<|lI!

z/0S Communications Server

IP IMS Sockets Guide

Version 1 Release 7

SC31-8830-02

<|lI!

z/0S Communications Server

IP IMS Sockets Guide

Version 1 Release 7

SC31-8830-02

Note:
Before using this information and the product it supports, be sure to read the general information under

Third Edition (September 2005)

This edition applies to Version 1 Release 7 of z/OS (5694-A01) and Version 1 Release 7 of z/0OS.e (5655-G52) and to
all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.
International Business Machines Corporation
Attn: z/OS Communications Server Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-4028

Send the fax to “Attn: z/OS Communications Server Information Development”

Internet e-mail:
comsvrcf@us.ibm.com

World Wide Web:
[http:/ / www.ibm.com/servers/eserver /zseries/zos/webgs.html|

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following in your comment or note:

+ Title and order number of this document
* Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents
Figures. L e .. Wi
Tables &t e X

About thisdocument 0L L L Xi
Who should read this document L L L L L xiil
How this document is organized .xiv
How to use this document e e
Determining whether a publication is current e A
How to contact IBM service . . e Y
Conventions and terminology used in thls document e 4%
Clarification of notesXxvV
How to read a syntax diagram .XV
Symbols and punctuation .Xxv
Parameters Lo oo oxvd
Syntax examples . . . Ce s Xl
Prerequisite and related 1nformat10n e 4 g 1
Required informationxviil
Related information L L. xvii
How to send your comments. L L L L xxiil

Summaryofchanges L . . . 0o e e . . XXV

Part1. IMS overview &« & & e e e e e e e e e e e e e e e a1

Chapter 1. Using TCP/IP with IMS. 3
The role of IMS TCP/IP 3
Introduction to IMS TCP/IP . C e o4
IMS TCP/IP feature components .4
The IMS Listener . o 4
The IMS Assist module . . 4
The MVS TCP/IP socket apphcatlon programmlng 1nterface (Sockets Extended) 5

Chapter 2. Introduction to TCP/IP for IMS 7
What IMS TCP/IP does. 7
Using IMS with SNA or TCP / IP P <
TCP/IP internetso s 8
Mainframe interactive processing 8
Client/server processing 8
TCP, UDP, and IP. 8
The socket API ... 9
Programming with sockets10
Socket types . . A 0]
Addressing TCP/ IP hosts oL OO N |
A typical client/server program flow chart e)
Concurrent and iterative servers .13
The basic socket calls 14
Server TCP/IP calls.o a5
Socket L L Lo s sk
Listen L. s s s s 1e
Accept . . . S s e
GIVESOCKET and TAKESOCKET O 4
Read and write L L7

© Copyright IBM Corp. 1994, 2005 iii

Client TCP/IP calls. .17
The socket call .17
The connect call17
Read/Write calls — the conversatlon .18
The close call. .18

Other socket calls .18
The SELECT call. . . 18
IOCTL and FCNTL calls21
GIVESOCKET and TAKESOCKET calls . .21

What you need to run IMS TCP/IP .23
TCP/IP services . . .23

A summary of what IMS TCP / IP prov1des . .23

Part 2. Using the IMS Listener 25

Chapter 3. Principles of operation . . 27

Overview . .27
The role of the IMS Llstener .27
The role of the IMS Assist module. .27

Client/server logic flow . . 28
How the connection is estabhshed .28
How the server exchanges data with the client . . 30
How the IMS Listener manages multiple connection requests. .34
Use of the IMS message queue . .35
Call sequence for the IMS Listener. .35
Application design considerations . . 36
Programs that are not started by the IMS Llstener . 36
When the client is an IMS MPP. . 36
Abend processing .37
Implicit-mode support for ROLB processmg . 38
Restrictions . . 38

Chapter 4. How to write an IMS TCP/IP client program . 39

Client program logic flow — general . . 39

Explicit-mode client program logic flow . . 39
Explicit-mode client call sequence . . 40
Explicit-mode application data . . 40

Implicit-mode client logic flow . .41
Implicit-mode client call sequence . .41
Implicit mode application data stream .42
Implicit-mode application data . .42

IMS TCP/IP message segment formats . .43
Transaction-request message segment (client to L1stener) .43
Request-status message segment .44
Complete-status message segment . . 45
End-of-message segment (EOM) . 45

PL/I coding . . . 46

Chapter 5. How to write an IMS TCP/IP server program . . 47

Server program logic flow —general . . 47

Explicit-mode server program logic flow . 47
Explicit-mode call sequence . . 47
Explicit-mode application data . . 48
Transaction-initiation message segment . . 49
Program design considerations . . 50
I/0O PCB — explicit-mode server . . . 50
Explicit-mode server — PL/I programming con51derat10ns . 50

Implicit-mode server program logic flow . 50
Implicit-mode server call sequence . 51
Implicit-mode application data . . 51

iV z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Programming to the Assist module interface

Implicit-mode server PL/I programming con51derat10ns .
Implicit-mode server C language programming considerations .
I/0 PCB implicit-mode server .

Chapter 6. How to customize and operate the IMS Listener .

How to start the IMS Listener .
How to stop the IMS Listener .
The IMS Listener configuration file
TCPIP statement.
LISTENER statement . .
TRANSACTION statement .
The IMS Listener security exit .
TCP/IP services definitions . .
The hlq. PROFILE.TCPIP data set
The hlq. TCPIP.DATA data set

Chapter 7. Using the CALL instruction application programmlng interface (API)

Environmental restrictions and programming requirements
Linkage conventions for the CALL instruction API

Output register information .
Compatibility considerations
CALL instruction application programmmg 1nterface (API)
Understanding COBOL, Assembler, and PL/I call formats.

COBOL language call format e

Assembler language call format

PL/I language call format
Converting parameter descriptions .
Diagnosing problems in applications using the CALL 1nstruct10n API .
Error messages and return codes .
Code CALL instructions .

ACCEPT

BIND

CLOSE .

CONNECT

FCNTL.

FREEADDRINFO

GETADDRINFO.

GETCLIENTID .

GETHOSTBYADDR

GETHOSTBYNAME

GETHOSTID .

GETHOSTNAME

GETIBMOPT .

GETNAMEINFO .

GETPEERNAME .

GETSOCKNAME .

GETSOCKOPT .

GIVESOCKET .

INITAPI .

IOCTL.

LISTEN

NTOP .

PTON .

READ .

READV

RECV .

RECVFROM.

RECVMSG .

SELECT .

. 52
. 52
. 53
. 53

. 55

. 55
. 56
. 56
. 56
. 57
. 57
. 58
. 59
. 59
. 60

. 61

. 61
. 62
. 62
. 62
. 63
. 63
. 63
. 63
. 64
. 64
. 65
. 65
. 65
. 65
. 68
.70
.72
.75
.77
. 78
. 86
. 87
. 90
.92
.93
. 94
. 96

. 101
. 103
. 105
. 115
. 117
. 119
. 126
. 127
. 129
. 131
. 133
. 135
. 137
. 140
. 144

Contents

A\

SELECTEXo s s 148

SENDo s8
SENDMSGo 18s
SENDTO e s 1
SETSOCKOPT 1e8
SHUTDOWN s 2
SOCKETo 174
TAKESOCKET 17
TERMAPL77
WRITE LT
WRITEV e £ (0
Using data translation programs for socket call 1nterface e 1
Data translation L L oL Lo Lo s 1s
Bit-string processing18
Call interface sample programs020
Sample code for IPv4 server program o.o.o.o.o020
Sample program for IPv4 client program .25
Sample code for IPv6 server program .208
Sample program for IPv6 client program .214
Common variables used in PL/I sample programs .218
COBOL call interface sample IPv6 server program .224
COBOL call interface sample IPv6 client program .237

Chapter 8. IMS Listenersamples « « « « « . « . . .247

IMS TCP/IP control statements 247
JCL for starting a message processing region .247
JCL for linking the IMS Listener .28
Listener IMS definitions. .25

Sample program explicitmode .25
Program flow . . . 1o]
Sample explicit-mode chent program (C language) .o 1 |
Sample explicit-mode server program (Assembler language) L

Sample program implicit-mode .. .26l
Program flow . . . Ce s 20
Sample implicit-mode chent program (C language) . e 261
Sample implicit-mode server program (Assembler language) S ... L2066

Sample program - IMS MPP client .20
Program flow . . . Ce s s 200
Sample client program for non—IMS server.
Sample server program for IMS MPP client .281

Part 3. Appendixes i s e e e e e e e e . . 293

Appendix A.Returncodes. 0 . i .04 . . . 295

Sockets extended ERRNOs2%
Appendix B. Related protocol specmcatlons (RFCs) e e e e e e e e e . . 299
Internet drafts . . . T 1 V2

Appendix C. InformationAPARs315

Information APARs for IP documents .35
Information APARs for SNA documents .36
Other information APARs .36

Appendix D. Accessibilityo 0000000819

Using assistive technologies . . C oo B9
Keyboard navigation of the user mterface G J L)
z/0S information L L B

Vi z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Notices & . e B2
Trademarks Lo s B

Bibliography. L o e e e e e e e e .. 33T
z/0S Communications Server information .33
z/0S Communications Server library .33

IndexX e . . 337

Communicating Your CommentstolBM.343

Contents Vil

viii z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Figures

The use of TCP/IP with IMS . .

TCP/IP protocols when compared to the OSI Model and SNA
A typical client/server session e
An iterative server .

A concurrent server .

The SELECT call .

IMS TCP/IP message flow for transaction initiation . .
IMS TCP/IP message flow for explicit-mode input/output.
IMS TCP/IP message flow for implicit mode 1nput / output
JCL: Sample run Listener procedure . .
Definition of the TCP/IP profile. . .
The TCPIPJOBNAME Parameter in the DATA data set .
Storage definition statement examples

—_
COPNT RN

= e e
LN =

15. ACCEPT call instructions example .

16. BIND call instruction example

17. CLOSE call instruction example.

18. CONNECT call instruction example

19. FCNTL call instruction example. .o

20. FREEADDRINFO call instruction example .

21. GETADDRINFO call instruction example

22. GETCLIENTID call instruction example .

23. GETHOSTBYADDR call instruction example .

24. HOSTENT structure returned by the GETHOSTBYADDR call
25. GETHOSTBYNAME call instruction example . .
26. HOSTENT structure returned by the GETHOSTYBYNAME call .
27. GETHOSTID call instruction example . o
28. GETHOSTNAME call instruction example

29. GETIBMOPT call instruction example .

30. Example of name field . .

31. GETNAMEINFO call instruction example

32. GETPEERNAME call instruction example .

33. GETSOCKNAME call instruction example .

34. GETSOCKORPT call instruction example.

35. GIVESOCKET call instruction example .

36. INITAPI call instruction example .

37. IOCTL call instruction example

38. COBOL language example for SIOCGHOMEIF6

39. Interface request structure (IFREQ) for the IOCTL call .
40. COBOL language example for SIOCGIFNAMEINDEX .
41. COBOL II example for SIOCGIFCONF . .
42. LISTEN call instruction example .

43. NTOP call instruction example.

44. PTON call instruction example.

45. READ call instruction example.

46. READV call instruction example .

47. RECV call instruction example .

48. RECVFROM call instruction example

49. RECVMSG call instruction example .

50. SELECT call instruction example .

51. SELECTEX call instruction example .

52. SEND call instruction example.

53. SENDMSG call instruction example .

54. SENDTO call instruction example.

55. SETSOCKOPT call instruction example .

© Copyright IBM Corp. 1994, 2005

How user applications access TCP / IP networks w1th IMS TCP / IP .

.13
.14
.14
.19
.24
. 29
.31
. 33
. 55
. 59
. 60
. 64
. 66
. 69
.71
.73
. 76
.77
.79
. 86
. 88
. 89
.90
.91
.92
. 93
.95
. 96
. .98
. 102
. 104
. 106
. 116
. 118
. 120
. 122
. 123
. 124
. 126
. 127
. 128
. 130
. 132
. 134
. 136
. 138
. 141
. 146
. 151
. 154
. 156
. 161
. 163

ix

56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.

X

SHUTDOWN call instruction example .
SOCKET call instruction example .
TAKESOCKET call instruction example .
TERMAPI call instruction example

WRITE call instruction example

WRITEV call instruction example .

EZACIC04 EBCDIC-to-ASCII table

EZACIC04 call instruction example .

EZACIC05 ASCII-to-EBCDIC table .

EZACICO05 call instruction example .

EZACICO06 call instruction example .

EZAZICO08 call instruction example .

EZACICQ9 call instruction example .

EZACIC14 EBCDIC-to-ASCII table .

EZACIC14 call instruction example .

EZACIC15 ASCII-to-EBCDIC table

EZACICI15 call instruction example . . .
EZASOKPS PL/1 sample server program for IPV4 .
EZASOKPC PL/1 sample client program for IPv4
EZASO6PS PL/1 sample server program for IPv6
EZASO6PC PL/1 sample client program for IPv6

EZASO6CS COBOL call interface sample IPv6 server program .
EZASO6CC COBOL call interface sample IPv6 client program .

