’  CLOSE   ’ 

MSG2C03A  DC    CL8’  CLOSE2  ’ 

MSG2C07   DC    CL8’  GTHSTID’  

MSG2C13   DC    CL8’  LISTEN  ’ 

MSG2C14   DC    CL8’  READ    ’ 

MSG2C19   DC    CL8’  SELECT  ’ 

MSG2C25   DC    CL8’  SOCKET  ’ 

MSG2C26   DC    CL8’  WRITE   ’ 

MSG2C32   DC    CL8’  TAKESKT’  

RESPMSG   DC    CL50’FIRST  RESPONSE  FROM  SERVER   ’ 

*---------------------------------------------------------------------*  

*        Constants  used  for  call  types                                 * 

*---------------------------------------------------------------------*  

INITAPI   DC    CL16’INITAPI’  

BIND      DC     CL16’BIND’  

LISTEN    DC    CL16’LISTEN’  

ACCEPT    DC    CL16’ACCEPT’  

Figure  85.  Sample  of IMS  program  as a server  (Part  8 of 11)

 

Chapter  8. IMS Listener  samples  289



READ      DC    CL16’READ’  

SELECT    DC    CL16’SELECT’  

WRITE     DC    CL16’WRITE’  

SOCKET    DC    CL16’SOCKET’  

CLOSE     DC    CL16’CLOSE’  

GETHSTID  DC    CL16’GETHOSTID’  

TERMAPI   DC    CL16’TERMAPI’  

*---------------------------------------------------------------------*  

*        Program  Storage  Area                                          * 

*---------------------------------------------------------------------*  

SOCSTG    DS    0F                 PROGRAM  STORAGE  

SOCSAVE   DS    0F                 Save  Area  

SOCSAVE1  DS    F                  Word  for  high-level  languages  

SOCSAVEH  DS    F                  Address  of  previous  save  area  

SOCSAVEL  DS    F                  Address  of  next  save  area  

SOCSAV14  DS    F                  Reg 14 

SOCSAV15  DS    F                  Reg 15 

SOCSAV0   DS    F                  Reg  0 

SOCSAV1   DS    F                  Reg  1 

SOCSAV2   DS    F                  Reg  2 

SOCSAV3   DS    F                  Reg  3 

SOCSAV4   DS    F                  Reg  4 

SOCSAV5   DS    F                  Reg  5 

SOCSAV6   DS    F                  Reg  6 

SOCSAV7   DS    F                  Reg  7 

SOCSAV8   DS    F                  Reg  8 

SOCSAV9   DS    F                  Reg  9 

SOCSAV10  DS    F                  Reg 10 

SOCSAV11  DS    F                  Reg 11 

SOCSAV12  DS    F                  Reg 12 

SOCSAV13  DS    F                  Reg 13 

PARMADDR  DS    F                  Address  of  parameter  list  

GWAADDR   DS    F                  Address  of Global  Work  Area  

TIEADDR   DS    F                  Address  of Task  Information  Element  

LISTSOC   DS    H                  Socket  number  used  for  listen  

CONNSOC   DS    H                  Socket  number  created  by accept  

SOCMSGN   DS    F                  Number  of messages  to be exchanged  

SOCMSGL   DS    F                  Length  of messages  to be exchanged  

SOCTASKC  DS    CL8                 Character  task  identifier  

HISOC     DS    F                  Highest  socket  descriptor  available  

SERVLEN   DS    H 

SERVSOC   DS    0F                 Socket  Address  of Server  

SERVAF    DS    H                  Address  Family  of Server  = 2 

SERVPORT  DS    H                  Port  Address  of  Server  

SERVIADD  DS    F                  Internet  Address  of Server  

ENDSW     DS    C                  End  of transmission  switch  

MSG       DS    0F                 Message  area  

MSGLEN    DS    H                  Length  of message  

MSG1D     DS    CL17                ’SERVER,    TASK  #’ 

MSGTD     DS    CL5                 Task  Number  

MSG2D     DS    CL8                 Last  part  of message  

MSGE      EQU    *                  End  of message  

MSGTL     EQU    MSGE-MSG1D          Length  of message  text  

ERR       DS    0F                 Error  message  area  

ERRLEN    DS    H                  Length  of message  

Figure  85.  Sample  of IMS  program  as a server  (Part  9 of 11)

 

290 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



ERR1D     DS    CL17                ’SERVER,    TASK  #’ 

ERRTD     DS    CL5                 Task  Number  

ERR2D     DS    CL8                 Last  part  of message  

ERR3D     DS    CL10                ’ RETCODE  = ’ 

ERR3S     DS    C                  Sign  which  is always  - 

ERR4D     DS    CL7                 Return  code  

ERR5D     DS    CL8                 ’ ERRNO  =’  

ERR6D     DS    CL7                 Error  number  

ERRE      EQU    *                  End  of message  

ERRTL     EQU    ERRE-ERR1D          Length  of message  text  

*---------------------------------------------------------------------*  

*     Name  structure  used  by bind                                      * 

*---------------------------------------------------------------------*  

SOCKNAME  DS    0F                 Socket  Name  structure  

SAF       DS    H                  The  address  family  of the  socket  

SPORT     DS    H                  The  port  number  of this  socket  

SINETADR  DS    F                  The  internet  address  of this  socket  

         DS    D                  Reserved  

SOCKNAML  EQU    *-SOCKNAME          Length  of SOCKNAME  Structure  

CLIENTID  DS    0F                 Client  Id structure  

CDOMAIN   DS    F                  The  domain  of this  client  (2)  

CNAME     DS    CL8                 The  major  name  of  this  client  

CSUBTASK  DS    CL8                 The  minor  (subtask)  name  of this      X 

                                  client  

         DS    D                  Reserved  

CLIENTL   EQU    *-CLIENTID  

BUFFER    DS    CL(BUFLEN)          Socket  I/O  Buffer  

DATALEN   DS    F                  Length  of buffer  data  

DWORK     DS    D                  Double  word  work  area  

SENDINT   DS    D                  Time  interval  for  send  

RECNO     DS    PL4                 Record  Number  

AF        DS    F                  Address  family  for  socket  call  

NS        DS    F                  New  socket  number  for socket  call  

SOCTYPE   DS    F                  Socket  type  for  socket  call  

PROTO     DS    F                  Protocol  for  socket  call  

ERRNO     DS    F                  Error  number  returned  from  call  

RETCODE   DS    F                  Return  code  from  call  

CINADDR   DS    F                  Internet  address  of client  

CPORT     DS    F                  Port  number  of client  

MAXSOC    DS    H                  Maximum  # sockets  for  INITAPI  

SELSOC    DS    F                  Maximum  # sockets  for  SELECT  

BACKLOG   DS    F                  Backlog  value  for  LISTEN  

FLAGS     DS    F                  FLAGS  field  for  RECV  and RECVFROM  

RSNDMASK  DS    F                  Read  send  mask  for  select  

WSNDMASK  DS    F                  Write  send  mask  for select  

ESNDMASK  DS    F                  Exception  send  mask  for  select  

RRETMASK  DS    F                  Read  return  mask  for select  

WRETMASK  DS    F                  Write  return  mask  for select  

ERETMASK  DS    F                  Exception  return  mask  for  select  

WTOLIST   DS    CL(WTOPROTL)        List  form  of WTO  Macro  

EZASMTI   EZASMI  TYPE=TASK,                                              X 

               STORAGE=CSECT       Generate  task  storage  for  interface  

EZASMGW   EZASMI  TYPE=GLOBAL,       Storage  definition  for GWA            X 

               STORAGE=CSECT  

SOCSTGE   EQU    *                  End  of Program  Storage  

Figure  85.  Sample  of IMS  program  as a server  (Part  10 of 11)

 

Chapter  8. IMS Listener  samples  291



WTO output from sample program 

Client  Output  

13.29.18  JOB00084   IEF403I  SOCCALLS  - STARTED  - TIME=13.29.18  

13.29.18  JOB00084   +SERVER,    TASK  # 00000  STARTED  

13.29.19  JOB00084   +SERVER,    TASK  # 00000  INITAPI  

13.29.19  JOB00084   +SERVER,    TASK  # 00000  SOCKET  

13.29.19  JOB00084   +SERVER,    TASK  # 00000  GTHSTID  

13.29.19  JOB00084   +SERVER,    TASK  # 00000  BIND  

13.29.20  JOB00084   +SERVER,    TASK  # 00000  LISTEN  

13.29.41  JOB00084   +SERVER,    TASK  # 00000  SELECT  

13.29.41  JOB00084   +SERVER,    TASK  # 00000  ACCEPT  

13.29.41  JOB00084   +SERVER,    TASK  # 00000  READ  

13.29.41  JOB00084   +SERVER,    TASK  # 00000  WRITE  

13.29.41  JOB00084   +SERVER,    TASK  # 00000  READ  

13.29.41  JOB00084   +SERVER,    TASK  # 00000  WRITE  

13.29.41  JOB00084   +SERVER,    TASK  # 00000  READ  

13.29.42  JOB00084   +SERVER,    TASK  # 00000  WRITE  

13.29.42  JOB00084   +SERVER,    TASK  # 00000  CLOSE  

13.29.42  JOB00084   +SERVER,    TASK  # 00000  CLOSE2  

13.29.42  JOB00084   +SERVER,    TASK  # 00000  ENDED  

Server  Output  

13.27.45  JOB00082   IEF403I  MESSAGE  - STARTED  - TIME=13.27.45  

13.29.40  JOB00082   +IMSTCPCL,  TASK  # 00000  STARTED  

13.29.41  JOB00082   +IMSTCPCL,  TASK  # 00000  INITAPI  

13.29.41  JOB00082   +IMSTCPCL,  TASK  # 00000  GTHSTID  

13.29.41  JOB00082   +IMSTCPCL,  TASK  # 00000  SOCKET  

13.29.41  JOB00082   +IMSTCPCL,  TASK  # 00000  CONNECT  

13.29.41  JOB00082   +IMSTCPCL,  TASK  # 00000  WRITE    RETCODE=  +0000016  

13.29.41  JOB00082   +IMSTCPCL,  TASK  # 00000  READ     RETCODE=  +0000050  

13.29.41  JOB00082   +IMSTCPCL,  TASK  # 00000  WRITE    RETCODE=  +0000016  

13.29.41  JOB00082   +IMSTCPCL,  TASK  # 00000  READ     RETCODE=  +0000016  

13.29.41  JOB00082   +IMSTCPCL,  TASK  # 00000  WRITE    RETCODE=  +0000048  

13.29.42  JOB00082   +IMSTCPCL,  TASK  # 00000  READ     RETCODE=  +0000048  

13.29.42  JOB00082   +IMSTCPCL,  TASK  # 00000  CLOSE  

13.29.42  JOB00082   +IMSTCPCL,  TASK  # 00000  ENDED  

SOCSTGL   EQU    SOCSTGE-SOCSTG      Length  of Program  Storage  

         LTORG  

R0       EQU    0 

R1       EQU    1 

R2       EQU    2 

R3       EQU    3 

R4       EQU    4 

R5       EQU    5 

R6       EQU    6 

R7       EQU    7 

R8       EQU    8 

R9       EQU    9 

R10       EQU    10 

R11       EQU    11 

R12       EQU    12 

R13       EQU    13 

R14       EQU    14 

R15       EQU    15 

GWABAR    EQU    13 

         END  

Figure  85.  Sample  of IMS  program  as a server  (Part  11 of 11)

 

292 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Part  3. Appendixes  

 

© Copyright  IBM Corp. 1994, 2005 293



294 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Appendix  A.  Return  codes  

This  appendix  covers  the  following  return  codes  and  error  messages  

v   Error  numbers  from  MVS  TCP/IP  

v   Error  codes  from  the  Sockets  Extended  interface

Sockets extended ERRNOs 

 Table 6. Sockets  extended  ERRNOs  

Error  

code  Problem  description  System  action  Programmer’s  response  

10100  An ESTAE macro  did  not  

complete  normally.  

End  the call.  Call  your  MVS  system  programmer.  

10101  A STORAGE  OBTAIN  failed.  End  the call.  Increase  MVS  storage  in the  application’s  

address  space.  

10108  The  first  call  issued  was  not  a 

valid  first  call.  

End  the call.  For  a list  of valid  first  calls,  refer  to the 

section  on special  considerations  in the 

chapter  on general  programming.  

10110  LOAD  of EZBSOH03  (alias  

EZASOH03)  failed.  

End  the call.  Call  the  IBM  Software  Support  Center.  

10154  Errors  were  found  in the  

parameter  list  for  an IOCTL  call.  

Disable  the  subtask  

for interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  IOCTL  call.  You might  have  

incorrect  sequencing  of socket  calls.  

10155  The  length  parameter  for  an 

IOCTL  call  is less  than  or equal  

to 0. 

Disable  the  subtask  

for interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  IOCTL  call.  You might  have  

incorrect  sequencing  of socket  calls.  

10156  The  length  parameter  for  an 

IOCTL  call  is 3200  (32  x 100).  

Disable  the  subtask  

for interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  IOCTL  call.  You might  have  

incorrect  sequencing  of socket  calls.  

10159  A 0 or negative  data  length  was  

specified  for  a READ  or  READV  

call.  

Disable  the  subtask  

for interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  length  in the  READ  call.  

10161  The  REQARG  parameter  in the  

IOCTL  parameter  list  is 0. 

End  the call.  Correct  the  program.  

10163  A 0 or negative  data  length  was  

found  for a RECV,  RECVFROM,  

or RECVMSG  call.  

Disable  the  subtask  

for interrupts.  Sever  

the  DLC  path.  Return  

an error  code  to the  

caller.  

Correct  the  data  length.  

10167  The  descriptor  set size  for a 

SELECT  or SELECTEX  call  is less  

than  or equal  to 0. 

Disable  the  subtask  

for interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  SELECT  or SELECTEX  call.  You 

might  have  incorrect  sequencing  of socket  

calls.  

 

© Copyright  IBM Corp. 1994, 2005 295



Table 6. Sockets  extended  ERRNOs  (continued)  

Error  

code  Problem  description  System  action  Programmer’s  response  

10168  The  descriptor  set  size  in bytes  for 

a SELECT  or SELECTEX  call  is 

greater  than  8192.  A number  

greater  than  the  maximum  

number  of allowed  sockets  (65534  

is the  maximum)  has  been  

specified.  

Disable  the  subtask  

for  interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  descriptor  set  size.  

10170  A 0 or negative  data  length  was  

found  for  a SEND  or SENDMSG  

call.  

Disable  the  subtask  

for  interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  data  length  in the  SEND  call.  

10174  A 0 or negative  data  length  was  

found  for  a SENDTO  call.  

Disable  the  subtask  

for  interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  data  length  in the  SENDTO  call.  

10178  The  SETSOCKOPT  option  length  

is less  than  the  minimum  length.  

Disable  the  subtask  

for  interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  OPTLEN  parameter.  

10179  The  SETSOCKOPT  option  length  

is greater  than  the  maximum  

length.  

Disable  the  subtask  

for  interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  OPTLEN  parameter.  

10184  A data  length  of 0 was  specified  

for  a WRITE  call.  

Disable  the  subtask  

for  interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  data  length  in the  WRITE  call.  

10186  A negative  data  length  was  

specified  for a WRITE  or 

WRITEV  call.  

Disable  the  subtask  

for  interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  data  length  in the  WRITE  call.  

10190  The  GETHOSTNAME  option  

length  is not  in the  range  of 

1–255..  

Disable  the  subtask  

for  interrupts.  Return  

an error  code  to the  

caller.  

Correct  the  length  parameter.  

10193  The  GETSOCKOPT  option  length  

is less  than  the  minimum  or 

greater  than  the  maximum  

length.  

End  the call.  Correct  the  length  parameter.  

10197  The  application  issued  an 

INITAPI call  after  the  connection  

was  already  established.  

Bypass  the  call.  Correct  the  logic  that  produces  the  INITAPI 

call  that  is not  valid.  

10198  The  maximum  number  of sockets  

specified  for an INITAPI  exceeds  

65535.  

Return  to the  user.  Correct  the  INITAPI  call.  

10200  The  first  call  issued  was  not  a 

valid  first  call.  

End  the call.  For a list of valid  first  calls,  refer  to the 

section  on special  considerations  in the  

chapter  on general  programming.  

10202  The  RETARG  parameter  in the  

IOCTL  call  is 0. 

End  the call.  Correct  the  parameter  list.  You might  have  

incorrect  sequencing  of socket  calls.  

 

296 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Table 6. Sockets  extended  ERRNOs  (continued)  

Error  

code  Problem  description  System  action  Programmer’s  response  

10203  The  requested  socket  number  is a 

negative  value.  

End  the call.  Correct  the  requested  socket  number.  

10205  The  requested  socket  number  is a 

duplicate.  

End  the call.  Correct  the  requested  socket  number.  

10208  The  NAMELEN  parameter  for a 

GETHOSTBYNAME  call  was  not  

specified.  

End  the call.  Correct  the  NAMELEN  parameter.  You 

might  have  incorrect  sequencing  of socket  

calls.  

10209  The  NAME  parameter  on  a 

GETHOSTBYNAME  call  was  not  

specified.  

End  the call.  Correct  the  NAME  parameter.  You might  

have  incorrect  sequencing  of socket  calls.  

10210  The  HOSTENT  parameter  on  a 

GETHOSTBYNAME  or 

GETHOSTBYADDR  call  was  not  

specified.  

End  the call.  Correct  the  HOSTENT  parameter.  You might  

have  incorrect  sequencing  of socket  calls.  

10211  The  HOSTADDR  parameter  on  a 

GETHOSTBYNAME  or 

GETHOSTBYADDR  call  is 

incorrect.  

End  the call.  Correct  the  HOSTADDR  parameter.  You 

might  have  incorrect  sequencing  of socket  

calls.  

10212  The  resolver  program  failed  to 

load  correctly  for a 

GETHOSTBYNAME  or 

GETHOSTBYADDR  call.  

End  the call.  Check  the JOBLIB,  STEPLIB,  and  linklib  

datasets  and  rerun  the  program.  

10213  Not  enough  storage  is available  

to allocate  the  HOSTENT  

structure.  

End  the call.  Increase  the user  storage  allocation  for  this  

job.  

10214  The  HOSTENT  structure  was  not  

returned  by  the  resolver  program.  

End  the call.  Ensure  that  the domain  name  server  is 

available.  This  can  be a nonerror  condition  

indicating  that  the  name  or address  specified  

in a GETHOSTBYADDR  or 

GETHOSTBYNAME  call  could  not  be 

matched.  

10215  The  APITYPE  parameter  on  an  

INITAPI call  instruction  was  not  

2 or 3. 

End  the call.  Correct  the  APITYPE  parameter.  

10218  The  application  programming  

interface  (API)  cannot  locate  the  

specified  TCP/IP.  

End  the call.  Ensure  that  an API  that  supports  the 

performance  improvements  related  to CPU  

conservation  is installed  on the  system  and  

verify  that  a valid  TCP/IP  name  was  

specified  on the  INITAPI call.  This  error  call  

might  also  mean  that  EZASOKIN  could  not  

be loaded.  