Cross zone Lnk IMS application interface .
Sample C client to drive IMS Listener
Sample assembler IMS server .

Sample C client to drive IMS Llstener
Sample assembler IMS server .

Sample of IMS program as a client

Sample of IMS program as a server .

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

. 173
. 174
. 176
. 178
. 179
. 180
. 183
. 183
. 185
. 185
. 187
. 190
. 193
. 197
. 197
. 199
. 199
. 202
. 206
. 209
. 215
. 225
. 238
. 249
. 252
. 255
. 262
. 267
. 272
. 282

Tables

First fullword passed in a bit string in select
Second fullword passed in a bit string in select

IOCTL call arguments. L
OPTNAME options for GETSOCKOPT and SETSOCKOPT
Sockets extended ERRNOs . .
IP information APARs for z/OS Communications Server .

OO NG PN

Non-document information APARs

© Copyright IBM Corp. 1994, 2005

OPTNAME options for GETSOCKOPT and SETSOCKOPT

SNA information APARs for z/OS Communications Server .

. 20

. .20
. 107

. 125

. 164

. 295

. 315

. 316

. 316

xi

xil z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

About this document

This document describes how to use IP Services with IMS Version 7 and above. It
describes the IMS call interface and the supporting functions. The information in
this document supports both IPv6 and IPv4. Unless explicitly noted, information
describes IPv4 networking protocol. IPv6 support is qualified within the text.

This document addresses the following topics:

* IMS client/server application design

e The IMS Listener

e The IMS Assist function

e The IMS socket calls, including call syntax conventions

This document supports z/OS.e.

Who should read this document

This document is intended for programmers who have some familiarity with IMS
Transaction Manager and IP Services, and who need to develop IMS client/server
applications.

To ensure proper interprogram communication, the two halves of a client/server
program must be developed together. At a minimum, they must agree on protocol
and data formats. To complicate matters (particularly in the case of a UNIX
processor talking to an IMS mainframe), the technology differences are so extensive
that the two halves will often be coded by different individuals — one, an IP
socket programmer; the other, an IMS programmer.

This document has been designed for users with a variety of backgrounds and
needs:

* Application designers need to know how the various components of IMS

TCP/IP interact to provide program-to-program communication. These readers
should read [Chapter 3, “Principles of operation,” on page 27.|

* Experienced IP socket programmers need to know the protocol and message
formats necessary to establish communication with the IMS Listener and with
the server program. These readers should read [Chapter 4, “How to write an IMY
TCP/IP client program,” on page 39| and [Chapter 7, “Using the CALL instruction|
application programming interface (API),” on page 61|

* Experienced IMS application programmers will be familiar with IMS
input/output calls (GU, GN, ISRT). These programmers have two choices:

— Programmers with IMS experience and little or no TCP/IP programming
experience will probably want to use the IMS Assist module, which accepts
standard IMS 1/O calls, and converts them to equivalent socket calls. They
should read the sections on implicit-mode programming.

— IMS programmers with socket experience can chose to code native C
language or use the Sockets Extended APL These programmers should read
the sections on explicit-mode programming and [Chapter 7, “Using the CALI_I
finstruction application programming interface (API),” on page 61

* IMS system programmers and communication programmers are responsible for
the IMS system itself. These readers should read [Chapter 6, “How to customize|
[and operate the IMS Listener,” on page 55.|

© Copyright IBM Corp. 1994, 2005 xiii

How this document is organized

The /OS Communications Server: IP IMS Sockets Guidd is divided into the following
parts:

Part 1, “IMS overview,” on page 1|provides an overview of TCP/IP as it is used
with IMS and the types of applications for which it is intended to be used.

Part 2, “Using the IMS Listener,” on page 25| provides information on the IMS
Listener including principles of operation, writing and customizing client and
server programs, use of the CALL Instruction API, and samples.

 Part 3, "Appendixes” provides additional information for this document.
* [“Notices” on page 321| contains notices and trademarks used in this document.

« |“Bibliography” on page 331| contains descriptions of the documents in the z/OS®
Communications Server library.

How to use this document

xiv

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For
a given publication, updates to the hardcopy and associated BookManager®
softcopy are usually available at the same time. Sometimes, however, the updates
to hardcopy and softcopy are available at different times. The following
information describes how to determine if you are looking at the most current
copy of a publication:

* At the end of a publication’s order number there is a dash followed by two
digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the
publication order number GC28-1747-07, the dash level 07 means that the
publication is more current than previous levels, such as 05 or 04.

* If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

* To compare softcopy publications, you can check the last two characters of the
publication’s file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

How to contact IBM service

For immediate assistance, visit this Web site:
|http: / /www.software.ibm.com /network /commserver/support/ |

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).
You will receive a return call within 8 business hours (Monday — Friday, 8:00 a.m.
- 5:00 p.m., local customer time).

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

http://www.software.ibm.com/network/commserver/support/

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

If you would like to provide feedback on this publication, see|”Communicating|
[Your Comments to IBM” on page 343|

Conventions and terminology used in this document

This publication uses the following typographic conventions:

* Commands that you enter verbatim onto the command line are presented in
bold.

* Variable information and parameters that you enter within commands, such as
filenames, are presented in italic.

e System responses are presented in monospace.

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:
Note Supplemental detail
Tip Ofters shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure; stronger request than
recommendation

Rule Something you must do; limitations on your actions

Restriction
Indicates certain conditions are not supported; limitations on a product or
facility

Requirement
Dependencies, prerequisites

Result Indicates the outcome

How to read a syntax diagram

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

Symbols and punctuation

The following symbols are used in syntax diagrams:
> Marks the beginning of the command syntax.
> Indicates that the command syntax is continued.

I Marks the beginning and end of a fragment or part of the command
syntax.

>< Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation
marks, and minus signs that are shown in the syntax diagram.

About this document XV

xvi

Parameters

The following types of parameters are used in syntax diagrams:
Required

Required parameters are displayed on the main path.
Optional

Optional parameters are displayed below the main path.
Default

Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. Keywords are displayed in
uppercase letters and can be entered in uppercase or lowercase. For example, a
command name is a keyword.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. For example, a data set is a variable.

Syntax examples

In the following example, the USER command is a keyword. The required variable
parameter is user_id, and the optional variable parameter is password. Replace the
variable parameters with your own values.

Y
A

»>—USER—user_id
I—password—l

Longer than one line: If a diagram is longer than one line, the first line ends with
a single arrowhead and the second line begins with a single arrowhead.

>>—| First Line |—OPERANDl—OPERAND2—0PERAND3—0PERAND4—0PERANDS—0PERAND6—>

>ﬂ Second Line i ><

Required operands: Required operands and values appear on the main path line.

»>—REQUIRED_OPERAND

v
A

You must code required operands and values.

Choose one required item from a stack: If there is more than one mutually
exclusive required operand or value to choose from, they are stacked vertically in
alphanumeric order.

»—[REQUIRED_OPERAND_OR_VALUE_l . >
REQUIRED_OPERAND OR_VALUE 2

Optional values: Optional operands and values appear below the main path line.

|—OPERAND—|

You can choose not to code optional operands and values.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Choose one optional operand from a stack: If there is more than one mutually
exclusive optional operand or value to choose from, they are stacked vertically in
alphanumeric order below the main path line.

i:OPERAND_OR_VALUE_l:‘
OPERAND_OR_VALUE_2

Repeating an operand: An arrow returning to the left above an operand or value
on the main path line means that the operand or value can be repeated. The
command means that each operand or value must be separated from the next by a
comma.

s

A\
A

»»—Y REPEATABLE_OPERAND

Selecting more than one operand: An arrow returning to the left above a group of
operands or values means more than one can be selected, or a single one can be
repeated.

Y REPEATABLE_OPERAND OR VALUE_1
REPEATABLE_OPERAND OR_VALUE_2—

REPEATABLE_OPER_OR_VALUE_1——
REPEATABLE_OPER OR_VALUE 2——

If an operand or value can be abbreviated, the abbreviation is described in the text
associated with the syntax diagram.

Case Sensitivity: TCP/IP commands are not case sensitive. You can code them in
uppercase or lowercase.

Nonalphanumeric characters: If a diagram shows a character that is not
alphanumeric (such as parentheses, periods, commas, and equal signs), you must
code the character as part of the syntax. In this example, you must code
OPERAND=(001,0.001).

»»>—QOPERAND=(001,0.001) ><

Blank spaces in syntax diagrams: If a diagram shows a blank space, you must
code the blank space as part of the syntax. In this example, you must code
OPERAND=(001 FIXED).

»»>—QOPERAND= (001 FIXED) ><

Default operands: Default operands and values appear above the main path line.
TCP/1IP uses the default if you omit the operand entirely.

About this document ~ XVii

DEFAULT
o il
|—OPERAND—|

Y
A

Variables: A word in all lowercase italics is a variable. Where you see a variable in
the syntax, you must replace it with one of its allowable names or values, as
defined in the text.

»»—variable

Y
A

Syntax fragments: Some diagrams contain syntax fragments, which serve to break
up diagrams that are too long, too complex, or too repetitious. Syntax fragment
names are in mixed case and are shown in the diagram and in the heading of the
fragment. The fragment is placed below the main diagram.

v
A

»—-I Reference to Syntax Fragment i

Syntax Fragment:

|—lST_0PERAND,2ND_OPERAND,3RD_0PERAND |

References to syntax notes appear as numbers enclosed in parentheses above the
line. Do not code the parentheses or the number. An example of a syntax note
identifier and note is shown below.

(1)
»»>—(0PERAND >«

Notes:

1 An example of a syntax note.

Prerequisite and related information

xviii

z/0S Communications Server function is described in the z/OS Communications
Server library. Descriptions of those documents are listed in
[Communications Server information” on page 331|in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM®, MVS™,
and UNIX® System Services.

Related information

This section contains subsections on:

» [“Softcopy information” on page xix|

« |“Other documents” on page xix|

* [“Redbooks” on page xX]

* [“Where to find related information on the Internet” on page xx|

* [“Using LookAt to look up message explanations” on page xxii
* [“Using IBM Health Checker for z/0S” on page xxiil

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Softcopy information
Softcopy publications are available in the following collections:

Titles Order Description
Number

z/OS V1R7 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS VIR7, in both BookManager and PDF
formats.

z/OS Software Products SK3T-4270 This CD includes, in both BookManager and PDF formats, the

Collection libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex® bookshelf.

z/OS VIR7 and Software SK3T-4271 This collection includes the libraries of z/OS (the element and

Products DVD Collection feature libraries) and the libraries for z/OS software products in
both BookManager and PDF format. This collection combines
SK3T-4269 and SK3T-4270.

z/OS Licensed Product Library | SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

System Center Publication IBM | SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the

S/390® Redbooks™ Collection S/390 platform and to host networking arranged into subject
bookshelves.

Other documents

For information about z/OS products, refer to /OS Information Roadmap|

(SA22-7500). The Roadmap describes what level of documents are supplied with

each release of z/OS Communications Server, as well as describing each z/OS

publication.
Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA

documents.

The following table lists documents that might be helpful to readers.

Title

Number

DNS and BIND, Fourth Edition, O'Reilly and Associates, 2001

ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR, 1995)

ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and Associates, 2002

ISBN 1-56592-839-3

SNA Formats

GA27-3136

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens, Addison-Wesley
Publishing, 1994

ISBN 0-201-63346-9

TCP/IP Illustrated, Volume 1I: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP Illustrated, Volume III, W. Richard Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63495-3

TCP/IP Tutorial and Technical Ouverview

Understanding LDAP

|z/OS Crytographic Service System Secure Sockets Layer Programming]

C24-590

|z/OS Inteqrated Security Services Firewall Technologies|

C24-592

|z/OS Integrated Security Services LDAP Client Programming|

(C24-5924

|z/OS Integrated Security Services LDAP Server Administration and Use|

DD DS @ | O
Q10
NGRS
T
o8
xR |3
)—10\0\

C24-592

About this document

Xix

Title Number

[z/0S JES2 Initialization and Tuning Guide
|z/0S MVS Diagnosis: Procedures|
lz/OS MVS Diagnosis: Reference|
[z/0S MVS Diagnosis: Tools and Service Aidd
lz/0S MVS Using the Subsystem Interface| SA22-7642)
|z/OS Program Directory| GI10-0670)]
|z/0S UNIX System Services Command Referencd SA22-7802)
[z/0S UNIX System Services Planning| GA22-7800)
|z/OS UNIX System Services Programming: Assembler Callable Services Reference] SA22-7803]
[z/0S UNIX System Services User's Guide]
|z/OS XL C/C++ Run-Time Library Reference
|zSeries OSA-Express Customer’s Guide and Reference| SA22-7935

Redbooks

The following Redbooks might help you as you implement z/OS Communications

Server.
Title Number

Communications Server for z/OS VIR2 TCP/IP Implementation Guide Volume 1: Base and | SG24-5227
TN3270 Configuration

Communications Server for z/OS VI1R2 TCP/IP Implementation Guide Volume 2: UNIX | SG24-5228
Applications

Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 4: SG24-6516
Connectivity and Routing

Communications Server for z/OS VIR2 TCP/IP Implementation Guide Volume 7: Security |SG24-6840

IBM Communication Controller Migration Guide 5G24-6298
IP Network Design Guide 5G24-2580
Managing 0S/390® TCP/IP with SNMP 5G24-5866
Migrating Subarea Networks to an IP Infrastructure 5G24-5957

05/390 eNetwork Communications Server V2R7 TCP/IP Implementation Guide: Volume 3: | SG24-5229
MVS Applications

Secureway Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements 5G24-5631
SNA and TCP/IP Integration 5G24-5291
TCP/IP in a Sysplex 5G24-5235
TCP/IP Tutorial and Technical Overview GG24-3376
Threadsafe Considerations for CICS 5G24-6351

Where to find related information on the Internet
z/0S

This site provides information about z/OS Communications Server release
availability, migration information, downloads, and links to information
about z/OS technology

http:/ /www.ibm.com/servers/eserver/zseries/zos/|

XX z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

http://www.ibm.com/servers/eserver/zseries/zos/

z/OS Internet Library

Use this site to view and download z/OS Communications Server
documentation

http:/ /www.ibm.com/servers/eserver / zseries / zos /bkserv /|

IBM Communications Server product

The primary home page for information about z/OS Communications
Server

Ihttp: / / www.software.ibm.com/network /commserver /|

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS
Communications Server knowledge base for Technotes, FAQs, white
papers, and other z/OS Communications Server information

http:/ /www.software.ibm.com /network /commserver /support/|

IBM Systems Center publications

Use this site to view and order Redbooks, Redpapers, and Technotes

http:/ /www.redbooks.ibm.com/|

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes,
presentations, Technotes, FAQs, white papers, Customer Support Plans,
and Skills Transfer information)

http:/ /www.ibm.com /support/techdocs /atsmastr.nsf]

RFCs

Search for and view Request for Comments documents in this section of
the Internet Engineering Task Force Web site, with links to the RFC
repository and the IETF Working Groups Web page

http:/ /www.ietf.org /rfc.html]|

Internet drafts

View Internet-Drafts, which are working documents of the Internet
Engineering Task Force (IETF) and other groups, in this section of the
Internet Engineering Task Force Web site

http:/ /www.ietf.org /ID.html]

Information about Web addresses can also be found in information APAR 1111334.

DNS Web sites: For more information about DNS, see the following USENET
news groups and mailing addresses:

USENET news groups
comp.protocols.dns.bind

BIND mailing lists
http:/ /www.isc.org /ml-archives/|

BIND Users
* Subscribe by sending mail to bind-users-request@isc.org.

* Submit questions or answers to this forum by sending mail to
bind-users@isc.org.

About this document ~ XX1

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.isc.org/ml-archives/

xxii

BIND 9 Users (This list might not be maintained indefinitely.)
* Subscribe by sending mail to bind9-users-request@isc.org.

* Submit questions or answers to this forum by sending mail to
bind9-users@isc.org.

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message
explanations for z/OS elements and features, z/ VM®, VSE/ESA™, and Clusters for
AIX® and Linux™:

* The Internet. You can access IBM message explanations directly from the LookAt
Web site at |http:/ /www.ibm.com /eserver/zseries/zos/bkserv /lookat/ |

* Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e
systems to access IBM message explanations, using LookAt from a TSO/E
command line (for example, TSO/E prompt, ISPF, or z/OS UNIX System
Services).

* Your Microsoft® Windows® workstation. You can install code to access IBM
message explanations on the z/OS Collection (SK3T-4269), using LookAt from a
Microsoft Windows command prompt (also known as the DOS command line).

* Your wireless handheld device. You can use the LookAt Mobile Edition with a
handheld device that has wireless access and an Internet browser (for example,
Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for
Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt
Web site.

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from a disk on your z/OS Collection (SK3T-4269), or from the LookAt
Web site (click Download, and select the platform, release, collection, and location
that suit your needs). More information is available in the LOOKAT.ME files
available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to
gather information about their system environment and system parameters to help
identify potential configuration problems before they impact availability or cause
outages. Individual products, z/OS components, or ISV software can provide
checks that take advantage of the IBM Health Checker for z/OS framework. This
book may refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,
see [[BM Health Checker for z/OS: User’s Guide z/OS V1R4, VIR5, and VIR6 users
can obtain the IBM Health Checker for z/OS from the z/OS Downloads page at
|http: / /www.ibm.com/servers/eserver/zseries/zos/downloads/| [

SDSEF also provides functions to simplify the management of checks. See
ISDSF Operation and Customization| for additional information.

z/0S V1IR7.0 Comm Svr: IP IMS Sockets Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/downloads/

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this document or any
other z/OS Communications Server documentation:

* Go to the z/OS contact page at:

|http: //www.ibm.com/servers/eserver/zseries/zos/ webqs.htm]l

There you will find the feedback page where you can enter and submit your
comments.

* Send your comments by e-mail to comsvrcf@us.ibm.com. Be sure to include the
name of the document, the part number of the document, the version of z/OS
Communications Server, and, if applicable, the specific location of the text you
are commenting on (for example, a section number, a page number or a table
number).

About this document Xxxiii

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

XXiV z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Summary of changes

Summary of changes
for SC31-8830-02
z/OS Version 1 Release 7

This document contains information previously presented in SC31-8830-01, which
supports z/OS VIR5.

The information in this document includes descriptions of support for both IPv4
and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol
support concern IPv4. IPv6 support is qualified within the text.

This document refers to Communications Server data sets by their default SMP/E
distribution library name. Your installation might, however, have different names
for these data sets where allowed by SMP/E, your installation personnel, or
administration staff. For instance, this document refers to samples in SEZAINST
library as simply in SEZAINST. Your installation might choose a data set name of
SYS1.SEZAINST, CS390.SEZAINST or other high level qualifiers for the data set
name.

Changed Information

+ Two additional return codes for EZACIC08 documented (see[*EZACIC08” on|
page 189)

e SIOCTTLSCTL has been updated (see [“TOCTL” on page 119)

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

You might notice changes in the style and structure of some content in this
document—for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

Summary of changes
for SC31-8830-01
z/OS Version 1 Release 5

This document contains information previously presented in SC31-8830-00, which
supports z/OS VIR2. The information in this document supports both IPv6 and
IPv4. Unless explicitly noted, information describes IPv4 networking protocol. IPv6
support is qualified within the text.

New information

e IPv6 information and examples.

Changed Information
* Maximum number of sockets in MAXSOC variable increased to 65535.
* Updated instructions for using the implicit-mode sample program.

© Copyright IBM Corp. 1994, 2005 XXV

XXV1

* The following call instructions:
-~ GETHOSTBYADDR (see [“"GETHOSTBYADDR” on page 87)
- GETHOSTBYNAME (see["GETHOSTBYNAME” on page 90))
- GETSOCKOPT (see ["GETSOCKOPT” on page 105)
— INITAPI (see|“INITAPI” on page 117)
— RECVMSG (see ['RECVMSG” on page 140)
— SETSOCKOPT (see [“SETSOCKOPT” on page 163)

» Sample client program for non-IMS server (see [“Sample client program for]
[non-IMS server” on page 271)

* Sample server program for IMS MPP client (see [‘Sample server program for IMY
[MPP client” on page 281)

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R5, you might notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and
format. The changes are ongoing improvements to the consistency and
retrievability of information in our documents.

Summary of changes
for SC31-8830-00
z/OS Version 1 Release 2

This document contains information previously presented in OS/390 V2R5 eNetwork
Communications Server: IP IMS Sockets Guide, SC31-8519.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Part 1. IMS overview

© Copyright IBM Corp. 1994, 2005

2 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Chapter 1. Using TCP/IP with IMS

This chapter includes a discussion of the kind of applications for which IMS
TCP/IP is intended and an overview of its components.

The role of IMS TCP/IP

The IMS/ESA database and transaction management facility is used throughout
the world. For many enterprises, IMS is the data processing backbone, supporting
large personnel and financial databases, manufacturing control files, and inventory
management facilities. IMS backup and recovery features protect valuable data
assets, and the IMS Transaction Manager provides high-speed access for thousands
of concurrent users.

Traditionally, many IMS users have used 3270-type protocol to communicate with
the IMS Transaction Manager. In that environment, all of the processing, including
display screen formatting, is done by the IMS mainframe. During the decade of the
1980s, users began to move some of the processing outboard into personal
computers. However, these PCs were typically connected to IMS via SNA 3270
protocol.

During that period, although most IMS users were focused on 3270 PC emulation,
many non-IMS users were busy building a network based on a different protocol,
called TCP/IP. As this trend developed, the need for an access path between
TCP/IP-communicating devices and the still-indispensable processing power of
IMS became clear. IMS TCP/IP provides that access path. Its role can be more
easily understood when one distinguishes between traditional 3270 applications (in
which the IMS processor does all the work), and the more complex client/server
applications (in which the application logic is divided between the IMS processor
and another programmable device such as a TCP/IP host).

MVS TCP/IP supports both application types:

* When a TCP/IP host needs access to a traditional 3270 Message Format Service
(MEFS) application, it does not need to use the IMS TCP/IP feature; it can
connect to IMS directly through Telnet which provides 3270 emulation services
for TCP/IP-connected clients. Telnet is a part of the base TCP/IP Services
product. (Refer to the g/OS Communications Server: IP User’s Guide and Commands|
for more information).

* When a TCP/IP host needs to support a client/server application, it should use
the IMS TCP/IP feature of TCP/IP Services. This feature is specifically designed
to support two-way client/server communication between an IMS message
processing program (MPP) and a TCP/IP host.

As used in this document, the term client refers to a program that requests services
of another program. That other program is known as the server. The client is often
a UNIX-based program; however, DOS, OS/2, CMS, and MVS-based programs can
also act as clients. Similarly, as used in this document, the term server refers to a
program that is often an IMS MPP; however, the server can be a TCP/IP host,
responding to an IMS MPP client.

© Copyright IBM Corp. 1994, 2005 3

Introduction to IMS TCP/IP

For peer-to-peer applications that use SNA communication facilities, remote
programmable devices communicate with IMS through the advanced
program-to-program communication (APPC) API. For peer-to-peer applications
that use TCP/IP communication facilities, remote programmable devices
communicate with IMS through facilities provided by IMS TCP/IP.

The IMS TCP/IP feature provides the services necessary to establish and maintain
connection between a TCP/IP-connected host and an IMS MPP. In addition, it
allows client/server applications to be developed using the TCP/IP socket
application programming interface.

In operation, when a TCP/IP client requires program-to-program communication
with an IMS server message processing program (MPP), the client sends its request
to TCP/IP Services. TCP/IP passes the request to the IMS Listener, which
schedules the requested MPP and transfers control of the connection to it. Once
control of the connection is passed, data transfer between the server and the
remote client is performed using socket calls.

IMS TCP/IP feature components

The IMS TCP/IP feature consists of the following components:

* The IMS Listener, which provides connectivity

* The IMS Assist module, which simplifies TCP/IP communications programming
* The Sockets Extended application programming interface (API) !

The IMS Listener

The purpose of the Listener is to provide clients with a single point of contact to
IMS. The IMS Listener is a batch program (BMP) that waits for connection requests
from remote TCP/IP-connected hosts. When a request arrives, the Listener
schedules the appropriate transaction (the server) and passes a TCP/IP socket
(representing the connection) to that server.

The IMS Listener maintains connection requests until the requested MPP takes
control of the socket. The Listener is capable of maintaining a variable number of
concurrent connection requests.

The IMS Assist module

The Assist module is a subroutine that is a part of the server program. Its use is
optional. Its purpose is to allow the use of conventional IMS calls for TCP/IP
communication between client and server. In use, the Assist module intercepts the
IMS calls and issues the corresponding socket commands; consequently, IMS MPP
programmers who use the IMS Assist module require no TCP/IP skills.

Programs that do use the Assist module are known as implicit-mode programs
because the socket calls are issued implicitly by the Assist module.

Programs that do not use the Assist module issue socket calls directly. Such
programs are known as explicit-mode programs because of their explicit use of the
calls.

1. Shipped with the TCP/IP V3R2 for MVS base product

4

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

The MVS TCP/IP socket application programming interface
(Sockets Extended)

The socket call interface provides a set of programming calls that can be used in an
IMS message processing program to conduct a conversation with a peer program
in another TCP/IP processor. The interface is derived from BSD 4.3 socket, a
commonly used communications programming interface in the TCP/IP
environment. Socket calls include connection, initiation, and termination functions,
as well as basic read/write communication. The MVS TCP/IP socket call interface
makes it possible to issue socket calls from programs written in COBOL, PL/I, and
assembler language.

The IMS socket calls are a subset of the TCP/IP socket calls. They are designed to

be used in programs written in other than C language; hence the term Sockets
Extended.

Chapter 1. Using TCP/IP with IMS 5

6 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Chapter 2. Introduction to TCP/IP for IMS

This chapter presents an overview of TCP/IP as it is used with MVS.

What IMS TCP/IP does

The IMS TCP/IP feature allows remote users to access IMS client/server
applications over TCP/IP internets. It is a feature of TCP/IP Services.
shows how IMS TCP/IP gives a variety of remote users peer-to-peer
communication with IMS applications.