10219  The  NS  parameter  is greater  than  

the  maximum  socket  for  this  

connection.  

End  the call.  Correct  the  NS parameter  on the  ACCEPT,  

SOCKET  or TAKESOCKET  call.  

10221  The  AF  parameter  of a SOCKET  

call  is not  AF_INET.  

End  the call.  Set  the AF parameter  equal  to AF_INET.  

10222  The  SOCTYPE  parameter  of a 

SOCKET  call  must  be  stream,  

datagram,  or raw  (1,  2, or 3).  

End  the call.  Correct  the  SOCTYPE  parameter.  

 

Appendix  A. Return codes  297



Table 6. Sockets  extended  ERRNOs  (continued)  

Error  

code  Problem  description  System  action  Programmer’s  response  

10223  No  ASYNC  parameter  specified  

for  INITAPI with  APITYPE=3  

call.  

End  the call.  Add  the  ASYNC  parameter  to the INITAPI 

call.  

10224  The  IOVCNT  parameter  is less  

than  or equal  to 0, for a READV,  

RECVMSG,  SENDMSG,  or  

WRITEV  call.  

End  the call.  Correct  the  IOVCNT  parameter.  

10225  The  IOVCNT  parameter  is 

greater  than  120,  for  a READV,  

RECVMSG,  SENDMSG,  or  

WRITEV  call.  

End  the call.  Correct  the  IOVCNT  parameter.  

10226  Not  valid  COMMAND  parameter  

specified  for a GETIBMOPT  call.  

End  the call.  Correct  the  COMMAND  parameter  of the 

GETIBMOPT  call.  

10229  A call  was  issued  on  an 

APITYPE=3  connection  without  

an ECB  or  REQAREA  parameter.  

End  the call.  Add  an ECB  or REQAREA  parameter  to the  

call.  

10300  Termination  is in progress  for  

either  the  CICS  transaction  or the  

sockets  interface.  

End  the call.  None.  

10330  A SELECT  call  was  issued  

without  a MAXSOC  value  and  a 

TIMEOUT  parameter.  

End  the call.  Correct  the  call  by adding  a TIMEOUT  

parameter.  

10331  A call  that  is not  valid  was  issued  

while  in SRB  mode.  

End  the call.  Get  out  of SRB  mode  and  reissue  the  call.  

10332  A SELECT  call  is invoked  with  a 

MAXSOC  value  greater  than  that  

which  was  returned  in the  

INITAPI function  (MAXSNO  

field).  

End  the call.  Correct  the  MAXSOC  parameter  and  reissue  

the  call.  

10334  An  error  was  detected  in creating  

the  data  areas  required  to process  

the  socket  call.  

End  the call.  Call  the  IBM  Software  Support  Center.  

10999  An  abend  has  occurred  in the  

subtask.  

Write message  

EZY1282E  to the  

system  console.  End  

the  subtask  and  post  

the  TRUE  ECB.  

If the call  is correct,  call  your  system  

programmer.  

20000  An  unknown  function  code  was  

found  in the  call.  

End  the call.  Correct  the  SOC-FUNCTION  parameter.  

20001  The  call  passed  an  incorrect  

number  of parameters.  

End  the call.  Correct  the  parameter  list.  

20002  The  user  ID associated  with  the  

program  linking  EZACIC25  does  

not  have  the  proper  authority  to  

execute  a CICS  EXTRACT  EXIT. 

End  the call.  Start  the  CICS  Sockets  Interface  before  

executing  this  call.  

20003  The  CICS  Sockets  Interface  is not  

in operation.  

End  the call.  Contact  the  CICS  Systems  programmer.  

Ensure  that  the  user  ID being  used  is 

permitted  to have  at least  UPDATE  access  to 

the  EXITPROGRAM  resource.
 

 

298 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Appendix  B.  Related  protocol  specifications  (RFCs)  

This  appendix  lists  the  related  protocol  specifications  for  TCP/IP.  The  Internet  

Protocol  suite  is still  evolving  through  requests  for  comments  (RFC).  New  

protocols  are  being  designed  and  implemented  by  researchers  and  are  brought  to 

the  attention  of  the  Internet  community  in  the  form  of  RFCs.  Some  of these  

protocols  are  so  useful  that  they  become  recommended  protocols.  That  is,  all  future  

implementations  for  TCP/IP  are  recommended  to  implement  these  particular  

functions  or  protocols.  These  become  the  de  facto  standards,  on  which  the  TCP/IP  

protocol  suite  is  built.  

You can  request  RFCs  through  electronic  mail,  from  the  automated  Network  

Information  Center  (NIC)  mail  server,  by  sending  a message  to 

service@nic.ddn.mil  with  a subject  line  of RFC  nnnn  for  text  versions  or  a subject  

line  of  RFC  nnnn.PS for  PostScript  versions.  To request  a copy  of the  RFC  index,  

send  a message  with  a subject  line  of RFC  INDEX. 

For  more  information,  contact  nic@nic.ddn.mil  or  at:

Government  Systems,  Inc.  

Attn:  Network  Information  Center  

14200  Park  Meadow  Drive  

Suite  200  

Chantilly,  VA   22021  

Hard  copies  of  all  RFCs  are  available  from  the  NIC,  either  individually  or  by  

subscription.  Online  copies  are  available  at the  following  Web address:  

http://www.rfc-editor.org/rfc.html.  

See  “Internet  drafts”  on  page  312  for  draft  RFCs  implemented  in  this  and  previous  

Communications  Server  releases.  

Many  features  of  TCP/IP  Services  are  based  on  the  following  RFCs:  

RFC  Title  and  Author  

652  Telnet  output  carriage-return  disposition  option  D.  Crocker  

653  Telnet  output  horizontal  tabstops  option  D.  Crocker  

654  Telnet  output  horizontal  tab  disposition  option  D.  Crocker  

655  Telnet  output  formfeed  disposition  option  D.  Crocker  

657  Telnet  output  vertical  tab  disposition  option  D.  Crocker  

658  Telnet  output  linefeed  disposition  D.  Crocker  

698  Telnet  extended  ASCII  option  T. Mock  

726  Remote  Controlled  Transmission  and  Echoing  Telnet  option  J. Postel,  D.  Crocker  

727  Telnet  logout  option  M.R.  Crispin  

732  Telnet  Data  Entry  Terminal  option  J.D.  Day  

733  Standard  for  the  format  of  ARPA  network  text  messages  D.  Crocker,  J. Vittal,  

K.T. Pogran,  D.A.  Henderson  

 

© Copyright  IBM Corp. 1994, 2005 299

||

||

||

||

||

||

||

||

||

||

||
|

http://www.rfc-editor.org/rfc.html


734  SUPDUP  Protocol  M.R.  Crispin  

735  Revised  Telnet  byte  macro  option  D.  Crocker,  R.H.  Gumpertz  

736  Telnet  SUPDUP  option  M.R.  Crispin  

749  Telnet  SUPDUP—Output  option  B.  Greenberg  

765  File  Transfer  Protocol  specification  J. Postel  

768  User  Datagram  Protocol  J. Postel  

779  Telnet  send-location  option  E. Killian  

783  TFTP  Protocol  (revision  2) K.R.  Sollins  

791  Internet  Protocol  J. Postel  

792  Internet  Control  Message  Protocol  J. Postel  

793  Transmission  Control  Protocol  J. Postel  

820  Assigned  numbers  J. Postel  

821  Simple  Mail  Transfer  Protocol  J. Postel  

822  Standard  for  the  format  of ARPA  Internet  text  messages  D.  Crocker  

823  DARPA  Internet  gateway  R.  Hinden,  A.  Sheltzer  

826  Ethernet  Address  Resolution  Protocol:  Or  converting  network  protocol  addresses  

to  48.bit  Ethernet  address  for  transmission  on  Ethernet  hardware  D.  Plummer  

854  Telnet  Protocol  Specification  J. Postel,  J. Reynolds  

855  Telnet  Option  Specification  J. Postel,  J. Reynolds  

856  Telnet  Binary  Transmission  J. Postel,  J. Reynolds  

857  Telnet  Echo  Option  J. Postel,  J. Reynolds  

858  Telnet  Suppress  Go  Ahead  Option  J. Postel,  J. Reynolds  

859  Telnet  Status  Option  J. Postel,  J. Reynolds  

860  Telnet  Timing  Mark  Option  J. Postel,  J. Reynolds  

861  Telnet  Extended  Options:  List  Option  J. Postel,  J. Reynolds  

862  Echo  Protocol  J. Postel  

863  Discard  Protocol  J. Postel  

864  Character  Generator  Protocol  J. Postel  

865  Quote  of the  Day  Protocol  J. Postel  

868  Time  Protocol  J. Postel,  K.  Harrenstien  

877  Standard  for  the  transmission  of IP  datagrams  over  public  data  networks  J.T. 

Korb  

883  Domain  names:  Implementation  specification  P.V.  Mockapetris  

884  Telnet  terminal  type  option  M.  Solomon,  E. Wimmers  

885  Telnet  end  of record  option  J. Postel  

894  Standard  for  the  transmission  of IP  datagrams  over  Ethernet  networks  C.  Hornig  

896  Congestion  control  in IP/TCP  internetworks  J. Nagle  

 

300 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

||

||

||

||

||

||

||

||

||

||

||
|

||

||



903  Reverse  Address  Resolution  Protocol  R.  Finlayson,  T. Mann,  J. Mogul,  M.  

Theimer  

904  Exterior  Gateway  Protocol  formal  specification  D.  Mills  

919  Broadcasting  Internet  Datagrams  J. Mogul  

922  Broadcasting  Internet  datagrams  in  the  presence  of subnets  J. Mogul  

927  TACACS  user  identification  Telnet  option  B.A.  Anderson  

933  Output  marking  Telnet  option  S. Silverman  

946  Telnet  terminal  location  number  option  R.  Nedved  

950  Internet  Standard  Subnetting  Procedure  J. Mogul,  J. Postel  

951  Bootstrap  Protocol  W.J. Croft,  J. Gilmore  

952  DoD  Internet  host  table  specification  K.  Harrenstien,  M.  Stahl,  E. Feinler  

959  File  Transfer  Protocol  J. Postel,  J.K.  Reynolds  

961  Official  ARPA-Internet  protocols  J.K.  Reynolds,  J. Postel  

974  Mail  routing  and  the  domain  system  C.  Partridge  

1001  Protocol  standard  for  a NetBIOS  service  on  a TCP/UDP  transport:  Concepts  and  

methods  NetBios  Working  Group  in  the  Defense  Advanced  Research  

Projects  Agency,  Internet  Activities  Board,  End-to-End  Services  Task Force  

1002  Protocol  Standard  for  a NetBIOS  service  on  a TCP/UDP  transport:  Detailed  

specifications  NetBios  Working  Group  in  the  Defense  Advanced  Research  

Projects  Agency,  Internet  Activities  Board,  End-to-End  Services  Task Force  

1006  ISO  transport  services  on  top  of the  TCP:  Version  3 M.T. Rose,  D.E.  Cass  

1009  Requirements  for  Internet  gateways  R.  Braden,  J. Postel  

1011  Official  Internet  protocols  J. Reynolds,  J. Postel  

1013  X Window  System  Protocol,  version  11: Alpha  update  April  1987  R.  Scheifler  

1014  XDR:  External  Data  Representation  standard  Sun  Microsystems  

1027  Using  ARP  to implement  transparent  subnet  gateways  S.  Carl-Mitchell,  J. 

Quarterman  

1032  Domain  administrators  guide  M.  Stahl  

1033  Domain  administrators  operations  guide  M.  Lottor  

1034  Domain  names—concepts  and  facilities  P.V.  Mockapetris  

1035  Domain  names—implementation  and  specification  P.V.  Mockapetris  

1038  Draft  revised  IP  security  option  M.  St.  Johns  

1041  Telnet  3270  regime  option  Y.  Rekhter  

1042  Standard  for  the  transmission  of IP  datagrams  over  IEEE  802  networks  J. Postel,  

J. Reynolds  

1043  Telnet  Data  Entry  Terminal  option:  DODIIS  implementation  A.  Yasuda,  T. 

Thompson  

1044  Internet  Protocol  on  Network  System’s  HYPERchannel:  Protocol  specification  K.  

Hardwick,  J. Lekashman  

1053  Telnet  X.3  PAD  option  S. Levy,  T. Jacobson  

 

Appendix  B. Related protocol specifications  (RFCs)  301

||

||

||

||

||

||

||
|

||



1055  Nonstandard  for  transmission  of IP  datagrams  over  serial  lines:  SLIP  J. Romkey  

1057  RPC:  Remote  Procedure  Call  Protocol  Specification:  Version  2 Sun  Microsystems  

1058  Routing  Information  Protocol  C.  Hedrick  

1060  Assigned  numbers  J. Reynolds,  J. Postel  

1067  Simple  Network  Management  Protocol  J.D.  Case,  M.  Fedor,  M.L.  Schoffstall,  J. 

Davin  

1071  Computing  the  Internet  checksum  R.T. Braden,  D.A.  Borman,  C.  Partridge  

1072  TCP  extensions  for  long-delay  paths  V. Jacobson,  R.T. Braden  

1073  Telnet  window  size  option  D.  Waitzman  

1079  Telnet  terminal  speed  option  C.  Hedrick  

1085  ISO  presentation  services  on  top  of TCP/IP  based  internets  M.T. Rose  

1091  Telnet  terminal-type  option  J. VanBokkelen  

1094  NFS:  Network  File  System  Protocol  specification  Sun  Microsystems  

1096  Telnet  X  display  location  option  G.  Marcy  

1101  DNS  encoding  of  network  names  and  other  types  P.  Mockapetris  

1112 Host  extensions  for  IP  multicasting  S.E.  Deering  

1113 Privacy  enhancement  for  Internet  electronic  mail:  Part  I —  message  encipherment  

and  authentication  procedures  J. Linn  

1118 Hitchhikers  Guide  to the  Internet  E.  Krol  

1122  Requirements  for  Internet  Hosts—Communication  Layers  R.  Braden,  Ed.  

1123  Requirements  for  Internet  Hosts—Application  and  Support  R.  Braden,  Ed.  

1146  TCP  alternate  checksum  options  J. Zweig,  C.  Partridge  

1155  Structure  and  identification  of  management  information  for  TCP/IP-based  

internets  M.  Rose,  K.  McCloghrie  

1156  Management  Information  Base  for  network  management  of TCP/IP-based  internets  

K.  McCloghrie,  M.  Rose  

1157  Simple  Network  Management  Protocol  (SNMP)  J. Case,  M.  Fedor,  M.  

Schoffstall,  J. Davin  

1158  Management  Information  Base  for  network  management  of TCP/IP-based  

internets:  MIB-II  M.  Rose  

1166  Internet  numbers  S. Kirkpatrick,  M.K.  Stahl,  M.  Recker  

1179  Line  printer  daemon  protocol  L.  McLaughlin  

1180  TCP/IP  tutorial  T. Socolofsky,  C.  Kale  

1183  New  DNS  RR  Definitions  C.F. Everhart,  L.A.  Mamakos,  R.  Ullmann,  P.V.  

Mockapetris  

1184  Telnet  Linemode  Option  D.  Borman  

1186  MD4  Message  Digest  Algorithm  R.L.  Rivest  

1187  Bulk  Table  Retrieval  with  the  SNMP  M.  Rose,  K.  McCloghrie,  J. Davin  

1188  Proposed  Standard  for  the  Transmission  of  IP  Datagrams  over  FDDI  Networks  D.  

Katz  

 

302 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

||
|

||

||

||

||

||
|

||

||

||
|

||



1190  Experimental  Internet  Stream  Protocol:  Version  2 (ST-II)  C.  Topolcic  

1191  Path  MTU  discovery  J. Mogul,  S. Deering  

1198  FYI  on  the  X window  system  R.  Scheifler  

1207  FYI  on  Questions  and  Answers:  Answers  to  commonly  asked  “experienced  

Internet  user”  questions  G.  Malkin,  A.  Marine,  J. Reynolds  

1208  Glossary  of networking  terms  O.  Jacobsen,  D.  Lynch  

1213  Management  Information  Base  for  Network  Management  of TCP/IP-based  

internets:  MIB-II  K.  McCloghrie,  M.T. Rose  

1215  Convention  for  defining  traps  for  use  with  the  SNMP  M.  Rose  

1227  SNMP  MUX  protocol  and  MIB  M.T. Rose  

1228  SNMP-DPI:  Simple  Network  Management  Protocol  Distributed  Program  Interface  

G.  Carpenter,  B. Wijnen  

1229  Extensions  to  the  generic-interface  MIB  K.  McCloghrie  

1230  IEEE  802.4  Token  Bus  MIB  K.  McCloghrie,  R.  Fox  

1231  IEEE  802.5  Token  Ring  MIB  K.  McCloghrie,  R.  Fox,  E. Decker  

1236  IP  to  X.121  address  mapping  for  DDN  L. Morales,  P.  Hasse  

1256  ICMP  Router  Discovery  Messages  S. Deering,  Ed.  

1267  Border  Gateway  Protocol  3 (BGP-3)  K.  Lougheed,  Y.  Rekhter  

1268  Application  of the  Border  Gateway  Protocol  in  the  Internet  Y.  Rekhter,  P.  Gross  

1269  Definitions  of Managed  Objects  for  the  Border  Gateway  Protocol:  Version  3 S.  

Willis,  J. Burruss  

1270  SNMP  Communications  Services  F. Kastenholz,  ed.  

1285  FDDI  Management  Information  Base  J. Case  

1315  Management  Information  Base  for  Frame  Relay  DTEs  C.  Brown,  F. Baker,  C. 

Carvalho  

1321  The  MD5  Message-Digest  Algorithm  R.  Rivest  

1323  TCP  Extensions  for  High  Performance  V. Jacobson,  R.  Braden,  D.  Borman  

1325  FYI  on  Questions  and  Answers:  Answers  to  Commonly  Asked  ″New  Internet  

User″ Questions  G.  Malkin,  A.  Marine  

1327  Mapping  between  X.400  (1988)/ISO  10021  and  RFC  822  S. Hardcastle-Kille  

1340  Assigned  Numbers  J. Reynolds,  J. Postel  

1344  Implications  of MIME  for  Internet  Mail  Gateways  N.  Bornstein  

1349  Type of Service  in  the  Internet  Protocol  Suite  P.  Almquist  

1350  The  TFTP  Protocol  (Revision  2) K.R.  Sollins  

1351  SNMP  Administrative  Model  J. Davin,  J. Galvin,  K.  McCloghrie  

1352  SNMP  Security  Protocols  J. Galvin,  K.  McCloghrie,  J. Davin  

1353  Definitions  of Managed  Objects  for  Administration  of SNMP  Parties  K.  

McCloghrie,  J. Davin,  J. Galvin  

1354  IP  Forwarding  Table  MIB  F. Baker  

 

Appendix  B. Related protocol specifications  (RFCs)  303

||

||

||

||

||
|

||

||



1356  Multiprotocol  Interconnect  on  X.25  and  ISDN  in  the  Packet  Mode  A.  Malis,  D.  

Robinson,  R.  Ullmann  

1358  Charter  of  the  Internet  Architecture  Board  (IAB)  L. Chapin  

1363  A  Proposed  Flow  Specification  C.  Partridge  

1368  Definition  of  Managed  Objects  for  IEEE  802.3  Repeater  Devices  D.  McMaster,  K.  

McCloghrie  

1372  Telnet  Remote  Flow  Control  Option  C.  L. Hedrick,  D.  Borman  

1374  IP  and  ARP  on  HIPPI  J. Renwick,  A.  Nicholson  

1381  SNMP  MIB  Extension  for  X.25  LAPB  D.  Throop,  F. Baker  

1382  SNMP  MIB  Extension  for  the  X.25  Packet  Layer  D.  Throop  

1387  RIP  Version  2 Protocol  Analysis  G.  Malkin  

1388  RIP  Version  2 Carrying  Additional  Information  G.  Malkin  

1389  RIP  Version  2 MIB  Extensions  G.  Malkin,  F. Baker  

1390  Transmission  of  IP  and  ARP  over  FDDI  Networks  D.  Katz  

1393  Traceroute  Using  an  IP  Option  G.  Malkin  

1398  Definitions  of Managed  Objects  for  the  Ethernet-Like  Interface  Types F. 

Kastenholz  

1408  Telnet  Environment  Option  D.  Borman,  Ed.  

1413  Identification  Protocol  M.  St.  Johns  

1416  Telnet  Authentication  Option  D.  Borman,  ed.  

1420  SNMP  over  IPX  S. Bostock  

1428  Transition  of  Internet  Mail  from  Just-Send-8  to  8bit-SMTP/MIME  G.  Vaudreuil  

1442  Structure  of Management  Information  for  version  2 of  the  Simple  Network  

Management  Protocol  (SNMPv2)  J. Case,  K.  McCloghrie,  M.  Rose,  S. 