It is important to understand that IMS TCP/IP is primarily intended to support
peer-to-peer applications, as opposed to the traditional IMS mainframe interactive
applications in which the IMS system contained all programmable logic, and the
remote terminal was often referred to as a “dumb” terminal. To connect a TCP/IP
host to one of those traditional applications, you should first consider the use of
Telnet, a function of TCP/IP Services which provides 3270 emulation. With Telnet,
you can access existing 3270-style Message Format Services applications without
modification. You should consider IMS TCP/IP only when developing new
peer-to-peer applications in which both ends of the connection are programmable.

System/390
UNIX
IMS region
IMS
s OTMA TCP/P — os/2
onnection
Server \ for
IMS ‘ »| LAN
BMP / MVS
IMS
Listener > other
networks
VAX

Figure 1. The use of TCP/IP with IMS

IMS TCP/IP provides a variant of the BSD 4.3 Socket interface, which is widely
used in TCP/IP networks and is based on the UNIX system and other operating
systems. The socket interface consists of a set of calls that IMS application
programs can use to set up connections, send and receive data, and perform
general communication control functions. The programs can be written in COBOL,
PL/1, assembler language, or C.

© Copyright IBM Corp. 1994, 2005 7

Using IMS with SNA or TCP/IP

IMS is an online transaction processing system. This means that application
programs using IMS can handle large numbers of data transactions from large
networks of computers and terminals.

Communication throughout these networks has often been based on the Systems
Network Architecture (SNA) family of protocols. IMS TCP/IP offers IMS users an
alternative to SNA — the TCP/IP family of protocols for those users whose native
communications protocol is TCP/IP.

TCP/IP internets

8

This section describes some of the basic ideas behind the TCP/IP family of
protocols.

Like SNA, TCP/IP is a set of communication protocols used between physically
separated computer systems. Unlike SNA and most other protocols, TCP/IP is not
designed for a particular hardware technology. TCP/IP can be implemented on a
wide variety of physical networks, and is specially designed for communicating
between systems on different physical networks (local and wide area). This is
called internetworking.

Mainframe interactive processing

TCP/IP Services supports traditional 3270 mainframe interactive (MFI) applications
with an emulator function called Telnet (TN3270). For these applications, all
program logic runs in the mainframe, and the remote host uses only that amount
of logic necessary to provide basic communications services. Thus, if your
requirement is simply to provide access from a remote TCP/IP host to existing IMS
MEFI applications, you should consider Telnet rather than IMS TCP/IP as the
communications vehicle. Telnet 3270-emulation functions allow your TCP/IP host
to communicate with traditional applications without modification.

Client/server processing

TCP/1IP also supports client/server processing, where processes are either:
* Servers that provide a particular service and respond to requests for that service
* Clients that initiate the requests to the servers

With IMS TCP/IP, remote client systems can initiate communications with IMS and
cause an IMS transaction to start. It is anticipated that this will be the most
common mode of operation. (Alternatively, the remote system can act as a server
with IMS initiating the conversation.)

TCP, UDP, and IP

TCP/IP is a family of protocols that is named after its two most important
members. [Figure 2 on page 9|shows the TCP/IP protocols used by IMS TCP/IP, in
terms of the layered Open Systems Interconnection (OSI) model, which is widely
used to describe data communication systems. For IMS users who might be more
accustomed to SNA, the left side of shows the SNA layers, which
correspond very closely to the OSI layers.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

SNA Osl TCP/IP Family

Application 7 Application
Presentation 6 Presentation Application

Data Flow 5 Session

<4— Sockets API

Transmission 4 Transport TCP or UDP

Path Control 3 Network IP

Data Link 2 Data Link Data Link

Physical 1 Physical Physical

Figure 2. TCP/IP protocols when compared to the OSI Model and SNA

The protocols implemented by TCP/IP Services and used by IMS TCP/ID, are

highlighted in

Transmission Control Protocol (TCP)
In terms of the OSI model, TCP is a transport-layer protocol. It provides a
reliable virtual-circuit connection between applications; that is, a connection is
established before data transmission begins. Data is sent without errors or
duplication and is received in the same order as it is sent. No boundaries are
imposed on the data; TCP treats the data as a stream of bytes.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It provides
an unreliable datagram connection between applications (that is, data is
transmitted link by link; there is no end-to-end connection). The service
provides no guarantees: data can be lost or duplicated, and datagrams can
arrive out of order.

Internet Protocol (IP)
In terms of the OSI model, IP is a network-layer protocol. It provides a
datagram service between applications, supporting both TCP and UDP.

The socket API

The socket API is a collection of socket calls that enable you to perform the
following primary communication functions between application programs:
* Set up and establish connections to other users on the network

* Send and receive data to and from other users

* Close down connections

In addition to these basic functions, the API enables you to:
* Interrogate the network system to get names and status of relevant resources
¢ Perform system and control functions as required

IMS TCP/IP provides two TCP/IP socket application program interfaces (APIs),
similar to those used on UNIX systems. One interfaces to C language programs,
the other to COBOL, PL/I, and System/370* assembler language programs.

* C language. Historically, TCP/IP has been associated with the C language and
the UNIX operating system. Textbook descriptions of socket calls are usually
given in C, and most socket programmers are familiar with the C interface to
TCP/IP. For these reasons, TCP/IP Services includes a C language APIL If you
are writing new TCP/IP applications and are familiar with C language
programming, you might prefer to use this interface. Refer to the z/OS

Chapter 2. Introduction to TCP/IP for IMS 9

Communications Server: IP Sockets Application Programming Interface Guide and
for the C language socket calls supported by MVS TCP/IP.

* Sockets Extended API (COBOL, PL/I, Assembler Language). The Sockets
Extended API (Sockets Extended) is for those who want to write in COBOL,
PL/1, or assembler language, or who have COBOL, PL/I, or assembler language
programs that need to be modified to run with TCP/IP. The Sockets Extended
API enables you to do this by using CALL statements. If you are writing new
TCP/IP applications in COBOL, PL/I, or assembler language, you might prefer
to use the Sockets Extended APIL. With this interface, C language is not required.
See [Chapter 7, “Using the CALL instruction application programming interface
[(APT),” on page 61 for details of this interface.

Programming with sockets

The original UNIX socket interface was designed to hide the physical details of the
network. It included the concept of a socket, which would represent the connection
to the programmer, yet shield the program (as much as possible) from the details
of communication programming. A socket is an end-point for communication that
can be named and addressed in a network. From an application program
perspective, a socket is a resource that is allocated by the TCP/IP address space. A
socket is represented to the program by an integer called a socket descriptor.

Socket types

The MVS socket APIs provide a standard interface to the transport and
internetwork layer interfaces of TCP/IP. They support three socket types: stream,
datagram, and raw. Stream and datagram sockets interface to the transport layer
protocols, and raw sockets interface to the network layer protocols. All three socket
types are discussed here for background purposes.

Stream sockets transmit data between TCP/IP hosts that are already connected to
one another. Data is transmitted in a continuous stream; in other words, there are
no record length or newline character boundaries between data. Communicating
processes 2 must agree on a scheme to ensure that both client and server have
received all data. One way of doing this is for the sending process to send the
length of the data, followed by the data itself. The receiving process reads the
length and then loops, accepting data until all of it has been transferred.

In TCP/IP terminology, the stream socket interface defines a reliable
connection-oriented service. In this context, the word reliable means that data is
sent without error or duplication and is received in the same order as it is sent.
Flow control is built in to avoid data overruns.

The datagram socket interface defines a connectionless service. Datagrams are sent
as independent packets. The service provides no guarantees; data can be lost or
duplicated, and datagrams can arrive out of order. The size of a datagram is
limited to the size that can be sent in a single transaction (currently the default is
8192 and the maximum is 65507). No disassembly and reassembly of packets is
performed by TCP/IP.

The raw socket interface allows direct access to lower layer protocols, such as IP
and Internet Control Message Protocol (ICMP). This interface is often used for
testing new protocol implementations.

2. In TCP/IP terminology, a process is essentially the same as an application program.

10 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Addressing TCP/IP hosts

The following section describes how one TCP/IP host addresses another TCP/IP
host. ?

Address families
An address family defines a specific addressing format. Applications that use the

same addressing family have a common scheme for addressing socket end-points.
TCP/IP for IMS supports the AF_INET address family.

Socket addresses

A socket address in the AF_INET family comprises 4 fields: the name of the
address family itself (AF_INET), a port, an internet address, and an eight-byte
reserved field. In COBOL, a socket address looks like this:

01 NAME
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP_ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

You will find this structure in every call that addresses another TCP/IP host.

In this structure, FAMILY is a half-word that defines which addressing family is
being used. In IMS, FAMILY is always set to a value of 2, which specifies the
AF_INET internet address family. * The PORT field identifies the application port
number; it must be specified in network byte order. The IP_ADDRESS field is the
internet address of the network interface used by the application. It also must be
specified in network byte order. The RESERVED field should be set to all zeros.

Internet (IP) addresses

An internet addresses (otherwise known as an IP address) is a 32-bit field that
represents a network interface. An IP address is commonly represented in dotted
decimal notation such as 129.5.25.1. Every internet address within an administered
AF_INET domain must be unique. A common misunderstanding is that a host
must have only one internet address. In fact, a single host may have several
internet addresses — one for each network interface.

Ports

A port is a 16-bit integer that defines a specific application, within an IP address,
in which several applications use the same network interface. The port number is a
qualifier that TCP/IP uses to route incoming data to a specific application within
an IP address. Some port numbers are reserved for particular applications and are
called well-known ports, such as Port 23, which is the well-known port for Telnet.

As an example, an MVS system with an IP address of 129.9.12.7 might have IMS as
port 2000, and Telnet as port 23. In this example, a client desiring connection to
IMS would issue a CONNECT call, requesting port 2000 at IP address 129.9.12.7.

Sockets and ports:

Note: It is important to understand the difference between a socket and a port.
TCP/IP defines a port to represent a certain process on a certain machine

3.In TCP/IP terminology, a host is simply a computer that is running TCP/IP. There is no connotation of "mainframe” or large
processor within the TCP/IP definition of the word host.

4. Note that sockets support many address families, but TCP/IP for IMS only supports the internet address family.

Chapter 2. Introduction to TCP/IP for IMS 11

(network interface). A port represents the location of one process in a host
that can have many processes. A bound socket represents a specific port and
the IP address of its host.

Domain names

Because dotted decimal IP addresses are difficult to remember, TCP/IP also allows
you to represent host interfaces on the network as alphabetic names, such as
Alana.E04.IBM.COM, or CrFre@ AOL.COM. Every Domain Name has an equivalent
IP address or set of addresses. TCP/IP includes service functions
(GETHOSTBYNAME and GETHOSTBYADDR) that will help you convert from one
notation to another.

Network byte order

In the open environment of TCP/IP, internet addresses must be defined in terms of
the architecture of the machines. Some machine architectures, such as IBM
mainframes, define the lowest memory address to be the high-order bit, which is
called big endian. However, other architectures, such as IBM PCs, define the lowest
memory address to be the low-order bit, which is called little endian.

Network addresses in a given network must all follow a consistent addressing
convention. This convention, known as network byte order, defines the bit-order of
network addresses as they pass through the network. The TCP/IP standard
network byte order is big-endian. In order to participate in a TCP/IP network,
little-endian systems usually bear the burden of conversion to network byte order.

Note: The socket interface does not handle application data bit-order differences.
Application writers must handle these bit order differences themselves.

A typical client/server program flow chart

12

Stream-oriented socket programs generally follow a prescribed sequence. See
[Figure 3 on page 13| for a diagram of the logic flow for a typical client and server.
As you study this diagram, keep in mind the fact that a concurrent server typically
starts before the client does, and waits for the client to request connection at step
El . 1t then continues to wait for additional client requests after the client
connection is closed.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

CLIENT

Create a stream socket s with the socket()
call.

(Optional)
Bind socket s to a local address with the
bind()

Connect socket s to a foreign host with the

connect()

SERVER

Create a stream socket s with the socket()
call.

Bind socket s to a local address with the

bind()
|

With the listen() call, alert the TCP/IP
machine of your willingness to accept
connections.

Accept the connection and receive a
second socket, for example ns, with the
accept()

For the server, socket s remains available
to accept new connections. Socket ns is
dedicated to the client.

Read and write data on socket s, using the

send() and recv() calls, until all data has
been exchanged.

A 4

Close socket s and end the TCP/IP session

with the close() call.

Read and write data on socket ns, using
the send() and recv() calls, until all
data has been exchanged.

Close socket ns with the close() call.

Accept another connection from a client,
or close the original socket s with the
close()

Figure 3. A typical client/server session

Concurrent and iterative servers

An iterative server handles both the connection request and the transaction involved
in the call itself. Iterative servers are fairly simple and are suitable for transactions

that do not last long.

However, if the transaction takes more time, queues can build up quickly. In

[Figure 4 on page 14} once Client A starts a transaction with the server, Client B

cannot make a call until A has finished.