Waldbusser  

1443  Textual  Conventions  for  version  2 of the  Simple  Network  Management  Protocol  

(SNMPv2)  J. Case,  K.  McCloghrie,  M.  Rose,  S. Waldbusser  

1445  Administrative  Model  for  version  2 of  the  Simple  Network  Management  Protocol  

(SNMPv2)  J. Galvin,  K.  McCloghrie  

1447  Party  MIB  for  version  2 of the  Simple  Network  Management  Protocol  (SNMPv2)  

K.  McCloghrie,  J. Galvin  

1448  Protocol  Operations  for  version  2 of the  Simple  Network  Management  Protocol  

(SNMPv2)  J. Case,  K.  McCloghrie,  M.  Rose,  S. Waldbusser  

1464  Using  the  Domain  Name  System  to Store  Arbitrary  String  Attributes  R.  

Rosenbaum  

1469  IP  Multicast  over  Token-Ring  Local  Area  Networks  T. Pusateri  

1483  Multiprotocol  Encapsulation  over  ATM  Adaptation  Layer  5 Juha  Heinanen  

1497  BOOTP  Vendor  Information  Extensions  J. Reynolds  

1514  Host  Resources  MIB  P.  Grillo,  S. Waldbusser  

1516  Definitions  of Managed  Objects  for  IEEE  802.3  Repeater  Devices  D.  McMaster,  

K.  McCloghrie  

 

304 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

||

||
|

||

||

||

||

||
|
|

||
|

||
|

||
|

||
|

||

||

||
|



1521  MIME  (Multipurpose  Internet  Mail  Extensions)  Part  One:  Mechanisms  for  

Specifying  and  Describing  the  Format  of  Internet  Message  Bodies  N.  Borenstein,  

N.  Freed  

1533  DHCP  Options  and  BOOTP  Vendor  Extensions  S. Alexander,  R.  Droms  

1534  Interoperation  Between  DHCP  and  BOOTP  R.  Droms  

1535  A Security  Problem  and  Proposed  Correction  With  Widely  Deployed  DNS  

Software  E. Gavron  

1536  Common  DNS  Implementation  Errors  and  Suggested  Fixes  A.  Kumar,  J. Postel,  

C.  Neuman,  P.  Danzig,  S. Miller  

1537  Common  DNS  Data  File  Configuration  Errors  P.  Beertema  

1540  Internet  Official  Protocol  Standards  J. Postel  

1541  Dynamic  Host  Configuration  Protocol  R.  Droms  

1542  Clarifications  and  Extensions  for  the  Bootstrap  Protocol  W. Wimer  

1571  Telnet  Environment  Option  Interoperability  Issues  D.  Borman  

1572  Telnet  Environment  Option  S.  Alexander  

1573  Evolution  of  the  Interfaces  Group  of  MIB-II  K.  McCloghrie,  F. Kastenholz  

1577  Classical  IP  and  ARP  over  ATM  M.  Laubach  

1583  OSPF  Version  2 J. Moy  

1591  Domain  Name  System  Structure  and  Delegation  J. Postel  

1592  Simple  Network  Management  Protocol  Distributed  Protocol  Interface  Version  2.0  

B. Wijnen,  G.  Carpenter,  K.  Curran,  A.  Sehgal,  G.  Waters  

1594  FYI  on  Questions  and  Answers—  Answers  to  Commonly  Asked  ″New  Internet  

User″ Questions  A.  Marine,  J. Reynolds,  G.  Malkin  

1644  T/TCP  —  TCP  Extensions  for  Transactions  Functional  Specification  R.  Braden  

1646  TN3270  Extensions  for  LUname  and  Printer  Selection  C.  Graves,  T. Butts,  M. 

Angel  

1647  TN3270  Enhancements  B. Kelly  

1652  SMTP  Service  Extension  for  8bit-MIMEtransport  J. Klensin,  N.  Freed,  M.  

Rose,  E.  Stefferud,  D.  Crocker  

1664  Using  the  Internet  DNS  to Distribute  RFC1327  Mail  Address  Mapping  Tables  C.  

Allochio,  A.  Bonito,  B.  Cole,  S. Giordano,  R.  Hagens  

1693  An  Extension  to  TCP:  Partial  Order  Service  T. Connolly,  P.  Amer,  P.  Conrad  

1695  Definitions  of Managed  Objects  for  ATM  Management  Version  8.0  using  SMIv2  

M.  Ahmed,  K.  Tesink  

1701  Generic  Routing  Encapsulation  (GRE)  S. Hanks,  T. Li,  D.  Farinacci,  P.  Traina  

1702  Generic  Routing  Encapsulation  over  IPv4  networks  S. Hanks,  T. Li,  D.  

Farinacci,  P.  Traina  

1706  DNS  NSAP  Resource  Records  B.  Manning,  R.  Colella  

1712  DNS  Encoding  of Geographical  Location  C.  Farrell,  M.  Schulze,  S. Pleitner  D.  

Baldoni  

1713  Tools  for  DNS  debugging  A.  Romao  

 

Appendix  B. Related protocol specifications  (RFCs)  305

||
|
|

||

||

||
|

||
|

||

||

||
|

||
|



1723  RIP  Version  2—Carrying  Additional  Information  G.  Malkin  

1752  The  Recommendation  for  the  IP  Next  Generation  Protocol  S. Bradner,  A.  Mankin  

1766  Tags  for  the  Identification  of  Languages  H.  Alvestrand  

1771  A  Border  Gateway  Protocol  4 (BGP-4)  Y.  Rekhter,  T. Li  

1794  DNS  Support  for  Load  Balancing  T. Brisco  

1819  Internet  Stream  Protocol  Version  2 (ST2)  Protocol  Specification—Version  ST2+  L. 

Delgrossi,  L. Berger  Eds.  

1826  IP  Authentication  Header  R.  Atkinson  

1828  IP  Authentication  using  Keyed  MD5  P.  Metzger,  W. Simpson  

1829  The  ESP  DES-CBC  Transform  P.  Karn,  P.  Metzger,  W. Simpson  

1830  SMTP  Service  Extensions  for  Transmission  of Large  and  Binary  MIME  Messages  

G.  Vaudreuil  

1832  XDR:  External  Data  Representation  Standard  R.  Srinivasan  

1850  OSPF  Version  2 Management  Information  Base  F. Baker,  R.  Coltun  

1854  SMTP  Service  Extension  for  Command  Pipelining  N.  Freed  

1869  SMTP  Service  Extensions  J. Klensin,  N.  Freed,  M.  Rose,  E. Stefferud,  D.  

Crocker  

1870  SMTP  Service  Extension  for  Message  Size  Declaration  J. Klensin,  N.  Freed,  K.  

Moore  

1876  A  Means  for  Expressing  Location  Information  in  the  Domain  Name  System  C.  

Davis,  P.  Vixie,  T. Goodwin,  I. Dickinson  

1883  Internet  Protocol,  Version  6 (IPv6)  Specification  S. Deering,  R.  Hinden  

1884  IP  Version  6 Addressing  Architecture  R.  Hinden,  S. Deering,  Eds.  

1886  DNS  Extensions  to support  IP  version  6 S. Thomson,  C.  Huitema  

1888  OSI  NSAPs  and  IPv6  J. Bound,  B. Carpenter,  D.  Harrington,  J. 

Houldsworth,  A.  Lloyd  

1891  SMTP  Service  Extension  for  Delivery  Status  Notifications  K.  Moore  

1892  The  Multipart/Report  Content  Type for  the  Reporting  of  Mail  System  

Administrative  Messages  G.  Vaudreuil  

1894  An  Extensible  Message  Format  for  Delivery  Status  NotificationsK. Moore,  G.  

Vaudreuil  

1901  Introduction  to  Community-based  SNMPv2  J. Case,  K.  McCloghrie,  M.  Rose,  

S.  Waldbusser  

1902  Structure  of Management  Information  for  Version  2 of  the  Simple  Network  

Management  Protocol  (SNMPv2)  J. Case,  K.  McCloghrie,  M.  Rose,  S. 

Waldbusser  

1903  Textual  Conventions  for  Version  2 of the  Simple  Network  Management  Protocol  

(SNMPv2)  J. Case,  K.  McCloghrie,  M.  Rose,  S. Waldbusser  

1904  Conformance  Statements  for  Version  2 of the  Simple  Network  Management  

Protocol  (SNMPv2)  J. Case,  K.  McCloghrie,  M.  Rose,  S. Waldbusser  

1905  Protocol  Operations  for  Version  2 of the  Simple  Network  Management  Protocol  

(SNMPv2)  J. Case,  K.  McCloghrie,  M.  Rose,  S. Waldbusser  

 

306 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

||

||

||
|

||

||

||

||
|

||

||
|

||
|

||

||

||
|

||

||
|

||
|



1906  Transport  Mappings  for  Version  2 of  the  Simple  Network  Management  Protocol  

(SNMPv2)  J. Case,  K.  McCloghrie,  M.  Rose,  S. Waldbusser  

1907  Management  Information  Base  for  Version  2 of  the  Simple  Network  Management  

Protocol  (SNMPv2)  J. Case,  K.  McCloghrie,  M.  Rose,  S. Waldbusser  

1908  Coexistence  between  Version  1 and  Version  2 of the  Internet-standard  Network  

Management  Framework  J. Case,  K.  McCloghrie,  M.  Rose,  S. Waldbusser  

1912  Common  DNS  Operational  and  Configuration  Errors  D. Barr  

1918  Address  Allocation  for  Private  Internets  Y.  Rekhter,  B.  Moskowitz,  D.  

Karrenberg,  G.J.  de  Groot,  E. Lear  

1928  SOCKS  Protocol  Version  5 M.  Leech,  M.  Ganis,  Y.  Lee,  R.  Kuris,  D.  Koblas,  

L. Jones  

1930  Guidelines  for  creation,  selection,  and  registration  of an  Autonomous  System  (AS)  

J. Hawkinson,  T. Bates  

1939  Post  Office  Protocol-Version  3 J. Myers,  M.  Rose  

1981  Path  MTU  Discovery  for  IP  version  6 J. McCann,  S. Deering,  J. Mogul  

1982  Serial  Number  Arithmetic  R.  Elz,  R.  Bush  

1985  SMTP  Service  Extension  for  Remote  Message  Queue  Starting  J. De  Winter  

1995  Incremental  Zone  Transfer  in DNS  M.  Ohta  

1996  A Mechanism  for  Prompt  Notification  of Zone  Changes  (DNS  NOTIFY)  P.  Vixie  

2010  Operational  Criteria  for  Root  Name  Servers  B.  Manning,  P.  Vixie  

2011  SNMPv2  Management  Information  Base  for  the  Internet  Protocol  using  SMIv2  

K.  McCloghrie,  Ed.  

2012  SNMPv2  Management  Information  Base  for  the  Transmission  Control  Protocol  

using  SMIv2  K.  McCloghrie,  Ed.  

2013  SNMPv2  Management  Information  Base  for  the  User  Datagram  Protocol  using  

SMIv2  K.  McCloghrie,  Ed.  

2018  TCP  Selective  Acknowledgement  Options  M.  Mathis,  J. Mahdavi,  S. Floyd,  A.  

Romanow  

2026  The  Internet  Standards  Process  —  Revision  3 S. Bradner  

2030  Simple  Network  Time  Protocol  (SNTP)  Version  4 for  IPv4,  IPv6  and  OSI  D.  

Mills  

2033  Local  Mail  Transfer  Protocol  J. Myers  

2034  SMTP  Service  Extension  for  Returning  Enhanced  Error  CodesN. Freed  

2040  The  RC5,  RC5–CBC,  RC-5–CBC-Pad,  and  RC5–CTS  AlgorithmsR. Baldwin,  R.  

Rivest  

2045  Multipurpose  Internet  Mail  Extensions  (MIME)  Part  One:  Format  of Internet  

Message  Bodies  N.  Freed,  N.  Borenstein  

2052  A DNS  RR  for  specifying  the  location  of services  (DNS  SRV) A.  Gulbrandsen,  

P.  Vixie  

2065  Domain  Name  System  Security  Extensions  D.  Eastlake  3rd,  C.  Kaufman  

2066  TELNET  CHARSET  Option  R.  Gellens  

2080  RIPng  for  IPv6  G.  Malkin,  R.  Minnear  

 

Appendix  B. Related protocol specifications  (RFCs)  307

||
|

||

||
|

||

||

||

||
|

||
|

||



2096  IP  Forwarding  Table  MIB  F. Baker  

2104  HMAC:  Keyed-Hashing  for  Message  Authentication  H.  Krawczyk,  M.  Bellare,  

R.  Canetti  

2119  Keywords  for  use  in RFCs  to Indicate  Requirement  Levels  S. Bradner  

2132  DHCP  Options  and  BOOTP  Vendor  Extensions  S. Alexander,  R.  Droms  

2133  Basic  Socket  Interface  Extensions  for  IPv6  R.  Gilligan,  S. Thomson,  J. Bound,  

W. Stevens  

2136  Dynamic  Updates  in the  Domain  Name  System  (DNS  UPDATE)  P.  Vixie,  Ed.,  

S.  Thomson,  Y.  Rekhter,  J. Bound  

2137  Secure  Domain  Name  System  Dynamic  Update  D.  Eastlake  3rd  

2163  Using  the  Internet  DNS  to  Distribute  MIXER  Conformant  Global  Address  

Mapping  (MCGAM)  C.  Allocchio  

2168  Resolution  of  Uniform  Resource  Identifiers  using  the  Domain  Name  System  R.  

Daniel,  M.  Mealling  

2178  OSPF  Version  2 J. Moy  

2181  Clarifications  to the  DNS  Specification  R.  Elz,  R.  Bush  

2205  Resource  ReSerVation  Protocol  (RSVP)—Version  1 Functional  Specification  R. 

Braden,  Ed.,  L. Zhang,  S. Berson,  S. Herzog,  S. Jamin  

2210  The  Use  of  RSVP  with  IETF  Integrated  Services  J. Wroclawski  

2211  Specification  of the  Controlled-Load  Network  Element  Service  J. Wroclawski  

2212  Specification  of Guaranteed  Quality  of  Service  S. Shenker,  C.  Partridge,  R.  

Guerin  

2215  General  Characterization  Parameters  for  Integrated  Service  Network  Elements  S. 

Shenker,  J. Wroclawski  

2217  Telnet  Com  Port  Control  Option  G.  Clarke  

2219  Use  of  DNS  Aliases  for  Network  Services  M.  Hamilton,  R.  Wright  

2228  FTP  Security  Extensions  M.  Horowitz,  S. Lunt  

2230  Key  Exchange  Delegation  Record  for  the  DNS  R.  Atkinson  

2233  The  Interfaces  Group  MIB  using  SMIv2  K.  McCloghrie,  F. Kastenholz  

2240  A  Legal  Basis  for  Domain  Name  Allocation  O.  Vaughn  

2246  The  TLS  Protocol  Version  1.0  T. Dierks,  C.  Allen  

2251  Lightweight  Directory  Access  Protocol  (v3)  M.  Wahl, T. Howes,  S. Kille  

2253  Lightweight  Directory  Access  Protocol  (v3):  UTF-8  String  Representation  of 

Distinguished  Names  M.  Wahl,  S. Kille,  T. Howes  

2254  The  String  Representation  of LDAP  Search  Filters  T. Howes  

2261  An  Architecture  for  Describing  SNMP  Management  Frameworks  D.  Harrington,  

R.  Presuhn,  B. Wijnen  

2262  Message  Processing  and  Dispatching  for  the  Simple  Network  Management  

Protocol  (SNMP)  J. Case,  D.  Harrington,  R.  Presuhn,  B.  Wijnen  

2271  An  Architecture  for  Describing  SNMP  Management  Frameworks  D.  Harrington,  

R.  Presuhn,  B. Wijnen  

 

308 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

||

||

||
|

||

||
|

||
|

||
|



2273  SNMPv3  Applications  D.  Levi,  P.  Meyer,  B.  Stewartz  

2274  User-based  Security  Model  (USM)  for  version  3 of  the  Simple  Network  

Management  Protocol  (SNMPv3)  U.  Blumenthal,  B. Wijnen  

2275  View-based  Access  Control  Model  (VACM)  for  the  Simple  Network  Management  

Protocol  (SNMP)  B. Wijnen,  R.  Presuhn,  K.  McCloghrie  

2292  Advanced  Sockets  API  for  IPv6  W. Stevens,  M.  Thomas  

2308  Negative  Caching  of  DNS  Queries  (DNS  NCACHE)  M.  Andrews  

2317  Classless  IN-ADDR.ARPA  delegation  H.  Eidnes,  G.  de  Groot,  P.  Vixie  

2320  Definitions  of Managed  Objects  for  Classical  IP  and  ARP  Over  ATM  Using  

SMIv2  (IPOA-MIB)  M.  Greene,  J. Luciani,  K.  White,  T. Kuo  

2328  OSPF  Version  2 J. Moy  

2345  Domain  Names  and  Company  Name  Retrieval  J. Klensin,  T. Wolf, G.  Oglesby  

2352  A Convention  for  Using  Legal  Names  as  Domain  Names  O.  Vaughn  

2355  TN3270  Enhancements  B. Kelly  

2358  Definitions  of Managed  Objects  for  the  Ethernet-like  Interface  Types J. Flick,  J. 

Johnson  

2373  IP  Version  6 Addressing  Architecture  R.  Hinden,  S.  Deering  

2374  An  IPv6  Aggregatable  Global  Unicast  Address  Format  R.  Hinden,  M.  O’Dell,  S. 

Deering  

2375  IPv6  Multicast  Address  Assignments  R.  Hinden,  S. Deering  

2385  Protection  of BGP  Sessions  via  the  TCP  MD5  Signature  OptionA. Hefferman  

2389  Feature  negotiation  mechanism  for  the  File  Transfer  Protocol  P.  Hethmon,  R.  Elz  

2401  Security  Architecture  for  Internet  Protocol  S. Kent,  R.  Atkinson  

2402  IP  Authentication  Header  S.  Kent,  R.  Atkinson  

2403  The  Use  of HMAC-MD5–96  within  ESP  and  AH  C.  Madson,  R.  Glenn  

2404  The  Use  of HMAC-SHA–1–96  within  ESP  and  AH  C.  Madson,  R.  Glenn  

2405  The  ESP  DES-CBC  Cipher  Algorithm  With  Explicit  IV  C.  Madson,  N.  

Doraswamy  

2406  IP  Encapsulating  Security  Payload  (ESP)  S. Kent,  R.  Atkinson  

2407  The  Internet  IP  Security  Domain  of Interpretation  for  ISAKMPD.  Piper  

2408  Internet  Security  Association  and  Key  Management  Protocol  (ISAKMP)  D.  

Maughan,  M.  Schertler,  M.  Schneider,  J. Turner  

2409  The  Internet  Key  Exchange  (IKE)  D.  Harkins,  D.  Carrel  

2410  The  NULL  Encryption  Algorithm  and  Its  Use  With  IPsec  R.  Glenn,  S. Kent,  

2428  FTP  Extensions  for  IPv6  and  NATs  M.  Allman,  S. Ostermann,  C.  Metz  

2445  Internet  Calendaring  and  Scheduling  Core  Object  Specification  (iCalendar)  F. 

Dawson,  D.  Stenerson  

2459  Internet  X.509  Public  Key  Infrastructure  Certificate  and  CRL  Profile  R.  Housley,  

W. Ford,  W. Polk,  D.  Solo  

2460  Internet  Protocol,  Version  6 (IPv6)  Specification  S. Deering,  R.  Hinden  

 

Appendix  B. Related protocol specifications  (RFCs)  309

||

||
|

||
|

||

||
|

||

||

||
|

||
|

||
|



2461  Neighbor  Discovery  for  IP  Version  6 (IPv6)  T. Narten,  E. Nordmark,  W. 

Simpson  

2462  IPv6  Stateless  Address  Autoconfiguration  S. Thomson,  T. Narten  

2463  Internet  Control  Message  Protocol  (ICMPv6)  for  the  Internet  Protocol  Version  6 

(IPv6)  Specification  A.  Conta,  S. Deering  

2464  Transmission  of  IPv6  Packets  over  Ethernet  Networks  M.  Crawford  

2466  Management  Information  Base  for  IP  Version  6:  ICMPv6  Group  D.  Haskin,  S.  

Onishi  

2476  Message  Submission  R.  Gellens,  J. Klensin  

2487  SMTP  Service  Extension  for  Secure  SMTP  over  TLS  P.  Hoffman  

2505  Anti-Spam  Recommendations  for  SMTP  MTAs  G.  Lindberg  

2523  Photuris:  Extended  Schemes  and  Attributes  P.  Karn,  W. Simpson  

2535  Domain  Name  System  Security  Extensions  D.  Eastlake  3rd  

2538  Storing  Certificates  in  the  Domain  Name  System  (DNS)  D.  Eastlake  3rd,  O.  

Gudmundsson  

2539  Storage  of  Diffie-Hellman  Keys  in  the  Domain  Name  System  (DNS)  D.  Eastlake  

3rd  

2540  Detached  Domain  Name  System  (DNS)  Information  D.  Eastlake  3rd  

2554  SMTP  Service  Extension  for  Authentication  J. Myers  

2570  Introduction  to  Version  3 of the  Internet-standard  Network  Management  

Framework  J. Case,  R.  Mundy,  D.  Partain,  B. Stewart  

2571  An  Architecture  for  Describing  SNMP  Management  Frameworks  B.  Wijnen,  D.  

Harrington,  R.  Presuhn  

2572  Message  Processing  and  Dispatching  for  the  Simple  Network  Management  

Protocol  (SNMP)  J. Case,  D.  Harrington,  R.  Presuhn,  B.  Wijnen  

2573  SNMP  Applications  D.  Levi,  P.  Meyer,  B. Stewart  

2574  User-based  Security  Model  (USM)  for  version  3 of the  Simple  Network  

Management  Protocol  (SNMPv3)  U.  Blumenthal,  B. Wijnen  

2575  View-based  Access  Control  Model  (VACM)  for  the  Simple  Network  Management  

Protocol  (SNMP)  B. Wijnen,  R.  Presuhn,  K.  McCloghrie  

2576  Co-Existence  between  Version  1,  Version  2, and  Version  3 of  the  Internet-standard  

Network  Management  Framework  R.  Frye,  D.  Levi,  S. Routhier,  B.  Wijnen  

2578  Structure  of Management  Information  Version  2 (SMIv2)  K.  McCloghrie,  D.  

Perkins,  J. Schoenwaelder  

2579  Textual  Conventions  for  SMIv2  K.  McCloghrie,  D.  Perkins,  J. Schoenwaelder  

2580  Conformance  Statements  for  SMIv2  K.  McCloghrie,  D.  Perkins,  J. 

Schoenwaelder  

2581  TCP  Congestion  Control  M.  Allman,  V.  Paxson,  W. Stevens  

2583  Guidelines  for  Next  Hop  Client  (NHC)  Developers  R.  Carlson,  L.  Winkler  

2591  Definitions  of Managed  Objects  for  Scheduling  Management  Operations  D.  Levi,  

J. Schoenwaelder  

2625  IP  and  ARP  over  Fibre  Channel  M.  Rajagopal,  R.  Bhagwat,  W. Rickard  

 

310 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

||
|

||
|

||

||

||
|

||

||

||

||
|

||

||

||
|

||



2635  Don’t  SPEW  A Set  of  Guidelines  for  Mass  Unsolicited  Mailings  and  Postings  

(spam*)  S.  Hambridge,  A.  Lunde  

2637  Point-to-Point  Tunneling  Protocol  K.  Hamzeh,  G.  Pall,  W. Verthein,  J. Taarud, 

W. Little,  G.  Zorn  

2640  Internationalization  of the  File  Transfer  Protocol  B.  Curtin  

2665  Definitions  of Managed  Objects  for  the  Ethernet-like  Interface  Types J. Flick,  J. 

Johnson  

2671  Extension  Mechanisms  for  DNS  (EDNS0)  P.  Vixie  

2672  Non-Terminal  DNS  Name  Redirection  M.  Crawford  

2675  IPv6  Jumbograms  D.  Borman,  S.  Deering,  R.  Hinden  

2710  Multicast  Listener  Discovery  (MLD)  for  IPv6  S. Deering,  W. Fenner,  B. 

Haberman  

2711  IPv6  Router  Alert  Option  C.  Partridge,  A.  Jackson  

2740  OSPF  for  IPv6  R.  Coltun,  D.  Ferguson,  J. Moy  

2753  A Framework  for  Policy-based  Admission  Control  R.  Yavatkar,  D.  Pendarakis,  

R.  Guerin  

2758  Definitions  of Managed  Objects  for  Service  Level  Agreements  Performance  

Monitoring  K.  White  

2782  A DNS  RR  for  specifying  the  location  of services  (DNS  SRV) A.  Gubrandsen,  P.  

Vixix,  L. Esibov  

2821  Simple  Mail  Transfer  Protocol  J. Klensin,  Ed.  

2822  Internet  Message  Format  P.  Resnick,  Ed.  

2840  TELNET  KERMIT  OPTION  J. Altman,  F. da  Cruz 

2845  Secret  Key  Transaction  Authentication  for  DNS  (TSIG)  P.  Vixie,  O.  

Gudmundsson,  D.  Eastlake  3rd,  B. Wellington  

2851  Textual  Conventions  for  Internet  Network  Addresses  M.  Daniele,  B. Haberman,  

S.  Routhier,  J. Schoenwaelder  

2852  Deliver  By  SMTP  Service  Extension  D.  Newman  

2874  DNS  Extensions  to  Support  IPv6  Address  Aggregation  and  Renumbering  M. 

Crawford,  C.  Huitema  

2915  The  Naming  Authority  Pointer  (NAPTR)  DNS  Resource  Record  M.  Mealling,  R.  

Daniel  

2920  SMTP  Service  Extension  for  Command  Pipelining  N.  Freed  

2930  Secret  Key  Establishment  for  DNS  (TKEY  RR)  D.  Eastlake,  3rd  

2941  Telnet  Authentication  Option  T. Ts’o, ed.,  J. Altman  

2942  Telnet  Authentication:  Kerberos  Version  5 T. Ts’o 

2946  Telnet  Data  Encryption  Option  T. Ts’o 

2952  Telnet  Encryption:  DES  64  bit  Cipher  Feedback  T. Ts’o 

2953  Telnet  Encryption:  DES  64  bit  Output  Feedback  T. Ts’o 

2992  Analysis  of  an  Equal-Cost  Multi-Path  Algorithm  C.  Hopps  

 

Appendix  B. Related protocol specifications  (RFCs) 311

||
|

||

||

||
|

||
|

||

||

||

||
|

||

||
|

||

||

||



3019  IP  Version  6 Management  Information  Base  for  The  Multicast  Listener  Discovery  

Protocol  B. Haberman,  R.  Worzella  

3060  Policy  Core  Information  Model—Version  1 Specification  B. Moore,  E.  Ellesson,  J. 

Strassner,  A.  Westerinen  

3152  Delegation  of  IP6.ARPA  R.  Bush  

3291  Textual  Conventions  for  Internet  Network  Addresses  M.  Daniele,  B.  Haberman,  

S.  Routhier,  J. Schoenwaelder  

3363  Representing  Internet  Protocol  version  6 (IPv6)  Addresses  in the  Domain  Name  

System  R.  Bush,  A.  Durand,  B. Fink,  O.  Gudmundsson,  T. Hain  

3390  Increasing  TCP’s  Initial  Window  M.  Allman,  S. Floyd,  C.  Partridge  

3411  An  Architecture  for  Describing  Simple  Network  Management  Protocol  (SNMP)  

Management  Frameworks  D.  Harrington,  R.  Presuhn,  B. Wijnen  

3412  Message  Processing  and  Dispatching  for  the  Simple  Network  Management  

Protocol  (SNMP)  J. Case,  D.  Harrington,  R.  Presuhn,  B.  Wijnen  

3413  Simple  Network  Management  Protocol  (SNMP)  Applications  D.  Levi,  P.  Meyer,  

B.  Stewart  

3414  User-based  Security  Model  (USM)  for  version  3 of the  Simple  Network  

Management  Protocol  (SNMPv3)  U.  Blumenthal,  B. Wijnen  

3415  View-based  Access  Control  Model  (VACM)  for  the  Simple  Network  Management  

Protocol  (SNMP)  B. Wijnen,  R.  Presuhn,  K.  McCloghrie  

3419  Textual  Conventions  for  Transport  Addresses  M.  Daniele,  J. Schoenwaelder  

3484  Default  Address  Selection  for  Internet  Protocol  version  6 (IPv6)  R.  Draves  

3493  Basic  Socket  Interface  Extensions  for  IPv6  R.  Gilligan,  S. Thomson,  J. Bound,  J. 

McCann,  W. Stevens  

3513  Internet  Protocol  Version  6 (IPv6)  Addressing  Architecture  R.  Hinden,  S. 

Deering  

3542  Advanced  Sockets  Application  Programming  Interface  (API)  for  IPv6  W. Richard  

Stevens,  M.  Thomas,  E. Nordmark,  T. Jinmei  

3658  Delegation  Signer  (DS)  Resource  Record  (RR)  O.  Gudmundsson  

3715  IPsec-Network  Address  Translation  (NAT)  Compatibility  Requirements  B.  Aboba,  

W. Dixon  

3947  Negotiation  of  NAT-Traversal  in the  IKE  T. Kivinen,  B. Swander,  A.  Huttunen,  

V.  Volpe  

3948  UDP  Encapsulation  of IPsec  ESP  Packets  A.  Huttunen,  B.  Swander,  V.  Volpe,  

L.  DiBurro,  M.  Stenberg

Internet drafts 

Internet  drafts  are  working  documents  of  the  Internet  Engineering  Task Force  

(IETF),  its  areas,  and  its  working  groups.  Other  groups  may  also  distribute  

working  documents  as  Internet  drafts.  You can  see  Internet  drafts  at 

http://www.ietf.org/ID.html.  

Several  areas  of IPv6  implementation  include  elements  of the  following  Internet  

drafts  and  are  subject  to change  during  the  RFC  review  process.  

 

312 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

||
|

||

||
|

||

||

||
|

||
|

||
|

http://www.ietf.org/ID.html


Internet  Control  Message  Protocol  (ICMPv6)  for  the  Internet  Protocol  Version  6 

(IPv6)  Specification  

A.  Conta,  S.  Deering

 

Appendix  B. Related protocol specifications  (RFCs)  313



314 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Appendix  C.  Information  APARs  

This  appendix  lists  information  APARs  for  IP  and  SNA  documents.  

Notes:   

1.   Information  APARs  contain  updates  to previous  editions  of the  manuals  listed  

below.  Documents  updated  for  V1R7  are  complete  except  for  the  updates  

contained  in  the  information  APARs  that  might  be  issued  after  V1R7  

documents  went  to  press.  

2.   Information  APARs  are  predefined  for  z/OS  V1R7  Communications  Server  and  

might  not  contain  updates.  

3.   Information  APARs  for  z/OS  documents  are  in  the  document  called  z/OS  and  

z/OS.e  DOC  APAR  and  PTF  ++HOLD  Documentation, which  can  be  found  at 

http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/  

BOOKS/ZIDOCMST/CCONTENTS.

Information APARs  for IP documents 

Table  7 lists  information  APARs  for  IP  documents.  For  information  APARs  for  

V1R7,  see  http://www.ibm.com/support/docview.wss?uid=swg21178966.  

 Table 7. IP information  APARs for z/OS  Communications  Server  

Title V1R6  V1R5  V1R4  

New  Function  Summary  (both  IP  and  SNA)  II13824  

Quick  Reference  (both  IP and  SNA)  II13831  II13246  

IP and  SNA  Codes  II13842  II13254  

IP API  Guide  II13844  II13577  II13255  

II13790  

IP CICS  Sockets  Guide  II13578  II13257  

IP Configuration  Guide  II13826  II13568  II13244  

II13541  

II13652  

II13646  

IP Configuration  Reference  II13827  II13569  

II13789  

II13245  

II13521  

II13647  

II13739  

IP Diagnosis  II13836  II13571  II13249  

II13493  

IP Messages  Volume  1 II13838  II13572  II13624  

II13250  

IP Messages  Volume  2 II13839  II13573  II13251  

IP Messages  Volume  3 II13840  II13574  II13252  

IP Messages  Volume  4 II13841  II13575  II13253  

II13628  

IP Migration  II13566  II13242  

II13738  

IP Network  and  Application  Design  Guide  II13825  II13567  II13243  

 

© Copyright  IBM Corp. 1994, 2005 315

|
|

||

||||

||||

||||

||||

||||
|

||||

||||
|
|
|

|||
|
|
|
|
|

||||
|

||||
|

||||

||||

||||
|

||||
|

||||

http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://www.ibm.com/support/docview.wss?uid=swg21178966


Table 7. IP information  APARs for z/OS  Communications  Server  (continued)  

Title V1R6  V1R5  V1R4  

IP Network  Print  Facility  

IP Programmer’s  Reference  II13843  II13581  II13256  

IP User’s  Guide  and  Commands  II13832  II13570  II13247  

IP System  Admin  Commands  II13833  II13580  II13248  

II13792  

  

Information APARs  for SNA documents 

Table  8 lists  information  APARs  for  SNA  documents.  For  information  APARs  for  

V1R7,  see  http://www.ibm.com/support/docview.wss?uid=swg21178966.  

 Table 8. SNA  information  APARs for  z/OS  Communications  Server  

Title  V1R6  V1R5  V1R4  

New  Function  Summary  (both  IP  and  

SNA)  

II13824  

Quick  Reference  (both  IP  and  SNA)  II13831  II13246  

IP and  SNA  Codes  II13842  II13254  

SNA  Customization  II13857  II13560  II13240  

SNA  Diagnosis  II13558  II13236  

II13735  

SNA  Diagnosis,  Vol.  1: Techniques  and  

Procedures  

II13852  

SNA  Diagnosis,  Vol.  2: FFST  Dumps  and  

the  VIT  

II13853  

SNA  Messages  II13854  II13559  II13238  

II13736  

SNA  Network  Implementation  Guide  II13849  II13555  II13234  

II13733  

SNA  Operation  II13851  II13557  II13237  

SNA  Migration  II13554  II13233  

II13732  

SNA  Programming  II13858  II13241  

SNA  Resource  Definition  Reference  II13850  II13556  II13235  

II13734  

SNA  Data  Areas,  Vol.  1 and  2 II13239  

SNA  Data  Areas,  1 II13855  

SNA  Data  Areas,  2 II13856  

  

Other information APARs  

Table  9 lists  information  APARs  not  related  to  documents.  

 Table 9. Non-document  information  APARs 

Content  Number  

Index  to APARs that  list  recommended  VTAM maintenance  II11220  

 

316 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|

||||

||||

||||

||||

||||
|
|

|
|

||

||||

|
|
|||

||||

||||

||||

||||
|

|
|
|||

|
|
|||

||||
|

||||
|

||||

||||
|

||||

||||
|

||||

||||

||||
|

||

http://www.ibm.com/support/docview.wss?uid=swg21178966


Table 9. Non-document  information  APARs (continued)  

Content  Number  

Index  to APARs that  list  trace  and  dump  requests  for VTAM problems  II13202  

Index  of Communication  Server  IP information  APARs II12028  

MPC  and  CTC  II01501  

Collecting  TCPIP  CTRACEs  II12014  

CSM  for  VTAM II13442  

CSM  for  TCP/IP  II13951  

DLUR/DLUS  for  z/OS  V1R2,  V1R4,  and  V1R5  II12986,  II13456,  and  II13783  

DOCUMENTATION  REQUIRED  FOR  OSA/2,  OSA  EXPRESS  AND  OSA  

QDIO  

II13016  

DYNAMIC  VIPA (BIND)  II13215  

DNS  — common  problems  and  solutions  II13453  

Enterprise  Extender  II12223  

FTPing  doc  to z/OS  Support  II12030  

FTP  problems  II12079  

Generic  resources  II10986  

HPR  II10953  

iQDIO  II13142  

LPR  problems  II12022  

MNPS  II10370  

NCPROUTE  problems  II12025  

OMPROUTE  II12026  

PASCAL  API  II11814  

Performance  II11710  

II11711 

II11712  

Resolver  II13398  

II13399  

II13452  

Socket  API  II11996  

II12020  

SMTP  problems  II12023  

SNMP  II13477  

II13478  

SYSLOGD  howto  II12021  

TCPIP  connection  states  II12449  

Telnet II11574  

II13135  

TN3270  TELNET  SSL  common  problems  II13369
 

 

Appendix  C. Information  APARs  317

||

||

||

||

||

||



318 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Appendix  D.  Accessibility  

Accessibility  features  help  a user  who  has  a physical  disability,  such  as restricted  

mobility  or  limited  vision,  to  use  software  products  successfully.  The  major  

accessibility  features  in  z/OS  enable  users  to:  

v   Use  assistive  technologies  such  as  screen  readers  and  screen  magnifier  software  

v   Operate  specific  or  equivalent  features  using  only  the  keyboard  

v   Customize  display  attributes  such  as color, contrast,  and  font  size

Using assistive technologies 

Assistive  technology  products,  such  as  screen  readers,  function  with  the  user  

interfaces  found  in z/OS.  Consult  the  assistive  technology  documentation  for  

specific  information  when  using  such  products  to access  z/OS  interfaces.  