Chapter 2. Introduction to TCP/IP for IMS 13

TCP/IP

Client B

Y

Iterative
Server

Client A P

Figure 4. An iterative server

So, for lengthy transactions, a different sort of server is needed — the concurrent
server, as shown in Figure@ Here, Client A has already established a connection
with the server, which has then created a child server process to handle the
transaction. This allows the server to process Client B’s request without waiting for
A’s transaction to complete. More than one child server can be started in this way.

TCP/IP provides a concurrent server program called the IMS Listener. It is
described in [Chapter 6, “How to customize and operate the IMS Listener,” on pagel

TCP/IP
. | Concurrent
Client B > Server
4
child
Client A » server
process

Figure 5. A concurrent server

[Figure 3 on page 13|illustrates a concurrent server at work.

The basic socket calls

The following is an overview of the basic socket calls.

The following calls are used by the server:

SOCKET
Obtains a socket to read from or write to.

BIND Associates a socket with a port number.

LISTEN
Tells TCP/IP that this process is listening for connections on this socket.

SELECT
Waits for activity on a socket.

ACCEPT
Accepts a connection from a client.

The following calls are used by a concurrent server to pass the socket from the
parent server task (Listener) to the child server task (user-written application).

14 2/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

GIVESOCKET
Gives a socket to a child server task.

TAKESOCKET
Accepts a socket from a parent server task.

GETCLIENTID
Optionally used by the parent server task to determine its own address
space name (if unknown) prior to issuing the GIVESOCKET.

The following calls are used by the client:

SOCKET
Allocates a socket to read from or write to.

CONNECT
Allows a client to open a connection to a server’s port.

The following calls are used by both the client and the server:
WRITE
Sends data to the process on the other host.
READ Receives data from the other host.
CLOSE
Terminates a connection, deallocating the socket.

For full discussion and examples of these calls, see [Chapter 7, “Using the CALL]
finstruction application programming interface (API),” on page 61/

Server TCP/IP calls

To understand Socket programming, the client program and the server program
must be considered separately. In this section the call sequence for the server is
described; the next section discusses the typical call sequence for a client. This is
the logical presentation sequence because the server is usually already in execution
before the client is started. The step numbers (such as [) in this section refer to
the steps in [Figure 3 on page 13

Socket

Bind

The server must first obtain a socket J§. This socket provides an end-point to
which clients can connect.

A socket is actually an index into a table of connections in the TCP/IP address
space, so TCP/IP usually assigns socket numbers in ascending order. In COBOL,
the programmer uses the SOCKET call to obtain a new socket.

The socket function specifies the address family (AF_INET), the type of socket
(STREAM), and the particular networking protocol (PROTO) to use. (When PROTO
is set to zero, the TCP/IP address space automatically uses the appropriate
protocol for the specified socket type). Upon return, the newly allocated socket’s
descriptor is returned in RETCODE.

For an example of the SOCKET call, see ['SOCKET” on page 174

At this point A, an entry in the table of communications has been reserved for
the application. However, the socket has no port or IP address associated with it
until the BIND call is issued. The BIND function requires three parameters:

Chapter 2. Introduction to TCP/IP for IMS 15

* The socket descriptor that was just returned by the SOCKET call.

* The number of the port on which the server wishes to provide its service

e The IP address of the network connection on which the server is listening. If the
application wants to receive connection requests from any network interface, the
IP address should be set to zeros.

For an example of the BIND call, see |”BIND” on page 68.|

Listen

After the bind, the server has established a specific IP address and port upon
which other TCP/IP hosts can request connection. Now it must notify the TCP/IP
address space that it intends to listen for connections on this socket. The server
does this with the LISTEN [} call, which puts the socket into passive open mode.
Passive open mode describes a socket that can accept connection requests, but cannot
be used for communication. A passive open socket is used by a listener program
like the IMS Listener to await connection requests. Sockets that are directly used
for communication between client and server are known as active open sockets. In
passive open mode, the socket is open for client contacts; it also establishes a
backlog queue of pending connections.

This LISTEN call tells the TCP/IP address space that the server is ready to begin
accepting connections. Normally, only the number of requests specified by the
BACKLOG parameter will be queued.

For an example of the LISTEN call, see [“LISTEN” on page 126.|

Accept

At this time ﬂ , the server has obtained a socket, bound the socket to an IP
address and port, and issued a LISTEN to open the socket. The server main task is
now ready for a client to request connection [J. The ACCEPT call temporarily
blocks further progress. °

The default mode for Accept is blocking. Accept behavior changes when the socket
is non-blocking. The FCNTL() or IOCTL() calls can be used to disable blocking for
a given socket. When this is done, calls that would normally block continue
regardless of whether the I/O call has completed. If a socket is set to non-blocking
and an I/O call issued to that socket would otherwise block (because the 1/0 call
has not completed) the call returns with ERRNO 35 (EWOULDBLOCK).

When the ACCEPT call is issued, the server passes its socket descriptor, S, to
TCP/IP. When the connection is established, the ACCEPT call returns a new socket
descriptor (in RETCODE) that represents the connection with the client. This is the
socket upon which the server subtask communicates with the client. Meanwhile,
the original socket (S) is still allocated, bound and ready for use by the main task
to accept subsequent connection requests from other clients.

To accept another connection, the server calls ACCEPT again. By repeatedly calling
ACCEPT, a concurrent server can establish simultaneous sessions with multiple
clients.

For an example of the ACCEPT call, see ["ACCEPT” on page 65/

5. Blocking is a UNIX concept in which the requesting process is suspended until the request is satisfied. It is roughly analogous to
the MVS wait. A socket is blocked while an I/O call waits for an event to complete. If a socket is set to block, the calling program
is suspended until the expected event completes.

16 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

GIVESOCKET and TAKESOCKET

The GIVESOCKET and TAKESOCKET functions are not supported with the IMS
TCP/IP OTMA Connection server. A server handling more than one client
simultaneously acts like a dispatcher at a messenger service. A messenger
dispatcher gets telephone calls from people who want items delivered and the
dispatcher sends out messengers to do the work. In a similar manner, the server
receives client requests, and then spawns tasks to handle each client.

In UNIX-based servers, the fork() system call is used to dispatch a new subtask
after the initial connection has been established. When the fork() command is used,
the new process automatically inherits the socket that is connected to the client.

Because of architectural differences, CICS sockets does not implement the fork()
system call. Tasks use the GIVESOCKET and TAKESOCKET functions to pass
sockets from parent to child. The task passing the socket uses GIVESOCKET, and
the task receiving the socket uses TAKESOCKET. See [“GIVESOCKET and|
[TAKESOCKET calls” on page 21| for more information about these calls.

Read and write

Once a client has been connected with the server, and the socket has been
transferred from the main task (parent) to the subtask (child), the client and server
exchange application data, using various forms of READ/WRITE calls. See

[“Read /Write calls — the conversation” on page 18| for details about these calls.

Client TCP/IP calls

The TCP/IP call sequence for a client is simpler than the one for a concurrent
server. A client only has to support one connection and one conversation. A
concurrent server obtains a socket upon which it can listen for connection requests,
and then creates a new socket for each new connection.

The socket call

In the same manner as the server, the first call issued by the client is the
SOCKET call. This call causes allocation of the socket on which the client will
communicate.

CALL 'EZASOKET' USING SOCKET-FUNCTION SOCTYPE PROTO ERRNO RETCODE.

See ['SOCKET” on page 174 for a sample of the SOCKET call.

The connect call

Once the SOCKET call has allocated a socket to the client, the client can then
request connection on that socket with the server through use of the CONNECT

call .

The CONNECT call attempts to connect socket descriptor (S) to the server with an
IP address of NAME. The CONNECT call blocks until the connection is accepted
by the server. On successful return, the socket descriptor (S) can be used for
communication with the server.

This is essentially the same sequence as that of the server; however, the client need
not issue a BIND command because the port of a client has little significance. The
client need only issue the CONNECT call, which issues an implicit BIND. When
the CONNECT call is used to bind the socket to a port, the port number is
assigned by the system and discarded when the connection is closed. Such a port

Chapter 2. Introduction to TCP/IP for IMS 17

is known as an ephemeral port because its life is very short as compared with that
of a concurrent server, whose port remains available for a prolonged time.

See ["'CONNECT” on page 72| for an example of the CONNECT call.

Read/Write calls — the conversation

A variety of I/0 calls is available to the programmer. The READ and WRITE,
READV and WRITEV, and SEND [and RECV [calls can be used only on
sockets that are in the connected state. The SENDTO and RECVFROM, and
SENDMSG and RECVMSG calls can be used regardless of whether a connection
exists.

The WRITEV, READV, SENDMSG, and RECVMSG calls provide the additional
features of scatter and gather data. Scattered data can be located in multiple data
buffers. The WRITEV and SENDMSG calls gather the scattered data and send it.
The READV and RECVMSG calls receive data and scatter it into multiple buffers.

The WRITE and READ calls specify the socket S on which to communicate, the
address in storage of the buffer that contains, or will contain, the data (BUF), and
the amount of data transferred (NBYTE). The server uses the socket that is
returned from the ACCEPT call.

These functions return the amount of data that was either sent or received. Because
stream sockets send and receive information in streams of data, it can take more
than one call to WRITE or READ to transfer all of the data. It is up to the client
and server to agree on some mechanism of signalling that all of the data has been
transferred.

* For an example of the READ call, see[“READ” on page 131/
+ For an example of the WRITE call, see[“WRITE” on page 178

The close call

When the conversation is over, both the client and server call CLOSE to end the
connection. The CLOSE call also deallocates the socket, freeing its space in the
table of connections. For an example of the CLOSE call, see [“CLOSE” on page 70|

Other socket calls

18

Several other calls that are often used — particularly in servers — are the SELECT
call, the GIVESOCKET /TAKESOCKET calls, and the IOCTL and FCTL calls. These
calls are discussed next.

The SELECT call

Applications such as concurrent servers often handle multiple sockets at once. In
such situations, the SELECT call can be used to simplify the determination of
which sockets have data to be read, which are ready for data to be written, and
which have pending exceptional conditions. An example of how the SELECT call is
used can be found in [Figure 6 on page 19}

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.
01 MAXSOC PIC 9(8) BINARY VALUE 50.
01 TIMEOUT.
03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MILLISEC PIC 9(8) BINARY.

01 RSNDMASK PIC X(50).
01 WSNDMASK PIC X(50).
01 ESNDMASK PIC X(50).
01 RRETMASK PIC X(50).
01 WRETMASK PIC X(50).
01 ERETMASK PIC X(50).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.
PROCEDURE

CALL "EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
RSNDMASK WSNDMASK ESNDMASK
RRETMASK WRETMASK ERETMASK
ERRNO RETCODE.

Figure 6. The SELECT call

In this example, the application sends bit sets (the xXSNDMASK sets) to indicate
which sockets are to be tested for certain conditions, and receives another set of bits
(the xXRETMASK sets) from TCP/IP to indicate which sockets meet the specified
conditions.

The example also indicates a time-out. If the time-out parameter is NULL, this is
the C language API equivalent of a wait forever. (In Sockets Extended, a negative
timeout value is a wait forever.) If the time-out parameter is nonzero, SELECT only
waits the timeout amount of time for at least one socket to become ready on the
indicated conditions. This is useful for applications servicing multiple connections
that cannot afford to wait for data on a single connection. If the XSNDMASK bits
are all zero, SELECT acts as a timer.

With the Socket SELECT call, you can define which sockets you want to test (the
xSNDMASKSs) and then wait (block) until one of the specified sockets is ready to
be processed. When the SELECT call returns, the program knows only that some
event has occurred, and it must test a set of bit masks (XRETMASKSs) to determine
which of the sockets had the event, and what the event was.

To maximize performance, a server should only test those sockets that are active.
The SELECT call allows an application to select which sockets will be tested, and
for what. When the Select call is issued, it blocks until the specified sockets are
ready to be serviced (or, optionally) until a timer expires. When the select call
returns, the program must check to see which sockets require service, and then
process them.

To allow you to test any number of sockets with just one call to SELECT, place the
sockets to test into a bit set, passing the bit set to the select call. A bit set is a string
of bits where each possible member of the set is represented by a 0 or a 1. If the
member’s bit is 0, the member is not to be tested. If the member’s bit is 1, the
member is to be tested. Socket descriptors are actually small integers. If socket 3 is
a member of a bit set, then bit 3 is set; otherwise, bit 3 is zero.

Therefore, the server specifies 3 bit sets of sockets in its call to the SELECT
function: one bit set for sockets on which to receive data; another for sockets on
which to write data; and any sockets with exception conditions. The SELECT call

Chapter 2. Introduction to TCP/IP for IMS 19

tests each selected socket for activity and returns only those sockets that have
completed. On return, if a socket’s bit is raised, the socket is ready for reading data
or for writing data, or an exceptional condition has occurred.

The format of the bit strings is a bit awkward for an assembler programmer who is
accustomed to bit strings that are counted from left to right. Instead, these bit
strings are counted from right to left.

The first rule is that the length of a bit string is always expressed as a number of
fullwords. If the highest socket descriptor you want to test is socket descriptor
number three, you have to pass a 4-byte bit string, because this is the minimum
length. If the highest number is 32, you must pass 8 bytes (2 fullwords).

The number of fullwords in each select mask can be calculated as
INT(highest socket descriptor / 32) + 1

Look at the first fullword you pass in a bit string in

Table 1. First fullword passed in a bit string in select

Socket

descriptor

numbers

represented by

byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Byte 0 31 30 29 28 27 26 25 24
Byte 1 23 22 21 20 19 18 17 16
Byte 2 15 14 13 12 11 10 9 8
Byte 3 7 6 5 4 3 2 1 0

In these examples, we use standard assembler numbering notation; the left-most
bit or byte is relative zero.

If you want to test socket descriptor number 5 for pending read activity, you raise
bit 2 in byte 3 of the first fullword (X'00000020"). If you want to test both socket
descriptor 4 and 5, you raise both bit 2 and bit 3 in byte 3 of the first fullword
(X'00000030").

If you want to test socket descriptor number 32, you must pass two fullwords,
where the numbering scheme for the second fullword resembles that of the first.
Socket descriptor number 32 is bit 7 in byte 3 of the second fullword. If you want
to test socket descriptors 5 and 32, you pass two fullwords with the following
content: X'0000002000000001".

The bits in the second fullword represents the socket descriptor numbers shown in

Table 2. Second fullword passed in a bit string in select

Socket

descriptor

numbers

represented by

byte Bit 0 Bit1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 4 63 62 61 60 59 58 57 56

20 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Table 2. Second fullword passed in a bit string in select (continued)

Socket

descriptor

numbers

represented by

byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Byte 5 55 54 53 52 51 50 49 48
Byte 6 47 46 45 44 43 42 41 40
Byte 7 39 38 37 36 35 34 33 32

If you develop your program in COBOL or PL/I, you may find that the EZACIC06
routine, which is provided as part of TCP/IP for MVS, will make it easier for you
to build and test these bit strings. This routine translates between a character string
mask (one byte per socket) and a bit string mask (one bit per socket).

In addition to its function of reporting completion on Read/Write events, the
SELECT call can also be used to determine completion of events associated with
the LISTEN and GIVESOCKET calls.

* When a connection request is pending on the socket for which the main process
issued the LISTEN call, it will be reported as a pending read.

* When the parent process has issued a GIVESOCKET, and the child process has
taken the socket, the parent’s socket descriptor is selected with an exception
condition. The parent process is expected to close the socket descriptor when
this happens.

IOCTL and FCNTL calls

In addition to SELECT, applications can use the IOCTL or FCNTL calls to help
perform asynchronous (nonblocking) socket operations. An example of the use of
the IOCTL call is shown in [“IOCTL” on page 119,

The IOCTL call has many functions; establishing blocking mode is only one of its
functions. The value in COMMAND determines which function IOCTL will
perform. The REQARG of 0 specifies non-blocking (a REQARG of 1 would request
that socket S be set to blocking mode). When this socket is passed as a parameter
to a call that would block (such as RECV when data is not present), the call returns
with an error code in RETCODE, and ERRNO set to EWOULDBLOCK. Setting the mode
of the socket to nonblocking allows an application to continue processing without
becoming blocked.

GIVESOCKET and TAKESOCKET calls

The GIVESOCKET and TAKESOCKET functions are not supported with the IMS
TCP/IP OTMA Connection server. Tasks use the GIVESOCKET and TAKESOCKET
functions to pass sockets from parent to child.

For programs using TCP/IP for MVS, each task has its own unique 8-byte name.
The main server task passes three arguments to the GIVESOCKET call:

* The socket number it wants to give

+ Its own name °©

¢ The name of the task to which it wants to give the socket

6.1f a task does not know its address space name, it can use the GETCLIENTID function call to determine its unique name.

Chapter 2. Introduction to TCP/IP for IMS 21

If the server does not know the name of the subtask that will receive the socket, it
blanks out the name of the subtask. 7 The first subtask calling TAKESOCKET with
the server’s unique name receives the socket.

The subtask that receives the socket must know the main task’s unique name and
the number of the socket that it is to receive. This information must be passed
from main task to subtask in a work area that is common to both tasks.

e In IMS, the parent task name and the number of the socket descriptor are passed
from parent (Listener) to child (MPP) through the message queue.

* IN CICS, the parent task name and the socket descriptor number are passed
from the parent (Listener) to the transaction program by means of the EXEC
CICS START and EXEC CICS RETREIVE function.

Because each task has its own socket table, the socket descriptor obtained by the
main task is not the socket descriptor that the subtask will use. When
TAKESOCKET accepts the socket that has been given, the TAKESOCKET call
assigns a new socket number for the subtask to use. This new socket number
represents the same connection as the parent’s socket. (The transferred socket
might be referred to as socket number 54 by the parent task and as socket number
3 by the subtask; however, both socket descriptors represent the same connection.)

Once the socket has successfully been transferred, the TCP/IP address space posts
an exceptional condition on the parent’s socket. The parent uses the SELECT call to
test for this condition. When the parent task SELECT call returns with the
exception condition on that socket (indicating that the socket has been successfully
passed) the parent issues CLOSE to complete the transfer and deallocate the socket
from the main task.

To continue the sequence, when another client request comes in, the concurrent
server (Listener) gets another new socket, passes the new socket to the new
subtask, and dissociates itself from that connection. And so on.

Summary

To summarize, the process of passing the socket is accomplished in the following

way:

 After creating a subtask, the server main task issues the GIVESOCKET call to
pass the socket to the subtask. If the subtask’s address space name and subtask
ID are specified in the GIVESOCKET call, (as with CICS) only a subtask with a
matching address space and subtask ID can take the socket. If this field is set to
blanks, (as with IMS) any MVS address space requesting a socket can take this
socket.

¢ The server main task then passes the socket descriptor and concurrent server’s
ID to the subtask using some form of commonly addressable technique such as
the IMS Message Queue.

e The concurrent server issues the SELECT call to determine when the
GIVESOCKET has successfully completed.

e The subtask calls TAKESOCKET with the concurrent server’s ID and socket
descriptor and uses the resulting socket descriptor for communication with the
client.

* When the GIVESOCKET has successfully completed, the concurrent server issues
the CLOSE call to complete the handoff.

7. This is the case in IMS because the Listener has no way of knowing which Message Processing Region will inherit the socket.

22 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

An example of a concurrent server is the IMS Listener. It is described in [Chapter 6)
[‘How to customize and operate the IMS Listener,” on page 55 |[Figure 5 on page 14|
shows a concurrent server.

What you need to run IMS TCP/IP

IMS TCP/IP using the IMS Listener and IMS Assist Module is designed for use on
an MVS/SP host system running IMS/ESA Version 4 or later.

A TCP/IP host can communicate with any remote IMS or non-IMS system that
runs TCP/IP. The remote system can, for example, run a UNIX or OS/2 operating
system.

TCP/IP services

TCP/IP Services is not described in this document because it is a prerequisite for
IMS TCP/IP. However, much material from the TCP/IP library has been repeated
in this document in an attempt to make it independent of that library.

A summary of what IMS TCP/IP provides

[Figure 7 on page 24| shows how IMS TCP/IP allows IMS applications to access the
TCP/IP network. It shows that IMS TCP/IP makes the following facilities available
to your application programs:

The sockets calls (1 and 2 in [Figure 7 on page 24)

The socket API is available both in the C language and in COBOL, PL/I, or
assembler language. It includes the following socket calls:

Basic calls: socket, bind, connect, listen, accept,
shutdown, close

Read/write calls: send, sendto, recvfrom, read, write

Advanced calls: gethostname, gethostbyaddr, gethostbyname,

getpeername, getsockname, getsockopt,
setsockopt, fentl, ioctl, select
IBM-specific calls: initapi, getclientid, givesocket, takesocket

Chapter 2. Introduction to TCP/IP for IMS 23

TCP/IP for IMS Applications Operating
Environment
1. C language VS
socket calls
> User > TCPIP
»| Applications for TCP/IP
MVS network
3.IMS OTMA
2. COBOL,Ass. .
’ IMS
sockets calls Connection
Server
4. Listener
5. Conversion
routines

Figure 7. How user applications access TCP/IP networks with IMS TCP/IP

24

IMS TCP/IP provides for both connection-oriented and connectionless (datagram)
services, using the TCP and UDP protocols respectively. TCP/IP does not support
the IP (raw socket) protocol.

The Listener (3)

IMS TCP/IP includes a concurrent server application, called the Listener, to which
the client makes initial connection requests. The Listener passes the connection
request on to the user-written server, which is typically an IMS Message Processing
Program.

Conversion routines (4)

IMS TCP/IP provides the following conversion routines, which are part of the base

TCP/IP Services product:

e An EBCDIC-to-ASCII conversion routine, used to convert EBCDIC data to the
ASCII format used in TCP/IP networks and workstations. The conversion
routine is run by calling the EBCDIC-to-ASCII translation table EZACIC04,
documented in the |z/OS Communications Server: IP Configuration Referencel

* A corresponding ASCII-to-EBCDIC conversion routine (EZACICO05), documented
in the /OS Communications Server: IP Configuration Referenced,

* An alternative EBCDIC-to-ASCII conversion routine (EZACIC14), which uses the
translation table documented in ['EZACIC14” on page 197

* Corresponding ASCII-to-EBCDIC conversion routine (EZACIC15), which uses
the translation table documented in [“EZACIC15” on page 199

* A module that converts COBOL character arrays into bit-mask arrays used in
TCP/IP. This module, which is run by calling EZACICO6, is used with the socket
SELECT call.

* A module that interprets a C language structure known as Hostent (EZACICO08).

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Part 2. Using the IMS Listener

© Copyright IBM Corp. 1994, 2005

25

26 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Chapter 3. Principles of operation

This chapter describes the operation of the Listener and the Assist module. Its
purpose is to explain how a TCP/IP-to-IMS connection is established, and how the
client and server exchange application data. For specific data formats and the
socket protocols used when coding a TCP/IP client or server, see E hapter 4, ”How|
to write an IMS TCP/IP client program,” on page 39| and [Chapter 5, “How to write

an IMS TCP/IP server program,” on page 47.

Overview

The IMS TCP/IP feature consists of 3 components: the IMS Listener, the IMS Assist
module, and the Sockets Extended APL ® The Sockets Extended API can either be
used independently, or with the other 2 components. When the Sockets Extended
interface is used independently, an IMS MPP can either serve as a client or as a
server.

When the IMS Listener is used, the IMS MPP acts as a server, and the TCP/IP
remote acts as the client. The Assist module is dependent upon the IMS Listener;
therefore, when the Assist module is used, IMS is the server.

Because the Listener and the Assist module are designed to support IMS as a
server, the next several chapters are based on that assumption. For a discussion of
IMS as client, see [“When the client is an IMS MPP” on page 36/|later in this
ter, and the sample program on [‘Sample program - IMS MPP client” on page
270

The role of the IMS Listener

Since the IMS Transaction Manager does not support direct connection with
TCP/IP, some other program must establish that connection. When IMS is acting as
a server to a TCP/IP-connected client, that program is the IMS Listener — an IMS
batch message program (BMP) whose main function it is to establish connection
between the client and the requested IMS transaction.

When the client requests the services of an IMS message processing program
(MPP), it sends a message to the IMS host containing the transaction code of that
MPP. The IMS Listener receives that request and schedules the requested MPP; it
then holds the connection until the MPP starts and accepts the connection. Once
the MPP owns the connection, the Listener is no longer involved with it.

The role of the IMS Assist module

The IMS Assist module is a subroutine, called from an IMS MPP (server) that
translates conventional IMS communication calls into the corresponding socket
calls. Its use is optional. Its purpose is to shield the programmer from having to
understand TCP/IP programming. To exchange data with the client, the server
program issues traditional IMS message queue calls (GU, GN, ISRT). These calls
are intercepted by the Assist module, which issues the appropriate socket calls.

8. Shipped with the TCP/IP Services base product.

© Copyright IBM Corp. 1994, 2005 27

Use of the IMS Assist module — pros and cons

The Assist module makes message processing program (MPP) coding easier, but is
accompanied by a series of trade-offs. This section discusses the trade-offs between
implicit mode and explicit mode.

* Implicit-mode application programmers use conventional IMS Transaction
Manager (TM) calls and require no special training; explicit-mode application
programmers must understand TCP/IP socket calls and protocols.

* Implicit-mode transactions must adhere to constraints imposed by the IMS
Assist module. By contrast, explicit-mode transactions use the TCP/IP socket call
interface and have no specific protocol requirements other than the orderly
initiation and termination of the transaction.

* Implicit-mode transactions obtain their message input from the IMS message
queue. Since the Listener must put the input message segments on the queue
before the server begins execution, the client sends all application data with the
transaction request. Explicit-mode transactions bypass the message queue for all
application data — both input, and output.

* Implicit-mode transactions are limited to a single GU-GN/ISRT iteration (one
input of one or more segments, followed by one output of one or more
segments) for each message retrieved from the IMS message queue. By contrast,
explicit-mode transactions have no such limit. Unlimited read/write sequences
make it possible to design conversations in which the two programs talk back
and forth without limit. *

Client/server logic flow

The following section describes the flow of a client/server application through the
system — starting with the client and continuing on through the Listener to the
server. The complete transaction, including initiation, execution, and termination is
traced.