Keyboard navigation of the user interface 

Users  can  access  z/OS  user  interfaces  using  TSO/E  or  ISPF. Refer  to  z/OS  TSO/E  

Primer, z/OS  TSO/E  User’s  Guide, and  z/OS  ISPF  User’s  Guide  Vol I for  information  

about  accessing  TSO/E  and  ISPF  interfaces.  These  guides  describe  how  to use  

TSO/E  and  ISPF, including  the  use  of  keyboard  shortcuts  or  function  keys  (PF  

keys).  Each  guide  includes  the  default  settings  for  the  PF  keys  and  explains  how  to 

modify  their  functions.  

z/OS information 

z/OS  information  is accessible  using  screen  readers  with  the  BookServer/Library  

Server  versions  of z/OS  books  in  the  Internet  library  at:  

www.ibm.com/servers/eserver/zseries/zos/bkserv/  

 

© Copyright  IBM Corp. 1994, 2005 319

|
|

|

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/


320 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Notices  

IBM  may  not  offer  all  of  the  products,  services,  or  features  discussed  in  this  

document.  Consult  your  local  IBM  representative  for  information  on  the  products  

and  services  currently  available  in  your  area.  Any  reference  to  an  IBM  product,  

program,  or  service  is  not  intended  to  state  or  imply  that  only  that  IBM  product,  

program,  or  service  may  be  used.  Any  functionally  equivalent  product,  program,  

or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  be  used  

instead.  However,  it is the  user’s  responsibility  to evaluate  and  verify  the  operation  

of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  document.  The  furnishing  of  this  document  does  not  give  you  

any  license  to  these  patents.  You can  send  license  inquiries,  in  writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.  

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in  your  country  or  send  inquiries,  in  writing,  to:  

IBM  World  Trade  Asia  Corporation  

Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106,  Japan  

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law:  

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  ″AS  IS″  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  

FOR  A PARTICULAR  PURPOSE.  Some  states  do  not  allow  disclaimer  of express  or  

implied  warranties  in certain  transactions,  therefore,  this  statement  may  not  apply  

to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of  the  publication.  IBM  may  make  improvements  

and/or  changes  in the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  Web 

sites.  The  materials  at those  Web sites  are  not  part  of the  materials  for  this  IBM  

product  and  use  of those  Web sites  is  at your  own  risk.  

IBM  may  use  or  distribute  any  of the  information  you  supply  in  any  way  it 

believes  appropriate  without  incurring  any  obligation  to  you.  

 

© Copyright  IBM Corp. 1994, 2005 321

|



Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of information  between  independently  created  

programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of the  

information  which  has  been  exchanged,  should  contact:  

Site  Counsel  

IBM  Corporation  

P.O.  Box  12195  

3039  Cornwallis  Road  

Research  Triangle  Park,  North  Carolina  27709-2195  

U.S.A  

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  information  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of the  IBM  Customer  Agreement,  

IBM  International  Program  License  Agreement,  or any  equivalent  agreement  

between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  

environment.  Therefore,  the  results  obtained  in  other  operating  environments  may  

vary  significantly.  Some  measurements  may  have  been  made  on  development-level  

systems  and  there  is  no  guarantee  that  these  measurements  will  be  the  same  on  

generally  available  systems.  Furthermore,  some  measurement  may  have  been  

estimated  through  extrapolation.  Actual  results  may  vary.  Users  of  this  document  

should  verify  the  applicable  data  for  their  specific  environment.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of  

those  products,  their  published  announcements  or  other  publicly  available  sources.  

IBM  has  not  tested  those  products  and  cannot  confirm  the  accuracy  of 

performance,  compatibility  or  any  other  claims  related  to non-IBM  products.  

Questions  on  the  capabilities  of  non-IBM  products  should  be  addressed  to  the  

suppliers  of those  products.  

All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to change  or  

withdrawal  without  notice,  and  represent  goals  and  objectives  only.  

All  IBM  prices  shown  are  IBM’s  suggested  retail  prices,  are  current  and  are  subject  

to  change  without  notice.  Dealer  prices  may  vary.  

This  information  is for  planning  purposes  only.  The  information  herein  is subject  to 

change  before  the  products  described  become  available.  

This  information  contains  examples  of data  and  reports  used  in  daily  business  

operations.  To illustrate  them  as  completely  as  possible,  the  examples  include  the  

names  of  individuals,  companies,  brands,  and  products.  All  of  these  names  are  

fictitious  and  any  similarity  to  the  names  and  addresses  used  by  an  actual  business  

enterprise  is  entirely  coincidental.  

COPYRIGHT  LICENSE:  

This  information  contains  sample  application  programs  in  source  language,  which  

illustrates  programming  techniques  on  various  operating  platforms.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM,  for  the  purposes  of developing,  using,  marketing  or  distributing  application  

 

322 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



programs  conforming  to  the  application  programming  interface  for  the  operating  

platform  for  which  the  sample  programs  are  written.  These  examples  have  not  

been  thoroughly  tested  under  all  conditions.  IBM,  therefore,  cannot  guarantee  or  

imply  reliability,  serviceability,  or  function  of  these  programs.  You may  copy,  

modify,  and  distribute  these  sample  programs  in any  form  without  payment  to  

IBM  for  the  purposes  of  developing,  using,  marketing,  or  distributing  application  

programs  conforming  to  IBM’s  application  programming  interfaces.  

Each  copy  or  any  portion  of these  sample  programs  or  any  derivative  work  must  

include  a copyright  notice  as  follows:  

©  (your  company  name)  (year).  Portions  of this  code  are  derived  from  IBM  Corp.  

Sample  Programs.  © Copyright  IBM  Corp.  _enter  the  year  or  years_.  All  rights  

reserved.  

IBM  is  required  to  include  the  following  statements  in  order  to  distribute  portions  

of  this  document  and  the  software  described  herein  to  which  contributions  have  

been  made  by  The  University  of  California.  Portions  herein  © Copyright  1979,  

1980,  1983,  1986,  Regents  of  the  University  of California.  Reproduced  by  

permission.  Portions  herein  were  developed  at the  Electrical  Engineering  and  

Computer  Sciences  Department  at the  Berkeley  campus  of the  University  of  

California  under  the  auspices  of the  Regents  of the  University  of California.  

Portions  of  this  publication  relating  to  RPC  are  Copyright  © Sun  Microsystems,  

Inc.,  1988,  1989.  

Some  portions  of  this  publication  relating  to X  Window  System**  are  Copyright  ©  

1987,  1988  by  Digital  Equipment  Corporation,  Maynard,  Massachusetts,  and  the  

Massachusetts  Institute  Of  Technology,  Cambridge,  Massachusetts.  All  Rights  

Reserved.  

Some  portions  of  this  publication  relating  to X  Window  System  are  Copyright  ©  

1986,  1987,  1988  by  Hewlett-Packard  Corporation.  

Permission  to  use,  copy,  modify,  and  distribute  the  M.I.T.,  Digital  Equipment  

Corporation,  and  Hewlett-Packard  Corporation  portions  of this  software  and  its  

documentation  for  any  purpose  without  fee  is hereby  granted,  provided  that  the  

above  copyright  notice  appears  in all  copies  and  that  both  that  copyright  notice  

and  this  permission  notice  appear  in supporting  documentation,  and  that  the  

names  of  M.I.T.,  Digital,  and  Hewlett-Packard  not  be  used  in  advertising  or  

publicity  pertaining  to distribution  of  the  software  without  specific,  written  prior  

permission.  M.I.T.,  Digital,  and  Hewlett-Packard  make  no  representation  about  the  

suitability  of  this  software  for  any  purpose.  It  is provided  ″as  is″  without  express  

or  implied  warranty.  

Copyright  © 1983,  1995-1997  Eric  P.  Allman  

Copyright  © 1988,  1993  The  Regents  of the  University  of  California.  All  rights  

reserved.  

Redistribution  and  use  in  source  and  binary  forms,  with  or  without  modification,  

are  permitted  provided  that  the  following  conditions  are  met:  

1.   Redistributions  of source  code  must  retain  the  above  copyright  notice,  this  list  

of  conditions  and  the  following  disclaimer.  

 

Notices  323



2.   Redistributions  in  binary  form  must  reproduce  the  above  copyright  notice,  this  

list  of conditions  and  the  following  disclaimer  in  the  documentation  and/or  

other  materials  provided  with  the  distribution.  

3.   All  advertising  materials  mentioning  features  or  use  of  this  software  must  

display  the  following  acknowledgement:  

This  product  includes  software  developed  by  the  University  of   

California,  Berkeley  and  its  contributors.  

4.   Neither  the  name  of  the  University  nor  the  names  of its  contributors  may  be  

used  to endorse  or  promote  products  derived  from  this  software  without  

specific  prior  written  permission.

THIS  SOFTWARE  IS  PROVIDED  BY  THE  REGENTS  AND  CONTRIBUTORS  ``AS  

IS’’  AND  ANY  EXPRESS  OR  IMPLIED  WARRANTIES,  INCLUDING,  BUT  NOT  

LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  MERCHANTABILITY  AND  

FITNESS  FOR  A  PARTICULAR  PURPOSE  ARE  DISCLAIMED.  IN  NO  EVENT  

SHALL  THE  REGENTS  OR  CONTRIBUTORS  BE  LIABLE  FOR  ANY  DIRECT,  

INDIRECT,  INCIDENTAL,  SPECIAL,  EXEMPLARY,  OR  CONSEQUENTIAL  

DAMAGES  (INCLUDING,  BUT  NOT  LIMITED  TO,  PROCUREMENT  OF  

SUBSTITUTE  GOODS  OR  SERVICES;  LOSS  OF  USE,  DATA, OR  PROFITS;  OR  

BUSINESS  INTERRUPTION)  HOWEVER  CAUSED  AND  ON  ANY  THEORY  OF  

LIABILITY,  WHETHER  IN  CONTRACT,  STRICT  LIABILITY,  OR  TORT  

(INCLUDING  NEGLIGENCE  OR  OTHERWISE)  ARISING  IN  ANY  WAY OUT  OF  

THE  USE  OF  THIS  SOFTWARE,  EVEN  IF ADVISED  OF  THE  POSSIBILITY  OF  

SUCH  DAMAGE.  

This  software  program  contains  code,  and/or  derivatives  or  modifications  of code  

originating  from  the  software  program  ″Popper.″ Popper  is Copyright  ©1989-1991  

The  Regents  of  the  University  of California,  All  Rights  Reserved.  Popper  was  

created  by  Austin  Shelton,  Information  Systems  and  Technology,  University  of  

California,  Berkeley.  

Permission  from  the  Regents  of  the  University  of  California  to  use,  copy,  modify,  

and  distribute  the  ″Popper″  software  contained  herein  for  any  purpose,  without  

fee,  and  without  a written  agreement  is hereby  granted,  provided  that  the  above  

copyright  notice  and  this  paragraph  and  the  following  two  paragraphs  appear  in 

all  copies.  HOWEVER,  ADDITIONAL  PERMISSIONS  MAY  BE  NECESSARY  

FROM  OTHER  PERSONS  OR  ENTITIES,  TO  USE  DERIVATIVES  OR  

MODIFICATIONS  OF  POPPER.  

IN  NO  EVENT  SHALL  THE  UNIVERSITY  OF  CALIFORNIA  BE  LIABLE  TO  ANY  

PARTY FOR  DIRECT,  INDIRECT,  SPECIAL,  INCIDENTAL,  OR  CONSEQUENTIAL  

DAMAGES,  INCLUDING  LOST  PROFITS,  ARISING  OUT  OF  THE  USE  OF  THE  

POPPER  SOFTWARE,  OR  ITS  DERIVATIVES  OR  MODIFICATIONS,  AND  ITS  

DOCUMENTATION,  EVEN  IF THE  UNIVERSITY  OF  CALIFORNIA  HAS  BEEN  

ADVISED  OF  THE  POSSIBILITY  OF  SUCH  DAMAGE.  

THE  UNIVERSITY  OF  CALIFORNIA  SPECIFICALLY  DISCLAIMS  ANY  

WARRANTIES,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  MERCHANTABILITY  AND  FITNESS  FOR  A  PARTICULAR  

PURPOSE.  THE  POPPER  SOFTWARE  PROVIDED  HEREUNDER  IS  ON  AN  ″AS  

IS″  BASIS,  AND  THE  UNIVERSITY  OF  CALIFORNIA  HAS  NO  OBLIGATIONS  

TO  PROVIDE  MAINTENANCE,  SUPPORT,  UPDATES,  ENHANCEMENTS,  OR  

MODIFICATIONS.  

Copyright  © 1983  The  Regents  of the  University  of  California.  All  rights  reserved.  

 

324 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Redistribution  and  use  in  source  and  binary  forms  are  permitted  provided  that  the  

above  copyright  notice  and  this  paragraph  are  duplicated  in  all  such  forms  and  

that  any  documentation,  advertising  materials,  and  other  materials  related  to  such  

distribution  and  use  acknowledge  that  the  software  was  developed  by  the  

University  of  California,  Berkeley.  The  name  of  the  University  may  not  be  used  to 

endorse  or  promote  products  derived  from  this  software  without  specific  prior  

written  permission.  THIS  SOFTWARE  IS  PROVIDED  ``AS  IS’’  AND  WITHOUT  

ANY  EXPRESS  OR  IMPLIED  WARRANTIES,  INCLUDING,  WITHOUT  

LIMITATION,  THE  IMPLIED  WARRANTIES  OF  MERCHANTABILITY  AND  

FITNESS  FOR  A PARTICULAR  PURPOSE.  

Copyright  © 1991,  1993  The  Regents  of the  University  of  California.  All  rights  

reserved.  

Redistribution  and  use  in  source  and  binary  forms,  with  or  without  modification,  

are  permitted  provided  that  the  following  conditions  are  met:  

1.   Redistributions  of source  code  must  retain  the  above  copyright  notice,  this  list  

of  conditions  and  the  following  disclaimer.  

2.   Redistributions  in  binary  form  must  reproduce  the  above  copyright  notice,  this  

list  of  conditions  and  the  following  disclaimer  in  the  documentation  and/or  

other  materials  provided  with  the  distribution.  

3.   All  advertising  materials  mentioning  features  or  use  of this  software  must  

display  the  following  acknowledgement:  

This  product  includes  software  developed  by  the  University  of   

California,  Berkeley  and  its  contributors.  

4.   Neither  the  name  of  the  University  nor  the  names  of  its  contributors  may  be 

used  to  endorse  or promote  products  derived  from  this  software  without  

specific  prior  written  permission.

THIS  SOFTWARE  IS PROVIDED  BY  THE  REGENTS  AND  CONTRIBUTORS  ``AS  

IS’’  AND  ANY  EXPRESS  OR  IMPLIED  WARRANTIES,  INCLUDING,  BUT  NOT  

LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  MERCHANTABILITY  AND  

FITNESS  FOR  A PARTICULAR  PURPOSE  ARE  DISCLAIMED.  IN  NO  EVENT  

SHALL  THE  REGENTS  OR  CONTRIBUTORS  BE  LIABLE  FOR  ANY  DIRECT,  

INDIRECT,  INCIDENTAL,  SPECIAL,  EXEMPLARY,  OR  CONSEQUENTIAL  

DAMAGES  (INCLUDING,  BUT  NOT  LIMITED  TO,  PROCUREMENT  OF  

SUBSTITUTE  GOODS  OR  SERVICES;  LOSS  OF  USE,  DATA, OR  PROFITS;  OR  

BUSINESS  INTERRUPTION)  HOWEVER  CAUSED  AND  ON  ANY  THEORY  OF  

LIABILITY,  WHETHER  IN  CONTRACT,  STRICT  LIABILITY,  OR  TORT  

(INCLUDING  NEGLIGENCE  OR  OTHERWISE)  ARISING  IN  ANY  WAY OUT  OF  

THE  USE  OF  THIS  SOFTWARE,  EVEN  IF  ADVISED  OF  THE  POSSIBILITY  OF  

SUCH  DAMAGE.  

Copyright  © 1990  by  the  Massachusetts  Institute  of  Technology  

Export  of  this  software  from  the  United  States  of America  may  require  a specific  

license  from  the  United  States  Government.  It is the  responsibility  of  any  person  or 

organization  contemplating  export  to  obtain  such  a license  before  exporting.  

WITHIN  THAT  CONSTRAINT,  permission  to use,  copy,  modify,  and  distribute  this  

software  and  its  documentation  for  any  purpose  and  without  fee  is  hereby  granted,  

provided  that  the  above  copyright  notice  appear  in  all  copies  and  that  both  that  

copyright  notice  and  this  permission  notice  appear  in  supporting  documentation,  

and  that  the  name  of  M.I.T. not  be  used  in  advertising  or  publicity  pertaining  to  

distribution  of  the  software  without  specific,  written  prior  permission.  Furthermore  

 

Notices  325



if you  modify  this  software  you  must  label  your  software  as  modified  software  and  

not  distribute  it in  such  a fashion  that  it  might  be  confused  with  the  original  M.I.T. 

software.  M.I.T. makes  no  representations  about  the  suitability  of  this  software  for  

any  purpose.  It  is  provided  ″as  is″  without  express  or  implied  warranty.  

Copyright  © 1998  by  the  FundsXpress,  INC.  All  rights  reserved.  

Export  of  this  software  from  the  United  States  of America  may  require  a specific  

license  from  the  United  States  Government.  It is the  responsibility  of  any  person  or  

organization  contemplating  export  to obtain  such  a license  before  exporting.  

WITHIN  THAT  CONSTRAINT,  permission  to  use,  copy,  modify,  and  distribute  this  

software  and  its  documentation  for  any  purpose  and  without  fee  is hereby  granted,  

provided  that  the  above  copyright  notice  appear  in  all  copies  and  that  both  that  

copyright  notice  and  this  permission  notice  appear  in  supporting  documentation,  

and  that  the  name  of FundsXpress  not  be  used  in  advertising  or  publicity  

pertaining  to  distribution  of the  software  without  specific,  written  prior  

permission.  FundsXpress  makes  no  representations  about  the  suitability  of this  

software  for  any  purpose.  It  is provided  ″as  is″  without  express  or  implied  

warranty.  