How the connection is established

The following paragraphs describe the functions the Listener performs in
coordinating between the client and the server. With the exception of paragraph 6,
the Listener performs the same steps for both explicit- and implicit-mode servers.
Paragraph numbers correspond to the step numbers in Figure 8.

9. Because of the potential for long running conversations, MPPs with multiple conversational iterations should be carefully
designed to avoid the possibility of extended message processing region occupancy.

28 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

IMS Listener Server

@ listen()
> @ accept()
> @ read TRM
@ verify transaction

(5) 1SRT TIM
> Irgaqu'() }client data

@ givesocket()
(8)sYNC

*implicit-mode only

¢ IMS Message
Queue

=

IMS Transaction Manager

MVS TCP/IP

@ Connection

Request

Client

Figure 8. IMS TCP/IP message flow for transaction initiation

1. Connection request

The IMS Listener is an IMS batch message processing program (BMP). When
the Listener starts, it establishes a socket on which it can “listen” for connection
requests. It binds itself to the specified port, and then listens for requests from
TCP/IP clients. When a client sends a connection request, MVS TCP/IP notifies
the Listener of the request.

2. Connection processing

When the Listener receives a connection request, it issues a socket ACCEPT
call, which creates a new socket specifically for that connection.

3. Transaction-Request Message

Chapter 3. Principles of operation 29

The client then sends a transaction-request message (TRM) segment, which
includes the 8-byte name of the requested IMS server transaction (otherwise
known as the TRANCODE).

4. Transaction verification

The Listener performs several tests to ensure that the requested transaction
should be accepted:

e The TRANCODE is tested against IMS Listener configuration file
TRANSACTION statements to ensure that the requested transaction is
eligible to be executed from a TCP/IP client.

e If security data is included in the transaction-request message (TRM), that
data is passed to a user-written security exit. The purpose of this exit is to

validate the credentials of the client prior to allowing the transaction to be
scheduled.

e The Listener issues an IMS CHNG call to a modifiable alternate PCB,
specifying the TRANCODE of the desired transaction. It then issues an IMS
INQY call to ensure that the transaction is not stopped (due to previous
abend or Master Terminal Operator action).

The following actions depend on the results of the verification:

e If the transaction request is rejected, the IMS Listener returns a request-status
message (RSM) segment to the client with an indication of the reason for
rejecting the request; it then closes the connection.

* If the transaction request is accepted the requested transaction is scheduled
(the Listener does not return a status message to the client).

5. Transaction Initiation Message (TIM)

The Listener then inserts (ISRT) a transaction initiation message (TIM) segment
to the IMS message queue. This message contains information needed by the
server program when it takes responsibility for the connection. (Note that the
client sends the transaction request message (TRM) to the Listener; the Listener
sends the transaction initiation message (TIM) to the server.)

6. Client-to-server input data transfer (implicit mode only)
If the transaction is in implicit mode, the Listener reads the client-to-server
input data and places it on the message queue.

7. Pass the socket to the server
Next, the Listener issues a GIVESOCKET call, which makes the socket available
to the server program.

8. Schedule the transaction
Finally, the Listener issues an IMS SYNC call to schedule the requested IMS

transaction and waits for the server program to take responsibility for the
connection.

When the server issues a TAKESOCKET call, the Listener has completed its
responsibility for the socket and dissociates itself from the connection.

Note: The Listener is a never-ending IMS Batch Message Program, which
processes multiple concurrent transactions.

How the server exchanges data with the client

Once the server begins execution, the protocol to pass input data to the server is a
function of whether the transaction mode is explicit or implicit.

30 2z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Explicit-mode transactions

The following section describes an explicit-mode server program which exchanges

application data with a client.

Step numbers in Figure 9 correspond to the paragraph numbers below.

IMS Listener Server

—» GU TIM
@ takesocket()
read()
write()
database calls @ <

read()
write()
(3 GuTIM
@ close()
IMS Message
Queue

=]

IMS Transaction Manager

MVS TCP/IP

Client

A

Figure 9. IMS TCP/IP message flow for explicit-mode input/output

1. Once an explicit-mode server begins execution, it issues an IMS GU call to
obtain the transaction initiation message (TIM) segment, an INITAPI to

establish connection with MVS TCP/IP, and a TAKESOCKET call to establish

direct connection between client and server.

Chapter 3. Principles of operation

31

2. Subsequently, socket READ and WRITE commands are used to exchange data
between client and server. The conversation can consist of any number of
database calls and socket READ/WRITE exchanges. '° Client data is not passed
through the IMS message queue and is not subject to any predefined protocols.

3. The transaction indicates completion by issuing another GU to the I/O PCB.
This notifies the Transaction Manager that the database changes should be
committed. At this point, the server program might send a message to the
client indicating that the database changes have been successfully completed.

If another message awaits this transaction, the GU will cause the first segment
of that message to be retrieved and the program should issue a new
TAKESOCKET call to start the process again.

4. When the GU call returns with a QC status code, the server ends the
conversation by closing the socket.

Implicit-mode transactions

The following section describes how the Assist module and the server program
interact to exchange application data with the client. The paragraph numbers
correspond to the step numbers in Figure 3.

10.

32

Because of the potential for long running conversations, MPPs with multiple conversational iterations should be carefully
designed to avoid the possibility of extended message processing region occupancy.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

IMS Server Assist Module
Listener
ADGguiorcB (2) GUTIM
takesocket()
@ GN appl data 1
GN 10PCB GN appl data 2
GN IOPCB GN appl data 3
ISRT*IOPCB
ISRT IOPCB @ accumulate output data
ISRT IOPCB
(5) GU IOPCB write() appl data 1
write() appl data 2
write() appl data 3
GUTIM
(7) write() CSMOKY
IMS
Message close
Queue |
* Database calls and
1/0 PCB calls can be
IMSTM intermixed
MVS TCP/IP
Client D

Figure 10. IMS TCP/IP message flow for implicit mode input/output

1. Server GU

GU must be the first IMS call issued by the server to the I/O PCB. The Assist
module retrieves the first segment from the message queue and examines it (for
LISTNR in the first field) to determine whether it is a transaction initiation
message. (If the message was not sent by the Listener, the Assist module
assumes the transaction was started by an SNA terminal and immediately
passes the input segment to the server. In this case, subsequent 1/0O PCB calls
(as well as database calls) are passed directly through to IMS without further
consideration.)

2. Transaction Initiation Message (TIM)

Chapter 3. Principles of operation 33

If the message was sent by the Listener, the initial message segment is the
transaction initiation message (TIM); the Assist module does not return it to the
server. Instead, the Assist module uses the TIM contents to issue the
TAKESOCKET to establish connection between the client and the server
program.

3. Server input data

Once the server owns the socket, the Assist module issues a GN to retrieve the
first segment of the client input message and returns it to the server program.
Thus, the server program never sees the TIM; it receives the first data segment
in response to its GU. Subsequent GN calls from the server cause the Assist
module to retrieve the remaining segments of the message. When the Assist
module reads the last input segment for that transaction from the message
queue, it receives a QD status code from IMS, which it returns to the server
program.

After the initial GU to the I/O PCB, server GN calls, ISRT calls, and database
calls can be intermixed.

4. Server output data

When the server program issues ISRT calls to send output message segments to
the client, the IMS Assist module accumulates the output segments, up to
maximum of 32KB, into a buffer.

5. Commit
The server signals completion by issuing a GU to the I/O PCB.
6. TCP/IP writes application data to the client.

When the server issues the GU, the Assist module issues WRITE calls to send
the data to the client and passes the GU to the IMS Transaction Manager to
commit the database changes.

7. Confirmation

If the GU is successful, (that is, QC status or spaces) the Assist module sends a
complete-status message segment (CSM) to the client to confirm the successful
commit and passes the status code back to the server.

8. Close the socket

Once the complete-status message has been sent to the client, the Assist module
closes the socket, ending the connection.

If the GU in the previous step resulted in a 'bb' status code (indicating
successful return of another message) the program logic returns to step 2 to
process the new message.

How the IMS Listener manages multiple connection requests
The IMS Listener uses 2 queues for the management of connection requests:

1. The backlog queue (managed by MVS TCP/IP) contains client connection
requests that have not yet been accepted by the Listener. If a client requests a
connection while the backlog queue is full, TCP/IP rejects the connection
request. The number of requests allowed in the backlog queue is specified in
the LISTENER startup configuration statement (BACKLOG parameter), see
[“LISTENER statement” on page 57.|

2. The active sockets queue contains the sockets that are held by the Listener while
they wait for assighment to a server program. Once the Listener has accepted
the connection, the connection belongs to the Listener until it is accepted by the
server. If the Listener uses all of its sockets and cannot accept any more
connections, subsequent requests go into the backlog queue. The maximum

34 2/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

number of sockets available is specified in the LISTENER startup configuration
statement, (MAXACTSKT parameter), see ["LISTENER statement” on page 57.|

Use of the IMS message queue

In conventional 3270 applications, the IMS message queue is a mechanism for
passing communications between an MPP and another entity, such as a 3270-type
terminal, or another message processing program (MPP). The IMS TCP/IP feature
uses the message queue for communication between the Listener and the MPP.
Messages from and to TCP/IP hosts bypass IMS message format services (MFS).
The following section describes how IMS TCP/IP uses the IMS message queue:

Input messages
(Messages that are input to the MPP)

* Explicit-mode transactions only use the message queue to pass the transaction
initiation message (TIM) from the Listener to the server. All application data sent
by the client is received by the server using sockets READ calls, thus bypassing
the IMS message queue.

 Implicit-mode transactions use the message queue both for the TIM (which is
trapped by the Assist module and not passed on to the server) and for all

client-to-server application data (which is passed to the server in response to
IMS GU, GN calls).

Output messages

All messages that are output from the server go directly via TCP/IP to the client;

they do not pass through the message queue.

* Explicit-mode servers use socket WRITE calls to send application data directly to
the client.

* Implicit-mode servers use the IMS ISRT call for output, but the inserted data is
trapped by the Assist module which, in turn, issues socket WRITE calls to send
the data to the client.

Call sequence for the IMS Listener

Although you will probably not be writing a Listener program, it is important that
you match the sequence of calls issued by the Listener when you write your client
program. The Listener call sequence is:

INITIALIZE LISTENER

INITAPI
Connect the Listener to MVS TCP/IP at Listener startup. (This call is only
used in programs written to the Sockets Extended interface.

SOCKET
Create a socket descriptor.

BIND Allocate the local port for the socket. This port is used by clients when
requesting connection to IMS.

LISTEN
Create a queue for incoming connections.

WAIT FOR CONNECTION REQUEST

SELECT
Wait for an incoming connection request.

Chapter 3. Principles of operation 35

ACCEPT
Accept the incoming connection request; create a new socket descriptor to
be used by the server for this specific connection.

READ Read TRM; determine the IMS TRANCODE.

CHNG
Change the modifiable alternate PCB to reflect the desired IMS
TRANCODE.

INQY Ensure the desired IMS TRANCODE is available for scheduling.

ISRT Use the alternate PCB to insert the transaction initiation message (TIM)
and pass control information and user input data to the server.

GIVESOCKET
Pass the newly created socket to the server.

SYNC Schedule the requested transaction.

SELECT
Wait for the server to take the socket.

CLOSE
Release the socket.

END OF CONNECTION REQUEST
Return to "WAIT FOR CONNECTION REQUEST”
SHUTDOWN LISTENER

CLOSE
Close the socket through which the Listener receives connection requests
from MVS TCP/IP.

TERMAPI
Disconnect the Listener from MVS TCP/IP before shutting down

Application design considerations

The following is a set of guidelines and limitations that should be considered when
designing IMS TCP/IP applications.

Programs that are not started by the IMS Listener

It is expected that, in most cases, IMS server applications will be started by the
IMS Listener. Such programs are known as dependent programs because the
Listener establishes the TCP/IP connection.

Under some circumstances, application design considerations require that an
application establish its own connection between TCP/IP and IMS. For example,
an IMS MPP might require the services of a TCP/IP-connected UNIX processor.

An IMS application of this type is known as an independent program because it is
not started by the Listener. Because independent programs don’t use Listener
services, they must define their own protocol.

When the client is an IMS MPP

In this manual, the underlying assumption is that the TCP/IP host acts as client
and the IMS MPP acts as server. However, this is not always the case.

36 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

For example, consider an IMS MPP that requires the services of a
TCP/IP-connected AIX* host. Such an MPP (acting as a client) initiates a TCP/IP
conversation by issuing the client TCP/IP call sequence. The TCP/IP host would
respond with the server TCP/IP call sequence. This application design is supported
because the MPP communicates directly with MVS TCP/IP. The IMS TCP/IP
feature does not impose any unique restrictions on the type and usage of socket
calls executed by such a program; however, because of the unique and
unstructured communication requirements of this application design, you must use
explicit mode for this type of program.