THIS  SOFTWARE  IS  PROVIDED  ``AS  IS’’  AND  WITHOUT  ANY  EXPRESS  OR  

IMPLIED  WARRANTIES,  INCLUDING,  WITHOUT  LIMITATION,  THE  IMPLIED  

WARRANTIES  OF  MERCHANTABILITY  AND  FITNESS  FOR  A  PARTICULAR  

PURPOSE.  

Copyright  © 1999,  2000  Internet  Software  Consortium.  

Permission  to  use,  copy,  modify,  and  distribute  this  software  for  any  purpose  with  

or  without  fee  is  hereby  granted,  provided  that  the  above  copyright  notice  and  this  

permission  notice  appear  in all  copies.  

THE  SOFTWARE  IS  PROVIDED  ″AS  IS″  AND  INTERNET  SOFTWARE  

CONSORTIUM  DISCLAIMS  ALL  WARRANTIES  WITH  REGARD  TO  THIS  

SOFTWARE  INCLUDING  ALL  IMPLIED  WARRANTIES  OF  MERCHANTABILITY  

AND  FITNESS.  IN  NO  EVENT  SHALL  INTERNET  SOFTWARE  CONSORTIUM  

BE  LIABLE  FOR  ANY  SPECIAL,  DIRECT,  INDIRECT,  OR  CONSEQUENTIAL  

DAMAGES  OR  ANY  DAMAGES  WHATSOEVER  RESULTING  FROM  LOSS  OF  

USE,  DATA OR  PROFITS,  WHETHER  IN  AN  ACTION  OF  CONTRACT,  

NEGLIGENCE  OR  OTHER  TORTIOUS  ACTION,  ARISING  OUT  OF  OR  IN  

CONNECTION  WITH  THE  USE  OR  PERFORMANCE  OF  THIS  SOFTWARE.  

Copyright  © 1995-1998  Eric  Young  (eay@cryptsoft.com)  All  rights  reserved.  

This  package  is an  SSL  implementation  written  by  Eric  Young  (eay@cryptsoft.com).  

The  implementation  was  written  so  as  to conform  with  Netscape’s  SSL.  

This  library  is  free  for  commercial  and  non-commercial  use  as  long  as  the  

following  conditions  are  adhered  to.  The  following  conditions  apply  to  all  code  

found  in  this  distribution,  be  it the  RC4,  RSA,  lhash,  DES,  etc.,  code;  not  just  the  

SSL  code.  The  SSL  documentation  included  with  this  distribution  is  covered  by  the  

same  copyright  terms  except  that  the  holder  is Tim  Hudson  (tjh@cryptsoft.com).  

Copyright  remains  Eric  Young’s,  and  as  such  any  Copyright  notices  in  the  code  are  

not  to  be  removed.  If this  package  is used  in  a product,  Eric  Young  should  be  

 

326 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



given  attribution  as  the  author  of the  parts  of  the  library  used.  This  can  be  in  the  

form  of  a textual  message  at  program  startup  or  in  documentation  (online  or 

textual)  provided  with  the  package.  

Redistribution  and  use  in  source  and  binary  forms,  with  or  without  modification,  

are  permitted  provided  that  the  following  conditions  are  met:  

1.   Redistributions  of source  code  must  retain  the  copyright  notice,  this  list  of  

conditions  and  the  following  disclaimer.  

2.   Redistributions  in  binary  form  must  reproduce  the  above  copyright  notice,  this  

list  of  conditions  and  the  following  disclaimer  in  the  documentation  and/or  

other  materials  provided  with  the  distribution.  

3.   All  advertising  materials  mentioning  features  or  use  of this  software  must  

display  the  following  acknowledgement:  ″This  product  includes  cryptographic  

software  written  by  Eric  Young  (eay@cryptsoft.com)″. The  word  ’cryptographic’  

can  be  left  out  if the  routines  from  the  library  being  used  are  not  cryptographic  

related.  

4.   If you  include  any  Windows  specific  code  (or  a derivative  thereof)  from  the  

apps  directory  (application  code)  you  must  include  acknowledgement:  

″This  product  includes  software  written  by  Tim  Hudson  (tjh@cryptsoft.com)″

THIS  SOFTWARE  IS PROVIDED  BY  ERIC  YOUNG  ``AS  IS’’  AND  ANY  EXPRESS  

OR  IMPLIED  WARRANTIES,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  

IMPLIED  WARRANTIES  OF  MERCHANTABILITY  AND  FITNESS  FOR  A  

PARTICULAR  PURPOSE  ARE  DISCLAIMED.  IN  NO  EVENT  SHALL  THE  

AUTHOR  OR  CONTRIBUTORS  BE  LIABLE  FOR  ANY  DIRECT,  INDIRECT,  

INCIDENTAL,  SPECIAL,  EXEMPLARY,  OR  CONSEQUENTIAL  DAMAGES  

(INCLUDING,  BUT  NOT  LIMITED  TO,  PROCUREMENT  OF  SUBSTITUTE  

GOODS  OR  SERVICES;  LOSS  OF  USE,  DATA, OR  PROFITS;  OR  BUSINESS  

INTERRUPTION)  HOWEVER  CAUSED  AND  ON  ANY  THEORY  OF  LIABILITY,  

WHETHER  IN  CONTRACT,  STRICT  LIABILITY,  OR  TORT  (INCLUDING  

NEGLIGENCE  OR  OTHERWISE)  ARISING  IN  ANY  WAY OUT  OF  THE  USE  OF  

THIS  SOFTWARE,  EVEN  IF  ADVISED  OF  THE  POSSIBILITY  OF  SUCH  

DAMAGE.  

The  license  and  distribution  terms  for  any  publicly  available  version  or  derivative  

of  this  code  cannot  be  changed.  i.e.  this  code  cannot  simply  be  copied  and  put  

under  another  distribution  license  [including  the  GNU  Public  License.]  

This  product  includes  cryptographic  software  written  by  Eric  Young.  

Copyright  © 1999,  2000  Internet  Software  Consortium.  

Permission  to  use,  copy,  modify,  and  distribute  this  software  for  any  purpose  with  

or  without  fee  is  hereby  granted,  provided  that  the  above  copyright  notice  and  this  

permission  notice  appear  in  all  copies.  

THE  SOFTWARE  IS PROVIDED  ″AS  IS″  AND  INTERNET  SOFTWARE  

CONSORTIUM  DISCLAIMS  ALL  WARRANTIES  WITH  REGARD  TO  THIS  

SOFTWARE  INCLUDING  ALL  IMPLIED  WARRANTIES  OF  MERCHANTABILITY  

AND  FITNESS.  IN  NO  EVENT  SHALL  INTERNET  SOFTWARE  CONSORTIUM  

BE  LIABLE  FOR  ANY  SPECIAL,  DIRECT,  INDIRECT,  OR  CONSEQUENTIAL  

DAMAGES  OR  ANY  DAMAGES  WHATSOEVER  RESULTING  FROM  LOSS  OF  

USE,  DATA OR  PROFITS,  WHETHER  IN  AN  ACTION  OF  CONTRACT,  

NEGLIGENCE  OR  OTHER  TORTIOUS  ACTION,  ARISING  OUT  OF  OR  IN  

CONNECTION  WITH  THE  USE  OR  PERFORMANCE  OF  THIS  SOFTWARE.  

 

Notices  327



Copyright  © 2004  IBM  Corporation  and  its  licensors,  including  Sendmail,  Inc.,  and  

the  Regents  of  the  University  of  California.  All  rights  reserved.  

Copyright  © 1999,2000,2001  Compaq  Computer  Corporation  

Copyright  © 1999,2000,2001  Hewlett-Packard  Company  

Copyright  © 1999,2000,2001  IBM  Corporation  

Copyright  © 1999,2000,2001  Hummingbird  Communications  Ltd.  

Copyright  © 1999,2000,2001  Silicon  Graphics,  Inc.  

Copyright  © 1999,2000,2001  Sun  Microsystems,  Inc.  

Copyright  © 1999,2000,2001  The  Open  Group  

All  rights  reserved.  

Permission  is  hereby  granted,  free  of charge,  to any  person  obtaining  a copy  of  this  

software  and  associated  documentation  files  (the  ″Software″), to  deal  in  the  

Software  without  restriction,  including  without  limitation  the  rights  to  use,  copy,  

modify,  merge,  publish,  distribute,  and/or  sell  copies  of the  Software,  and  to  

permit  persons  to  whom  the  Software  is furnished  to  do  so,  provided  that  the  

above  copyright  notice(s)  and  this  permission  notice  appear  in  all  copies  of the  

Software  and  that  both  the  above  copyright  notice(s)  and  this  permission  notice  

appear  in supporting  documentation.  

THE  SOFTWARE  IS  PROVIDED  ″AS  IS″,  WITHOUT  WARRANTY  OF  ANY  KIND,  

EXPRESS  OR  IMPLIED,  INCLUDING  BUT  NOT  LIMITED  TO  THE  WARRANTIES  

OF  MERCHANTABILITY,  FITNESS  FOR  A  PARTICULAR  PURPOSE  AND  

NONINFRINGEMENT  OF  THIRD  PARTY RIGHTS.  IN  NO  EVENT  SHALL  THE  

COPYRIGHT  HOLDER  OR  HOLDERS  INCLUDED  IN  THIS  NOTICE  BE  LIABLE  

FOR  ANY  CLAIM,  OR  ANY  SPECIAL  INDIRECT  OR  CONSEQUENTIAL  

DAMAGES,  OR  ANY  DAMAGES  WHATSOEVER  RESULTING  FROM  LOSS  OF  

USE,  DATA OR  PROFITS,  WHETHER  IN  AN  ACTION  OF  CONTRACT,  

NEGLIGENCE  OR  OTHER  TORTIOUS  ACTION,  ARISING  OUT  OF  OR  IN  

CONNECTION  WITH  THE  USE  OR  PERFORMANCE  OF  THIS  SOFTWARE.  

Except  as  contained  in  this  notice,  the  name  of  a copyright  holder  shall  not  be  used  

in  advertising  or  otherwise  to  promote  the  sale,  use  or  other  dealings  in  this  

Software  without  prior  written  authorization  of  the  copyright  holder.  

X  Window  System  is  a trademark  of  The  Open  Group.  

If you  are  viewing  this  information  softcopy,  photographs  and  color  illustrations  

may  not  appear.  

You can  obtain  softcopy  from  the  z/OS  Collection  (SK3T-4269),  which  contains  

BookManager  and  PDF  formats  of  unlicensed  books  and  the  z/OS  Licensed  

Product  Library  (LK3T-4307),  which  contains  BookManager  and  PDF  formats  of  

licensed  books.  

 

328 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Trademarks  

The  following  terms  are  trademarks  of the  IBM  Corporation  in the  United  States  or  

other  countries  or  both:  

 

   Advanced  Peer-to-Peer  Networking  

   AFP  

   AD/Cycle  

   AIX  

   AIX/ESA  

   AnyNet  

   APL2  

   AS/400  

   AT 

   BookManager  

   BookMaster  

   C/370  

   CICS  

   CICS/ESA  

   C/MVS  

   Common  User  Access  

   C Set  ++ 

   CT  

   CUA  

   DB2  

   DFSMSdfp  

   DFSMShsm  

   DFSMS/MVS  

   DPI  

   Domino  

   DRDA  

   Enterprise  Systems  Architecture/370  

   ESCON  

   eServer  

   ES/3090  

   ES/9000  

   ES/9370  

   EtherStreamer  

   Extended  Services  

   FFST  

   FFST/2  

   First  Failure  Support  Technology  

   GDDM  

   IBM  

   IBMLink  

   IMS  

   IMS/ESA  

   HiperSockets  

   Language  Environment  

   LANStreamer  

   Library  Reader  

   LPDA  

   Micro  Channel  

   Multiprise  

   MVS  

   MVS/DFP  

   MVS/ESA  

   MVS/SP  

   MVS/XA  

   NetView  

   Network  Station  

   Nways  

   Notes  

   OfficeVision/MVS  

   OfficeVision/VM  

   Open  Class  

   OS/2  

   OS/390  

   OS/400  

   Parallel  Sysplex  

   PR/SM  

   PROFS  

   PS/2  

   RACF  

   Redbooks  

   Resource  Link  

   RETAIN 

   RISC  System/6000  

   RMF  

   RS/6000  

   S/370  

   S/390  

   S/390  Parallel  Enterprise  Server  

   SAA  

   SecureWay  

   SP  

   SP2  

   SQL/DS  

   System/360  

   System/370  

   System/390  

   SystemView  

   Tivoli  

   TURBOWAYS  

   VM/ESA  

   VSE/ESA  

   VTAM 

   WebSphere  

   XT 

   z/Architecture  

   z/OS  

   zSeries  

   z/VM  

   400  

   3090  

   3890

  

DB2  and  NetView  are  registered  trademarks  of International  Business  Machines  

Corporation  or  Tivoli  Systems  Inc.  in  the  U.S.,  other  countries,  or  both.  

 

Notices  329



The  following  terms  are  trademarks  of  other  companies:  

ATM is  a trademark  of  Adobe  Systems,  Incorporated.  

BSC  is  a trademark  of BusiSoft  Corporation.  

CSA  is  a trademark  of Canadian  Standards  Association.  

DCE  is  a trademark  of  The  Open  Software  Foundation.  

HYPERchannel  is  a trademark  of  Network  Systems  Corporation.  

Java  and  all  Java-based  trademarks  are  trademarks  of  Sun  Microsystems,  Inc.  in the  

United  States,  other  countries,  or  both.  

Linux  is  a trademark  of Linus  Torvalds  in  the  United  States,  other  countries,  or  

both.  

UNIX  is a registered  trademark  of  The  Open  Group  in  the  United  States  and  other  

countries.  

Microsoft,  Windows,  Windows  NT, and  the  Windows  logo  are  trademarks  of  

Microsoft  Corporation  in  the  United  States,  other  countries,  or  both.  

Intel  is  a registered  trademark  of  Intel  Corporation  or  its  subsidiaries  in  the  United  

States  and  other  countries.  

Other  company,  product,  and  service  names  may  be  trademarks  or  service  marks  

of  others.  

 

330 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide

|
|

|
|

|
|



Bibliography  

z/OS Communications Server information 

This  section  contains  descriptions  of  the  documents  in  the  z/OS  Communications  Server  library.  

z/OS  Communications  Server  documentation  is  available:  

v   Online  at  the  z/OS  Internet  Library  web  page  at 

http://www.ibm.com/servers/eserver/zseries/zos/bkserv  

v   In  softcopy  on  CD-ROM  collections.  See  “Softcopy  information”  on  page  xix.

z/OS Communications Server library 

z/OS  Communications  Server  documents  are  available  on  the  CD-ROM  accompanying  z/OS  (SK3T-4269  

or  SK3T-4307).  Unlicensed  documents  can  be  viewed  at  the  z/OS  Internet  library  site.  

Updates  to  documents  are  available  on  RETAIN® and  in  information  APARs  (info  APARs).  See  

Appendix  C,  “Information  APARs,”  on  page  315  for  a list  of  the  documents  and  the  info  APARs  

associated  with  them.  

Info  APARs  for  z/OS  documents  are  in  the  document  called  z/OS  and  z/OS.e  DOC  APAR  and  PTF  

++HOLD  Documentation  which  can  be  found  at http://publibz.boulder.ibm.com:80/cgi-
bin/bookmgr_OS390/  BOOKS/ZIDOCMST/CCONTENTS.  

Planning 

 Title  Number  Description  

z/OS  Communications  Server:  

New  Function  Summary  

GC31-8771  This  document  is intended  to help  you  plan  for new  IP for  SNA  

function,  whether  you  are migrating  from  a previous  version  or 

installing  z/OS  for the  first  time.  It summarizes  what  is new in 

the release  and  identifies  the  suggested  and  required  

modifications  needed  to use  the  enhanced  functions.  

z/OS  Communications  Server:  

IPv6  Network  and  Application  

Design  Guide  

SC31-8885  This  document  is a high-level  introduction  to IPv6.  It describes  

concepts  of z/OS  Communications  Server’s  support  of IPv6,  

coexistence  with  IPv4,  and  migration  issues.
  

Resource definition, configuration, and tuning 

 Title  Number  Description  

z/OS  Communications  Server:  IP 

Configuration  Guide  

SC31-8775  This  document  describes  the  major  concepts  involved  in 

understanding  and  configuring  an IP network.  Familiarity  with  

the z/OS  operating  system,  IP protocols,  z/OS  UNIX  System  

Services,  and  IBM  Time Sharing  Option  (TSO)  is recommended.  

Use  this document  in conjunction  with  the  z/OS  Communications  

Server:  IP Configuration  Reference. 

 

© Copyright  IBM Corp. 1994, 2005 331

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS


Title Number  Description  

z/OS  Communications  Server:  IP 

Configuration  Reference  

SC31-8776  This  document  presents  information  for  people  who  want  to 

administer  and  maintain  IP.  Use  this document  in conjunction  

with  the z/OS  Communications  Server:  IP  Configuration  Guide. The  

information  in this  document  includes:  

v   TCP/IP  configuration  data  sets  

v   Configuration  statements  

v   Translation  tables  

v   SMF  records  

v   Protocol  number  and  port  assignments  

z/OS  Communications  Server:  

SNA  Network  Implementation  

Guide  

SC31-8777  This  document  presents  the major  concepts  involved  in 

implementing  an SNA  network.  Use this  document  in 

conjunction  with  the z/OS  Communications  Server:  SNA  Resource  

Definition  Reference. 

z/OS  Communications  Server:  

SNA  Resource  Definition  Reference  

SC31-8778  This  document  describes  each  SNA  definition  statement,  start  

option,  and  macroinstruction  for  user  tables.  It also  describes  

NCP  definition  statements  that  affect  SNA.  Use  this  document  in 

conjunction  with  the z/OS  Communications  Server:  SNA  Network  

Implementation  Guide. 

z/OS  Communications  Server:  

SNA  Resource  Definition  Samples  

SC31-8836  This  document  contains  sample  definitions  to help  you  

implement  SNA  functions  in  your  networks,  and  includes  

sample  major  node  definitions.  

z/OS  Communications  Server:  

AnyNet  SNA  over  TCP/IP  

SC31-8832  This  guide  provides  information  to help  you  install,  configure,  

use,  and  diagnose  SNA  over  TCP/IP.  

z/OS  Communications  Server:  

AnyNet  Sockets  over  SNA  

SC31-8831  This  guide  provides  information  to help  you  install,  configure,  

use,  and  diagnose  sockets  over  SNA.  It also  provides  

information  to help  you  prepare  application  programs  to use  

sockets  over  SNA.  

z/OS  Communications  Server:  IP 

Network  Print  Facility  

SC31-8833  This  document  is for system  programmers  and  network  

administrators  who  need  to prepare  their  network  to route  SNA,  

JES2,  or JES3  printer  output  to remote  printers  using  TCP/IP  

Services.
  

Operation 

 Title Number  Description  

z/OS  Communications  Server:  IP 

User’s  Guide  and  Commands  

SC31-8780  This  document  describes  how  to  use  TCP/IP  applications.  It 

contains  requests  that  allow  a user  to log  on  to a remote  host 

using  Telnet, transfer  data  sets  using  FTP,  send  and  receive  

electronic  mail,  print  on remote  printers,  and  authenticate  

network  users.  

z/OS  Communications  Server:  IP 

System  Administrator’s  Commands  

SC31-8781  This  document  describes  the  functions  and  commands  helpful  in 

configuring  or monitoring  your  system.  It contains  system  

administrator’s  commands,  such  as TSO  NETSTAT, PING,  

TRACERTE  and  their  UNIX  counterparts.  It also  includes  TSO  

and  MVS  commands  commonly  used  during  the IP 

configuration  process.  

z/OS  Communications  Server:  

SNA  Operation  

SC31-8779  This  document  serves  as a reference  for programmers  and  

operators  requiring  detailed  information  about  specific  operator  

commands.  

z/OS  Communications  Server:  

Quick  Reference  

SX75-0124  This  document  contains  essential  information  about  SNA  and  IP  

commands.
 

 

332 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Customization 

 Title  Number  Description  

z/OS  Communications  Server:  

SNA  Customization  

SC31-6854  This  document  enables  you  to  customize  SNA,  and  includes  the 

following:  

v   Communication  network  management  (CNM)  routing  table  

v   Logon-interpret  routine  requirements  

v   Logon  manager  installation-wide  exit  routine  for  the CLU  

search  exit  

v   TSO/SNA  installation-wide  exit  routines  

v   SNA  installation-wide  exit  routines
  

Writing application programs 

 Title  Number  Description  

z/OS  Communications  Server:  IP 

Sockets  Application  Programming  

Interface  Guide  and  Reference  

SC31-8788  This  document  describes  the  syntax  and  semantics  of program  

source  code  necessary  to write  your  own  application  

programming  interface  (API)  into  TCP/IP.  You can  use  this  

interface  as the communication  base  for  writing  your  own  client  

or server  application.  You can  also  use this  document  to adapt  

your  existing  applications  to communicate  with  each  other  using  

sockets  over  TCP/IP.  

z/OS  Communications  Server:  IP 

CICS  Sockets  Guide  

SC31-8807  This  document  is for  programmers  who  want  to set up,  write  

application  programs  for,  and  diagnose  problems  with  the socket  

interface  for CICS  using  z/OS  TCP/IP.  

z/OS  Communications  Server:  IP 

IMS  Sockets  Guide  

SC31-8830  This  document  is for  programmers  who  want  application  

programs  that  use  the IMS  TCP/IP  application  development  

services  provided  by  IBM’s  TCP/IP  Services.  

z/OS  Communications  Server:  IP 

Programmer’s  Guide  and  Reference  

SC31-8787  This  document  describes  the  syntax  and  semantics  of a set  of 

high-level  application  functions  that  you  can  use  to program  

your  own  applications  in a TCP/IP  environment.  These  

functions  provide  support  for application  facilities,  such  as user  

authentication,  distributed  databases,  distributed  processing,  

network  management,  and  device  sharing.  Familiarity  with  the 

z/OS  operating  system,  TCP/IP  protocols,  and  IBM  Time 

Sharing  Option  (TSO)  is recommended.  

z/OS  Communications  Server:  

SNA  Programming  

SC31-8829  This  document  describes  how  to use  SNA  macroinstructions  to 

send  data  to and  receive  data  from  (1) a terminal  in either  the 

same  or a different  domain,  or (2) another  application  program  

in either  the  same  or a different  domain.  

z/OS  Communications  Server:  

SNA  Programmer’s  LU 6.2  Guide  

SC31-8811  This  document  describes  how  to use  the  SNA  LU  6.2 application  

programming  interface  for host  application  programs.  This  

document  applies  to programs  that  use  only  LU  6.2 sessions  or 

that  use  LU  6.2  sessions  along  with  other  session  types.  (Only  

LU  6.2 sessions  are  covered  in this document.)  

z/OS  Communications  Server:  

SNA  Programmer’s  LU 6.2  

Reference  

SC31-8810  This  document  provides  reference  material  for the  SNA  LU  6.2  

programming  interface  for host  application  programs.  

z/OS  Communications  Server:  

CSM  Guide  

SC31-8808  This  document  describes  how  applications  use  the 

communications  storage  manager.  

 

Bibliography  333



Title Number  Description  

z/OS  Communications  Server:  

CMIP  Services  and  Topology  

Agent  Guide  

SC31-8828  This  document  describes  the  Common  Management  Information  

Protocol  (CMIP)  programming  interface  for  application  

programmers  to use  in coding  CMIP  application  programs.  The  

document  provides  guide  and  reference  information  about  CMIP  

services  and  the  SNA  topology  agent.
  

Diagnosis 

 Title Number  Description  

z/OS  Communications  Server:  IP 

Diagnosis  Guide  

GC31-8782  This  document  explains  how  to diagnose  TCP/IP  problems  and  

how  to determine  whether  a specific  problem  is in the TCP/IP  

product  code.  It explains  how  to gather  information  for and  

describe  problems  to the  IBM  Software  Support  Center. 

z/OS  Communications  Server:  

SNA  Diagnosis  Vol 1, Techniques  

and  Procedures  and  z/OS  

Communications  Server:  SNA  

Diagnosis  Vol 2, FFST  Dumps  and  

the VIT  

GC31-6850  

GC31-6851  

These  documents  help  you  identify  an SNA  problem,  classify  it, 

and  collect  information  about  it before  you  call  the  IBM  Support  

Center. The  information  collected  includes  traces,  dumps,  and  

other  problem  documentation.  

z/OS  Communications  Server:  

SNA  Data  Areas  Volume 1 and  

z/OS  Communications  Server:  

SNA  Data  Areas  Volume 2 

GC31-6852  

GC31-6853  

These  documents  describe  SNA  data  areas  and  can  be used  to 

read  an SNA  dump.  They  are  intended  for IBM  programming  

service  representatives  and  customer  personnel  who  are  

diagnosing  problems  with  SNA.
  

Messages and codes 

 Title Number  Description  

z/OS  Communications  Server:  

SNA  Messages  

SC31-8790  This  document  describes  the  ELM,  IKT, IST, ISU,  IUT, IVT, and  

USS  messages.  Other  information  in this  document  includes:  

v   Command  and  RU  types  in SNA  messages  

v   Node  and  ID  types  in SNA  messages  

v   Supplemental  message-related  information  

z/OS  Communications  Server:  IP 

Messages  Volume 1 (EZA)  

SC31-8783  This  volume  contains  TCP/IP  messages  beginning  with  EZA.  

z/OS  Communications  Server:  IP 

Messages  Volume 2 (EZB,  EZD)  

SC31-8784  This  volume  contains  TCP/IP  messages  beginning  with  EZB  or 

EZD.  

z/OS  Communications  Server:  IP 

Messages  Volume 3 (EZY)  

SC31-8785  This  volume  contains  TCP/IP  messages  beginning  with  EZY.  

z/OS  Communications  Server:  IP 

Messages  Volume 4 (EZZ,  SNM)  

SC31-8786  This  volume  contains  TCP/IP  messages  beginning  with  EZZ  and  

SNM.  

z/OS  Communications  Server:  IP 

and  SNA  Codes  

SC31-8791  This  document  describes  codes  and  other  information  that  

appear  in z/OS  Communications  Server  messages.
  

APPC Application Suite 

 Title Number  Description  

z/OS  Communications  Server:  

APPC  Application  Suite  User’s  

Guide  

SC31-8809  This  documents  the end-user  interface  (concepts,  commands,  

and  messages)  for the  AFTP,  ANAME,  and  APING  facilities  of 

the  APPC  application  suite.  Although  its primary  audience  is the 

end  user,  administrators  and  application  programmers  may  also  

find  it useful.  

 

334 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Title  Number  Description  

z/OS  Communications  Server:  

APPC  Application  Suite  

Administration  

SC31-8835  This  document  contains  the  information  that  administrators  

need  to configure  the  APPC  application  suite  and  to manage  the 

APING,  ANAME,  AFTP,  and  A3270  servers.  

z/OS  Communications  Server:  

APPC  Application  Suite  

Programming  

SC31-8834  This  document  provides  the information  application  

programmers  need  to add  the functions  of the  AFTP  and  

ANAME  APIs  to their  application  programs.
 

 

Bibliography  335



336 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Index  

A
accept  28 

ACCEPT  (call) 65 

accessibility  319 

active  sockets 57 

active  sockets queue  35 

ADDRSPC  parameter  56 

ADDRSPCPFX  parameter  57 

AF parameter  on call interface,  on SOCKET  175 

alternate  PCB 30 

APPC 4 

application  data 30, 35 

application  data, explicit mode
data  translation  40 

end-of-message  indicator  40 

format 40 

network  byte order  40 

application  data, explicit-mode
format  47, 48 

protocol 47, 48 

translation  47, 48 

application  data, implicit-mode
data  translation  42, 50 

end-of-message  50 

end-of-message  indicator  42 

format 42, 50 

Application  types
3270 3 

client-server  3 

ASCII  to EBCDIC  translation  40 

ASMADLI  52 

Assist  module
role  of 27 

tradeoffs  27 

use of IMS message queue  27 

B
BACKLOG  parameter  57 

BACKLOG  parameter  on call interface,  LISTEN  call 127 

backlog  queue  35 

backlog  queue,  length  57 

bb status code 50, 52 

Berkeley  Sockets
BSD  4.3 5 

big-endian  40 

BIND 28 

BIND (call) 68 

bit-mask  on call interface,  on EZACIC06  call 187 

bit-mask-length  on call interface,  on EZACIC06  call 188 

BMP 56 

BUF parameter  on call socket  interface
on  GETIBMOPT  95 

on READ 132 

on RECV 136 

on RECVFROM  139 

on SEND  154 

on SENDTO 162 

on WRITE 179 

buffer  full 45 

C
C language  5 

list of calls 23 

CADLI  52 

CALL Instruction Interface  for Assembler,  PL/1, and 

COBOL  61 

Call Instructions  for Assembler,  PL/1, and COBOL Programs
ACCEPT  65 

BIND 68 

CLOSE 70 

CONNECT  72 

EZACIC04  183 

EZACIC05  185 

EZACIC06  187 

EZACIC08  189 

FCNTL 75 

GETCLIENTID  86 

GETHOSTBYADDR  87 

GETHOSTBYNAME  90 

GETHOSTID  92 

GETHOSTNAME  93 

GETIBMOPT  94 

GETPEERNAME  101 

GETSOCKNAME  103 

GETSOCKOPT  105 

GIVESOCKET  115 

INITAPI  117 

IOCTL  119 

LISTEN  126 

READ 131 

READV 133 

RECV 135 

RECVFROM  137 

RECVMSG  140 

SELECT 144 

SELECTEX  148 

SENDMSG  155 

SENDTO 159 

SETSOCKOPT  163 

SHUTDOWN  172 

SOCKET 174 

TAKESOCKET  176 

TERMAPI  177 

WRITE 178 

WRITEV  180 

Call Instructions  for Assembler,  PL/I, and COBOL  Programs
EZACIC14  197 

EZACIC15  199 

call interface  sample PL/I programs 201 

call sequence,  explicit-mode  client 40 

CBLADLI  52 

CHAR-MASK  parameter  on call interface,  on EZACIC06  187 

child server 14 

CHNG  30 

client
defined 39 

explicit-mode  39 

logic flow 39 

client call sequence, implicit-mode  41 

CLIENT  parameter  on call socket interface
on  GETCLIENTID  86 

 

© Copyright  IBM Corp. 1994, 2005 337



CLIENT  parameter  on call socket  interface  (continued)
on  GIVESOCKET  116  

on TAKESOCKET  177 

client-server  3 

client/server  processing 8 

COBOL  language
list  of calls 23 

codes, RSM reason  45 

COMMAND  parameter  on call interface,  IOCTL call 121 

COMMAND  parameter  on call socket  interface
on  EZACIC06  188 

on FCNTL 76 

on GETIBMOPT  95 

COMMIT  47, 48 

commit  database  updates  30 

commit,  explicit-mode  39 

Communications  Server  for z/OS, online information  xx 

complete-status  message  45 

concurrent  server
defined  13 

illustrated  13, 14 

configuration  file 56 

configuring  IMS TCP/IP  60 

connection,  how established  28 

conversation,  TCP/IP  28 

CSMOKY  43, 45 

CSMOKY  message  41 

D
data translation

explicit-mode  40 

data translation,  socket  interface  181 

ASCII  to EBCDIC  185 

bit-mask  to character  187 

character  to bit-mask  187 

EBCDIC  to ASCII 183, 197 

data, application  30, 35 

database  calls 30 

database  updates,  commit  30 

DataLen  58 

DataType 58 

disability  319 

DNS, online information  xxi 

E
EBCDIC  to ASCII  translation  40 

ERETMSK  parameter  on call interface,  on SELECT  148 

ERRNO parameter  on call socket  interface
on  ACCEPT  67 

on BIND 70 

on CLOSE  72 

on CONNECT  75 

on FCNTL 76 

on GETCLIENTID  87 

on GETHOSTNMAE  94 

on GETIBMOPT  96 

on GETPEERNAME  103 

on GETSOCKNAME  105 

on GETSOCKOPT  106 

on GIVESOCKET  117  

on INITAPI  119  

on IOCTL 125 

on LISTEN 127 

on READ 132 

ERRNO  parameter  on call socket interface  (continued)
on  READV  134 

on RECV  136 

on RECVFROM  140 

on RECVMSG  144 

on SELECT  148 

on SELECTEX  152 

on SEND 155 

on SENDMSG  159 

on SENDTO 162 

on SETSOCKOPT  164 

on SHUTDOWN  174 

on SOCKET  175 

on TAKESOCKET  177 

on WRITE  179 

on WRITEV  181 

ERRNO  parameter  on macro socket interface
on  FCNTL  77, 85 

ESDNMASK  parameter  on call interface, on SELECT  147 

EWOULDBLOCK  error return, call interface  calls
RECV  135 

RECVFROM  137 

explicit-mode  5 

explicit-mode  client
application  data format  40 

call sequence 40 

data format  40 

data translation  40 

network  byte order  40 

explicit-mode  server
application  data 47 

call sequence 47 

I/O PCB 47 

PL/I programming 47 

TIM 47 

transaction-initiation  message  47 

EZACIC04,  call interface,  EBCDIC  to ASCII translation  183 

EZACIC05,  call interface,  ASCII  to EBCDIC translation  185 

EZACIC06  21 

EZACIC06,  call interface,  bit-mask  translation  187 

EZACIC08,  HOSTENT  structure interpreter  utility  189 

EZACIC09,  RES structure interpreter  utility  192 

EZACIC14,  call interface,  EBCDIC  to ASCII translation  197 

EZACIC15,  call interface,  ASCII  to EBCDIC translation  199 

F
FCNTL (call) 75 

FLAGS parameter  on call socket interface
on  RECV  136 

on RECVFROM  138 

on RECVMSG  143 

on SEND 154 

on SENDMSG  159 

on SENDTO 161 

FNDELAY  flag on call interface,  on FCNTL  76 

G
GETCLIENTID  (call) 86 

GETHOSTBYADDR  (call) 87 

GETHOSTBYNAME  (call) 90 

GETHOSTID  (call) 92 

GETHOSTNAME  (call) 93 

GETIBMOPT  (call) 94 

GETPEERNAME  (call) 101 

 

338 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



GETSOCKNAME  (call)  103 

GETSOCKOPT  (call) 105 

GIVESOCKET  30 

GIVESOCKET  (call) 115  

H
hlq.PROFILE.TCPIP  data set 59 

hlq.TCPIP.DATA  data set 60 

HOSTADDR  parameter  on call interface,  on 

GETHOSTBYADDR  88 

HOSTENT  parameter  on call socket  interface
on  GETHOSTBYADDR  88 

on GETHOSTBYNAME  91 

HOSTENT  structure interpreter parameters,  on 

EZACIC08  190 

HOW  parameter  on call interface,  on SHUTDOWN  173 

I
I/O Area size 52 

I/O PCB in explicit-mode  server  49 

IBM Software Support  Center,  contacting  xiv 

IDENT  parameter  on call interface,  INITAPI  call 119 

implicit  mode 5 

implicit-mode
client 41 

client call sequence  41 

client logic flow 41 

complete  status message  41 

CSM 41 

data stream 41 

transaction-request  message  41 

TRM 41 

implicit-mode  client
application  data stream  43 

application  data, format  43 

call sequence  43 

data format  43 

data translation  43 

end-of-message  indicator  43 

logic flow 43 

implicit-mode  server
application  data 50 

Assist  module  50 

call sequence  50 

I/O PCB 50 

PL/I programming 50 

programming 50 

IMS Assist  Module  4 

IMS error 45 

IMS Listener  4 

role  of 27 

use of IMS message queue  27 

IMSLSECX,  Listener  security  exit name 58 

IN-BUFFER  parameter  on call interface,  EZACIC05  call 185 

information  APARs  for IP-related documents  315 

information  APARs  for non- document  information  316 

information  APARs  for SNA-related  documents  316 

initapi  47, 49 

INITAPI(call)  117  

INQY 30 

Internet,  finding  z/OS information  online  xx 

internets,  TCP/IP  8 

IOCTL  (call) 119  

IOV parameter  on call socket interface
on  READV  134 

on WRITEV  181 

IOVCNT  parameter  on call socket interface
on  READV  134 

on RECVMSG  143 

on SENDMSG  159 

on WRITEV  181 

IP protocol 9 

IpAddr  58 

ISRT 50 

iterative  server
defined  13 

illustrated  14 

K
keyboard 319 

L
length  of backlog  queue 57 

LENGTH  parameter  on call socket interface
on  EZACIC04  184 

on EZACIC05  186 

on EZACIC14  197 

on EZACIC15  199 

license,  patent,  and copyright  information  321 

LISTEN  28 

LISTEN  (call) 126 

Listener  call sequence  35 

Listener  configuration  file
LISTENER  statement  56 

TCPIP statement  56 

TRANSACTION  statement  56 

Listener  ReasnCode  58 

Listener  RetnCode  58 

Listener  startup  parameters  56 

Listener  statement  57 

LISTNR  49 

little-endian  40 

LookAt  message  retrieval tool xxii 

LTERM  name 53 

LU 6.2 4 

M
MAXACTSKT  35 

MAXACTSKT  parameter  57 

MAXSNO  parameter  on call interface, INITAPI  call 119 

MAXSOC  parameter  on call socket interface
on  INITAPI  118 

on SELECT 147 

on SELECTEX  152 

MAXTRANS  parameter  57 

Message Format Services 3 

Message format  services  (MFS)  35 

message  queue 27, 28, 30 

message  queue, use of 35 

message  retrieval tool, LookAt  xxii 

messages
complete-status  message 45 

MFS 3 

MODE=SNGL  47 

MSG parameter  on call socket interface
on  RECVMSG  142 

 

Index  339



MSG parameter  on call socket  interface  (continued)
on  SENDMSG  157 

multiple  connection  requests  35 

N
NAME parameter  on call socket interface

on  ACCEPT  67 

on BIND 69 

on CONNECT  74 

on GETHOSTBYNAME  90 

on GETHOSTNAME  94 

on GETPEERNAME  102 

on GETSOCKNAME  104 

on RECVFROM  139 

NAMELEN  parameter  on call socket  interface
on  GETHOSTBYNAME  90 

on GETHOSTNAME  93 

NBYTE  parameter  on call socket interface
on  READ 132 

on RECV 136 

on RECVFROM  139 

on SEND 154 

on SENDTO 162 

on WRITE 179 

network  byte order  40 

O
OSI 8 

OUT-BUFFER  parameter  on call interface,  on EZACIC04  183 

OUT-BUFFER  parameter  on call interface,  on EZACIC14  197 

OUT-BUFFER  parameter  on call interface,  on EZACIC15  199 

output area  size 52 

Overview  4 

P
pending  activity  20 

pending  exception  21 

pending  read  21 

PL/I coding 46 

PL/I programs, required statement  64 

PLIADLI  52 

Port 58 

port numbers
reserving  port numbers  59 

PORT parameter  57 

ports
compared  with sockets  11 

reserving  port numbers  59 

program variable  definitions,  call interface
assembler  definition  64 

COBOL  PIC 64 

PL/I declare  64 

VS COBOL  II PIC 64 

PROTO parameter  on call interface,  on SOCKET  175 

PURG call 52 

Q
QC status code 50, 52 

QD status code 50, 52 

R
READ 30 

READ (call) 131 

READV (call) 133 

ReasnCode,  Listener  58 

reason codes 45 

RECV (call) 135 

RECVFROM  (call) 137 

RECVMSG  (call)  140 

REQARG  and RETARG  parameter  on call socket interface
on  FCNTL  76 

on IOCTL  124 

REQSTS  43 

request-status message 43 

Request-status  message  39 

requirements for IMS TCP/IP  23 

RETARG  parameter  on call interface,  on IOCTL  125 

RETCODE  parameter  on call socket interface
on  ACCEPT  67 

on BIND 70 

on CLOSE 72 

on CONNECT  75 

on EZACIC06  188 

on FCNTL  76 

on GETCLIENTID  87 

on GETHOSTBYADDR  88 

on GETHOSTBYNAME  91 

on GETHOSTID  93 

on GETHOSTNAME  94 

on GETIBMOPT  96 

on GETPEERNAME  103 

on GETSOCKNAME  105 

on GETSOCKOPT  107 

on GIVESOCKET  117 

on INITAPI  119 

on IOCTL  125 

on LISTEN  127 

on READ 132 

on READV  135 

on RECV  136 

on RECVFROM  140 

on RECVMSG  144 

on SELECT  148 

on SELECTEX  152 

on SEND 155 

on SENDMSG  159 

on SENDTO 162 

on SETSOCKOPT  164 

on SHUTDOWN  174 

on SOCKET  176 

on TAKESOCKET  177 

on WRITE  179 

on WRITEV  181 

RETCODE  parameter  on macro  socket interface
on  FCNTL  78, 85 

RetnCode,  Listener 58 

return codes
call interface  65 

return codes, I/O PCB
bb  53 

EA 53 

EB 53 

EC 53 

QC 53 

QD 53 

ZZ 53 

 

340 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



RFC (request  for comments)
accessing  online xx 

list of 299 

ROLB  call 53 

RRETMSK  parameter  on call interface,  on SELECT  148 

RSM  39 

RSM  reason  codes 45 

RSMId  43 

RSMLen  43 

RSMRetCod  43 

RSMRsnCod  43 

RSMRsv  43 

RSNDMSK  parameter  on call interface,  on SELECT  147 

S
S, defines  socket  descriptor  on macro interface

on  FCNTL 77, 79, 80, 98 

S, defines  socket  descriptor  on socket  interface
on  ACCEPT  67 

on BIND 69 

on CLOSE  72 

on CONNECT  74 

on FCNTL 76 

on GETPEERNAME  102 

on GETSOCKNAME  104 

on GETSOCKOPT  106 

on GIVESOCKET  116  

on IOCTL  121 

on LISTEN  127 

on READ 132 

on READV  134 

on RECV 136 

on RECVFROM  138 

on RECVMSG  142 

on SEND  154 

on SENDMSG  157 

on SENDTO 161 

on SETSOCKOPT  164 

on SHUTDOWN  173 

on WRITE 179 

on WRITEV  180 

sample  programs
call  interface

CBLOCK,  PL/I 218 

client,  PL/I 205 

server,  PL/I 201 

security  exit 28 

security  exit reason  codes 45 

security  exit, data passed  by Listener  58 

security  exit, Listener  58 

security  exit, return  codes 58 

SELECT  (call)  144 

select  mask 20 

SELECTEX  (call) 148 

SEND  (call) 153 

SENDMSG  (call) 155 

SENDTO (call) 159 

server  call sequence,  explicit-mode  47 

server  programming, logic  flow 47 

server,  defined  39 

server,  explicit mode
see explicit mode  server  47 

SETSOCKOPT  (call) 163 

shortcut  keys  319 

SHUTDOWN  (call) 172 

SNA  4 

SNA  protocols
compared with SNA 8 

compared with TCP/IP 8 

SOCKET  (call) 174 

Socket  interface  5 

sockets
compared with ports 11 

introduction 9 

Sockets 4 

Sockets Extended  API 10 

SOCRECV  parameter  on call interface,  TAKESOCKET  

call 177 

SOCTYPE  parameter  on call interface, on SOCKET  175 

SUBTASK  parameter  on call interface,  INITAPI  call 119 

SYNC  30 

syntax  diagram,  reading xv 

T
takesocket  30, 47, 49 

TAKESOCKET  (call) 176 

TCP protocol 9 

TCP/IP
online information  xx 

protocol  specifications  299 

TCP/IP  for MVS, modifying  data sets
modifying  data sets 59 

TCP/IP  protocols 8 

TCP/IP  Services  23 

TCPIP statement  56 

TELNET  3 

TERMAPI  (call) 177 

TIM 30, 49 

TIMDataType 49 

TIMEOUT  parameter  on call interface,  on SELECT 147 

TIMEOUT  parameter  on call socket interface
on  SELECTEX  152 

TIMId 49 

TIMLen  49 

TIMListTaskID  47 

TIMLstAddrSpc  47, 49 

TIMLstTaskID  49 

TIMRsv  49 

TIMSktDesc  47, 49 

TIMSrvAddrSpc  47, 49 

TIMSrvTaskID  47, 49 

TIMTCPAddrSpc  47, 49 

TN3270  3 

TOKEN parameter  on call interface,  on EZACIC06  187 

trademark  information  329 

TRANCODE  27, 28 

Transaction code 27 

transaction  name, IMS 57 

transaction  not defined  45 

transaction  request message 28 

TRANSACTION  statement  57 

transaction  unavailable  45 

transaction  verification  58 

Transaction-initiation  message 49 

transaction-request message 43 

Transaction-request message  39 

TransNam 58 

TRM 28, 39, 43 

TRM bad format  45 

TRMId 43 

TRMlen 43 

TRMRsv  43 

 

Index  341



TRMTrnCod 43 

TRMUsrDat  43 

U
UDP protocol 9 

updates,  database  commit  30 

use of HOSTENT  structure  interpreter,  EZACIC08  189 

Userdata  58 

utility  programs 181 

EZACIC04  183 

EZACIC05  185 

EZACIC06  187 

EZACIC08  189 

EZACIC14  197 

EZACIC15  199 

V
verification,  transaction  58 

VTAM  4 

VTAM,  online  information  xx 

W
WRETMSK  parameter  on call interface,  on SELECT  148 

WRITE (call) 178 

write()  30, 35 

WRITEV  (call)  180 

WSNDMSK  parameter  on call interface,  on SELECT  147 

Z
z/OS, documentation  library  listing 331 

z/OS, listing  of documentation  available  315 

ZZ status code 52

 

342 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide



Communicating  Your  Comments  to IBM  

If  you  especially  like  or  dislike  anything  about  this  document,  please  use  one  of  

the  methods  listed  below  to send  your  comments  to  IBM.  Whichever  method  you  

choose,  make  sure  you  send  your  name,  address,  and  telephone  number  if you  

would  like  a reply.  

Feel  free  to  comment  on  specific  errors  or  omissions,  accuracy,  organization,  subject  

matter,  or  completeness  of  this  document.  However,  the  comments  you  send  

should  pertain  to  only  the  information  in  this  manual  and  the  way  in which  the  

information  is  presented.  To request  additional  publications,  or  to  ask  questions  or  

make  comments  about  the  functions  of  IBM  products  or  systems,  you  should  talk  

to  your  IBM  representative  or  to your  IBM  authorized  remarketer.  

When  you  send  comments  to IBM,  you  grant  IBM  a nonexclusive  right  to  use  or 

distribute  your  comments  in  any  way  it  believes  appropriate  without  incurring  any  

obligation  to  you.  

Please  send  your  comments  to  us  in  either  of  the  following  ways:  

v   If  you  prefer  to  send  comments  by  FAX, use  this  number:  1+919-254-4028  

v   If  you  prefer  to  send  comments  electronically,  use  this  address:  

–   comsvrcf@us.ibm.com.
v   If  you  prefer  to  send  comments  by  post,  use  this  address:  

International  Business  Machines  Corporation  

Attn:  z/OS  Communications  Server  Information  Development  

P.O.  Box  12195,  3039  Cornwallis  Road  

Department  AKCA,  Building  501 

Research  Triangle  Park,  North  Carolina  27709-2195  

Make  sure  to include  the  following  in  your  note:  

v    Title  and  publication  number  of this  document  

v    Page  number  or  topic  to  which  your  comment  applies.

 

 

© Copyright  IBM Corp. 1994, 2005 343



344 z/OS V1R7.0  Comm Svr: IP IMS Sockets  Guide





����

Program Number: 5694–A01 and 5655–G52

  

Printed in USA 

 

  

SC31-8830-02  

              



Sp
in
e 
in
fo
rm
at
io
n:

 

 �
�

�
 

z/
O

S 
Co

m
m

un
ic

at
io

ns
 
Se

rv
er

 
z/

O
S 

V
1R

7.0
 
Co

m
m

 
Sv

r:
 
IP

 
IM

S 
So

ck
et

s 
G

ui
de

 

Ve
rs

io
n 

1
R

el
ea

se
 
7 


	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology used in this document
	Clarification of notes

	How to read a syntax diagram
	Symbols and punctuation
	Parameters
	Syntax examples

	Prerequisite and related information
	Required information
	Related information
	Softcopy information
	Other documents
	Redbooks
	Where to find related information on the Internet
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS


	How to send your comments

	Summary of changes
	Part 1. IMS overview
	Chapter 1. Using TCP/IP with IMS
	The role of IMS TCP/IP
	Introduction to IMS TCP/IP
	IMS TCP/IP feature components
	The IMS Listener
	The IMS Assist module
	The MVS TCP/IP socket application programming interface (Sockets Extended)


	Chapter 2. Introduction to TCP/IP for IMS
	What IMS TCP/IP does
	Using IMS with SNA or TCP/IP

	TCP/IP internets
	Mainframe interactive processing
	Client/server processing
	TCP, UDP, and IP
	The socket API

	Programming with sockets
	Socket types
	Addressing TCP/IP hosts
	Address families
	Socket addresses
	Internet (IP) addresses
	Ports
	Domain names
	Network byte order


	A typical client/server program flow chart
	Concurrent and iterative servers

	The basic socket calls
	Server TCP/IP calls
	Socket
	Bind
	Listen
	Accept
	GIVESOCKET and TAKESOCKET
	Read and write

	Client TCP/IP calls
	The socket call
	The connect call
	Read/Write calls — the conversation
	The close call

	Other socket calls
	The SELECT call
	IOCTL and FCNTL calls
	GIVESOCKET and TAKESOCKET calls
	Summary


	What you need to run IMS TCP/IP
	TCP/IP services

	A summary of what IMS TCP/IP provides

	Part 2. Using the IMS Listener
	Chapter 3. Principles of operation
	Overview
	The role of the IMS Listener
	The role of the IMS Assist module
	Use of the IMS Assist module — pros and cons


	Client/server logic flow
	How the connection is established
	How the server exchanges data with the client
	Explicit-mode transactions
	Implicit-mode transactions

	How the IMS Listener manages multiple connection requests
	Use of the IMS message queue
	Input messages
	Output messages

	Call sequence for the IMS Listener
	Application design considerations
	Programs that are not started by the IMS Listener
	When the client is an IMS MPP
	Abend processing
	True abends
	Pseudo abends

	Implicit-mode support for ROLB processing
	Restrictions


	Chapter 4. How to write an IMS TCP/IP client program
	Client program logic flow — general
	Explicit-mode client program logic flow
	Explicit-mode client call sequence
	Explicit-mode application data
	Format
	Data translation
	Network byte order
	End-of-message indicator


	Implicit-mode client logic flow
	Implicit-mode client call sequence
	Implicit mode application data stream
	Client-to-server data stream
	Server-to-client data stream

	Implicit-mode application data
	Format
	Data translation
	End-of-message segment


	IMS TCP/IP message segment formats
	Transaction-request message segment (client to Listener)
	Request-status message segment
	Request-status message reason codes

	Complete-status message segment
	End-of-message segment (EOM)

	PL/I coding

	Chapter 5. How to write an IMS TCP/IP server program
	Server program logic flow —general
	Explicit-mode server program logic flow
	Explicit-mode call sequence
	Explicit-mode application data
	Format
	EBCDIC/ASCII data translation

	Transaction-initiation message segment
	Program design considerations
	I/O PCB — explicit-mode server
	Status codes

	Explicit-mode server — PL/I programming considerations

	Implicit-mode server program logic flow
	Implicit-mode server call sequence
	Implicit-mode application data
	Format
	Data translation
	End-of-message segment

	Programming to the Assist module interface
	Implicit-mode server PL/I programming considerations
	Implicit-mode server C language programming considerations
	I/O PCB implicit-mode server
	Status codes



	Chapter 6. How to customize and operate the IMS Listener
	How to start the IMS Listener
	How to stop the IMS Listener
	The IMS Listener configuration file
	TCPIP statement
	LISTENER statement
	TRANSACTION statement

	The IMS Listener security exit
	TCP/IP services definitions
	The hlq.PROFILE.TCPIP data set
	The hlq.TCPIP.DATA data set


	Chapter 7. Using the CALL instruction application programming interface (API)
	Environmental restrictions and programming requirements
	Linkage conventions for the CALL instruction API
	Output register information

	Compatibility considerations
	CALL instruction application programming interface (API)
	Understanding COBOL, Assembler, and PL/I call formats
	COBOL language call format
	Assembler language call format
	PL/I language call format

	Converting parameter descriptions
	Diagnosing problems in applications using the CALL instruction API
	Error messages and return codes
	Code CALL instructions
	ACCEPT
	Parameter values set by the application
	Parameter values returned to the application

	BIND
	Parameter values set by the application
	Parameter values returned to the application

	CLOSE
	Parameter values set by the application
	Parameter values returned to the application

	CONNECT
	Stream sockets
	UDP sockets
	Parameter values set by the application
	Parameter values returned to the application

	FCNTL
	Parameter values set by the application
	Parameter values returned to the application

	FREEADDRINFO
	Parameter values set by the application
	Parameter values returned to the application

	GETADDRINFO
	Parameter values set by the application

	GETCLIENTID
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTBYADDR
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTBYNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTID
	Parameter values set by the application

	GETHOSTNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETIBMOPT
	Parameter values set by the application
	Parameter values returned to the application

	GETNAMEINFO
	Parameter values set by the application

	GETPEERNAME
	Parameter values set by the application
	Parameter Values Returned to the Application

	GETSOCKNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETSOCKOPT
	Parameter values set by the application
	Parameter values returned to the application

	GIVESOCKET
	Parameter values set by the application
	Parameter values returned to the application

	INITAPI
	Parameter values set by the application
	Parameter values returned to the application

	IOCTL
	Parameter values set by the application
	Parameter values returned to the application

	LISTEN
	Parameter values set by the application
	Parameter values returned to the application

	NTOP
	Parameter values set by the application
	Parameter values returned to the application

	PTON
	Parameter values set by the application
	Parameter values returned to the application

	READ
	Parameter values set by the application
	Parameter values returned to the application

	READV
	Parameter values set by the application
	Parameter values returned to the application

	RECV
	Parameter values set by the application
	Parameter values returned to the application

	RECVFROM
	Parameter values set by the application
	Parameter values returned to the application

	RECVMSG
	Parameter values set by the application
	Parameter values returned to the application

	SELECT
	Defining which sockets to test
	Read operations
	Write operations
	Exception operations
	MAXSOC parameter
	TIMEOUT parameter
	Parameter values set by the application
	Parameter values returned to the application

	SELECTEX
	Defining which sockets to test
	Read operations
	Write operations
	Exception operations
	MAXSOC parameter
	TIMEOUT parameter
	Parameter values set by the application
	Parameter values returned to the application

	SEND
	Parameter values set by the application
	Parameter values returned to the application

	SENDMSG
	Parameter values set by the application
	Parameter values returned to the application

	SENDTO
	Parameter values set by the application
	Parameter values returned to the application

	SETSOCKOPT
	Parameter values set by the application
	Parameter values returned to the application

	SHUTDOWN
	Parameter values set by the application
	Parameter values returned to the application

	SOCKET
	Parameter values set by the application
	Parameter values returned to the application

	TAKESOCKET
	Parameter values set by the application
	Parameter values returned to the application

	TERMAPI
	Parameter values set by the application

	WRITE
	Parameter values set by the application
	Parameter values returned to the application

	WRITEV
	Parameter values set by the application
	Parameters returned by the application


	Using data translation programs for socket call interface
	Data translation
	Bit-string processing
	EZACIC04
	EZACIC05
	EZACIC06
	EZACIC08
	EZACIC09
	EZACIC14
	EZACIC15


	Call interface sample programs
	Sample code for IPv4 server program
	Sample program for IPv4 client program
	Sample code for IPv6 server program
	Sample program for IPv6 client program
	Common variables used in PL/I sample programs
	COBOL call interface sample IPv6 server program
	COBOL call interface sample IPv6 client program


	Chapter 8. IMS Listener samples
	IMS TCP/IP control statements
	JCL for starting a message processing region
	JCL for linking the IMS Listener
	EZAIMSCZ JCLIN
	EZAIMSPL JCLIN

	Listener IMS definitions
	PSB definition
	Application definition


	Sample program explicit-mode
	Program flow
	Sample explicit-mode client program (C language)
	Sample explicit-mode server program (Assembler language)

	Sample program implicit-mode
	Program flow
	Sample implicit-mode client program (C language)
	Sample implicit-mode server program (Assembler language)

	Sample program - IMS MPP client
	Program flow
	Sample client program for non-IMS server
	Sample server program for IMS MPP client
	WTO output from sample program



	Part 3. Appendixes
	Appendix A. Return codes
	Sockets extended ERRNOs

	Appendix B. Related protocol specifications (RFCs)
	Internet drafts

	Appendix C. Information APARs
	Information APARs for IP documents
	Information APARs for SNA documents
	Other information APARs

	Appendix D. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Trademarks

	Bibliography
	z/OS Communications Server information
	z/OS Communications Server library
	Planning
	Resource definition, configuration, and tuning
	Operation
	Customization
	Writing application programs
	Diagnosis
	Messages and codes
	APPC Application Suite



	Index
	Communicating Your Comments to IBM