Abend processing

When a task that owns a socket fails, MVS TCP/IP closes the socket. Therefore,
when an IMS MPP abends, regardless of the reason, the socket is no longer
available and communication between server and client is no longer possible.

True abends

If an IMS TCP/IP server program abends (for example, because of an SOCx
condition), database changes in progress are backed out and the transaction task is
terminated. This breaks the TCP/IP connection. When the connection is broken, the
client receives a negative status code and an error number that indicates that the
connection has been broken. Upon receipt of this indication, the client should
assume that the transaction did not complete and that the database changes have
not been made. The client could reschedule the transaction, but the IMS TM will
have probably “stopped” it from further execution as a result of the abend.

The solution is to correct the reason for the abend and restart the transaction.

Pseudo abends

Under certain situations IMS applications cannot complete. Upon such a condition,
IMS abends the MPR with a status code (usually U0777, U02478, U02479, or
U03303) and reschedules it. This action is not apparent to the conventional
3270-type user.

However, when an IMS TCP/IP transaction is pseudo-abended, the action is
apparent to the client because the connection between client and server is lost
when the server MPR is abended. In this case, IMS TM reschedules the transaction
and places the input message (including the TIM) back on the message queue.
When the transaction is rescheduled and issues a GU for the TIM, the socket
described in the TIM no longer represents a valid connection. and the associated
TAKESOCKET call will fail. At this time, the Assist module will detect the failure
of the socket call and return a ZZ status code to the server program. Upon receipt
of this status code, the server program should end normally.

Note: At the time of the pseudo-abend, the IMS TM backs out database changes,
so the client should restart the transaction.

Guideline: For deadlock situations it is suggested that you define the transaction
as INIT STATUS GROUP B, which allows the application program to
regain control after a deadlock with a BC status code (instead of
terminating with a U0777 abend). This allows the server program to
regain control after the deadlock and notify the client while the
connection is still available.

Chapter 3. Principles of operation 37

Implicit-mode support for ROLB processing

If a server program issues the IMS ROLB call, all database changes are reversed,
and all output messages are erased from the IMS message queue. However, the
client is not automatically notified of this action and will (when the transaction
completes normally) receive a CSMOKY message, indicating normal completion.

As a result, for transactions that conditionally issue the ROLB call, it is
recommended that the server send a message to the client indicating whether the
ROLB command was executed. Otherwise, the client might incorrectly interpret the
CSMOKY message to mean that database changes have been made (when in fact,
the message simply denotes successful termination of the transaction).

Restrictions

* Transactions must be defined as MODE=SNGL in the IMS TRANSACT macro;
this will ensure that the database buffers are emptied (flushed) to direct access
storage when the second and subsequent GU calls are issued.

* Transactions must not reference other systems (MSC is not supported).

* Transactions must not be conversational (that is, they must not use the IMS
Scratch Pad Area (SPA)).

38 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Chapter 4. How to write an IMS TCP/IP client program

When writing an IMS TCP/IP client program, the programmer must follow
conventions established by the IMS Listener and by the IMS Assist module (if
used). This chapter describes the call sequences and input/output data formats to
be used by the client program. For server programming, see |Chapter 5, “How to|
fwrite an IMS TCP/IP server program,” on page 47|

Note that, in the context of this chapter, a “client” is typically a TCP/IP host that is
requesting the services of an IMS message processing program (MPP). This is
considered to be the normal case. However, in some situations, an MPP can start as
a server and then (because it needs the services of another program) switch roles
from server to client.

In this chapter, the client will be assumed to be the TCP/IP host and the server,
the IMS MPP.

Client program logic flow — general

For both explicit- and implicit-mode clients the logic flow is essentially the same:

The client initiates the request for a specific IMS MPP server by communicating
with MVS TCP/IP, which passes the request on to the IMS Listener. The Listener
schedules the transaction and the client then exchanges application data with the
server. When the transaction is complete, the connection is closed; each client
request for an IMS transaction requires a new TCP/IP connection.

The following two sections provide more details about the programming
requirements for explicit-mode and implicit-mode clients, respectively.

Explicit-mode client program logic flow

When the client requests the services of an explicit-mode server, the only protocol
imposed by IMS TCP/IP is that the client must begin by establishing TCP/IP
connectivity and sending a transaction-request message (TRM).

The Listener uses contents of the transaction-request message (TRM) to determine
which transaction to schedule. If the request is not accepted (for example, because
of failure to pass the security exit, or because the transaction was stopped by the
IMS master terminal operator), the Listener returns a request-status message (RSM)
to the client with an indication of the cause of failure. (See |”Reguest—statu§|
Imessage segment” on page 44| for the format of the request-status message).

Once an explicit-mode client and server are in communication, there is no
predefined input/output protocol. Rules of the conversation are established by
agreement between the two programs. Any number of READ/WRITE calls can be
issued. Upon termination, the server program should commit any database
changes, notify the server of successful completion, and close the socket.

It is suggested that, when all database updates have been committed, the server

notify the client by sending a “success” message to the client. This notifies the
client that the transaction has completed properly and that all database updates

© Copyright IBM Corp. 1994, 2005 39

have been committed. Unless such a message is sent, the client has no way of
knowing that the transaction completed properly.

Explicit-mode client call sequence
The call sequence to be used by an explicit-mode client program is:

Call Explanation of Function

INITAPI Open the interface. (Only required for client programs that use
MVS TCP/IP socket calls).

SOCKET Obtain a socket descriptor.

CONNECT Request connection to the IMS Listener port.

WRITE Send a transaction-request message (TRM)

READ Test for successful transaction initiation "

WRITE/READ Explicit-mode transactions can issue any number of READ or
WRITE socket call sequences.

READ Ensure that the server ended normally and that the database
changes are committed.

CLOSE Terminate the connection and release socket resources.

Explicit-mode application data

Format

Explicit-mode clients must initiate the connection with the server by sending the
transaction-request message (TRM) to the IMS host. The format of this message is
defined later in this chapter. Explicit-mode application data is formatted according
to agreement between client and server. Explicit-mode imposes no application data
format requirements.

Data translation
In explicit-mode, application data translation from ASCII to EBCDIC (if necessary)

is the responsibility of the client and server programs. Data is not translated by the
IMS TCP/IP feature.

Network byte order

Fixed-point binary integers (used for segment lengths in TRM and RSM) are
specified using the TCP/IP network byte ordering convention (big-endian
notation). This means that if the high-order byte is stored at address n, the
low-order byte is stored at address n+1. (Little-endian notation stores the other
way around).

MVS also uses the big-endian convention. Because this is the same as the network
convention, IMS TCP/IP MPP’s should not need to convert data from little-endian
to big-endian notation. If the client uses little-endian notation, it is responsible for
the conversion.

11.

40

If the Listener is unable to initiate the transaction, it sends a request-status message (RSM) to the client indicating the reason for
failure. Therefore, the client must be prepared to receive that message. It is suggested that a convention be established that the
server initiate the conversation by sending an opening message. By following this convention, the client will receive either
positive or negative notification of transaction status before initiating application data exchange.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

End-of-message indicator
IMS TCP/IP does not define an End-of-message indicator for explicit-mode
messages.

Implicit-mode client logic flow

When the client requests the services of an implicit-mode client, the protocol is
predefined by IMS TCP/IP.

The client requests an IMS MPP by sending the transaction-request message
(TRM). (See ["Transaction-request message segment (client to Listener)” on page 43
for the format of the TRM.) The TRM includes the name of the transaction the
Listener is to schedule.

If the transaction cannot be scheduled (for example, because of failure to pass the
security exit, or because the transaction was stopped by the IMS master terminal
operator), the Listener returns the request-status message with an indication of the
cause of failure. (See|”Request—status message segment” on page 44| for the format
of the request-status message).

For implicit-mode applications, the input data stream consists of the TRM,
immediately followed by all segments of application data and an end-of
message-segment. The Listener uses the TRM contents to schedule the server and
then places the TIM and all of the application data on the IMS message queue for
retrieval by the Assist module.

Implicit-mode transactions are limited to one multisegment input message and one
multisegment output message. In other words, implicit-mode applications cannot
enter into conversations.

When the transaction is complete, the IMS Assist module sends a complete-status
message (CSMOKY) segment to the client. If the client receives this message, the
client can safely assume that the database changes have been committed. If the
client doesn’t receive this message, the client cannot determine what has happened.
The transaction may have completed normally and database changes committed,
or the transaction may have failed with database changes backed out. For this
reason, clients that work with implicit mode servers should include application
logic that, upon failure to receive the CSMOKY message segment, reestablishes
contact with IMS and confirms the success of the previously submitted update.

Implicit-mode client call sequence

The call sequence to be used by an implicit-mode client program is:

Call Explanation of Function

INITAPI Open the interface. (Only required for client programs that use
MVS TCP/IP Sockets calls).

SOCKET Obtain a socket descriptor.

CONNECT Request connection to the IMS Listener port.

WRITE Send a transaction-request message (TRM).

WRITE Send server input data formatted as IMS segments

READ Receive response.

Chapter 4. How to write an IMS TCP/IP client program 41

* If the request was rejected, a request-status message (RSM) will
be received.

* If the transaction was scheduled and executed properly,
application data will be received.

Thus, logic in the client must test the output message for the
characters *REQSTS* to distinguish between application data and a
request-status message (RSM).

READ Upon successful completion of the database updates, the Assist
module sends a complete-status message (*CSMOKY?*) to the client,
indicating that the transaction has completed successfully.

If this message is not received, the client must assume that the
application failed to complete properly; in this case, a return code
of -1 and ERRNO (typically set to 54) will indicate that application
failed. The client must take whatever action is appropriate (for
example, reschedule the transaction, resynchronize data).

CLOSE Terminate the connection and release the socket resources

Implicit mode application data stream

Client-to-server data stream
In implicit mode, the client sends the following data stream:

llzz transaction-request message (TRM) /lzz application data segment 1 llzz
application data segment 2 (optional) llzz ... llzz application data segment n
(optional) 04zz end-of-message segment

WHERE:
Il is the length in bytes of this data segment in binary.
Server-to-client data stream
Data received by the client is formatted (by the Assist module) as above. It consists

of n segments of application data including the CSM segment, followed by an
end-of-message segment.

Implicit-mode application data

Format
Data exchanged between implicit-mode client and server is transmitted in a format
that resembles an IMS message segment. These segments have the following

format: 2

Field Format Description

Length H Length of the data segment (including this
field)

Reserved (zz) CL2 Reserved field

Data CLn Client-supplied data

12. This example uses Assembler language notation. See [Chapter 7, “Using the CALL instruction application programming interface|
API),” on page 61for COBOL and PL/I equivalents.

42 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

The length field contains the total length of the message in binary. The length (II)
includes the length of the Il and zz fields.

Data translation

The IMS Listener tests the initial input data string (the TRM) to determine whether
the terminal is transmitting in ASCIL. If the terminal is transmitting in ASCII, and
the transaction is defined as implicit-mode in the TRANSACTION configuration
statement, the Listener translates the ASCII application data into EBCDIC. Note
that when data translation takes place, the entire application data portion of the
segment is translated from ASCII to EBCDIC, and vice versa; therefore, the
segment should contain only printable characters that are common to both
character sets. (For example, the EBCDIC cent sign and the ASCII left square
bracket are both printable in their respective native environments, but they are not
translated because they do not have an equivalent in the other character set.)

End-of-message segment

The last segment in a message (either sent by the client, or received from the

server) is indicated by an end-of-message (EOM) segment. (See [“End-of-messagéd

lsegment (EOM)” on page 45).

* Implicit-mode messages sent by the client are received by the Listener. When the
client program sends an EOM segment, the Listener interprets the EOM as an
indication that no more message segments are to be received and inserts the
segments onto the IMS message queue.

* Implicit-mode messages received by the client are actually written by the Assist
module on behalf of the server program. When the server program sends
application data to the client (using the ISRT call), the Assist module intercepts
the output data and accumulates it in an output buffer. When the server
program issues a subsequent GU to the I/O PCB, the Assist module interprets
the GU as an indication that the server has inserted the last segment for that
message. The Assist module then adds an end-of-message segment to the output
data and issues WRITE commands, which transmit the data to the client. (The
client program should test for the EOM segment to determine when the last
segment of the message has been sent by the server program.)

IMS TCP/IP message segment formats

The client sends or receives several types of message segments whose formats are
defined by the Listener and the Assist module.

* Transaction-request message segment (TRM)

* Request-status message segment (RSM)

* Complete-status message segment (CSMOKY)

* End-of-message segment (EOM)

The following paragraphs describe the formats for each of these segments:

Transaction-request message segment (client to Listener)

To initiate a connection with an IMS server, the client first issues a
transaction-request message segment (TRM), which tells the Listener which
transaction to schedule.

Chapter 4. How to write an IMS TCP/IP client program 43

44

The format of the transaction-request message segment (TRM) is:

Field

Format

Meaning

TRMLen

H

Length of the segment (in binary) including
this field. This field is sent in network byte
order.

TRMRsv

CL2

Reserved

TRMId

CL8

Identifying string. Always *TRNREQ?*. If the
client data stream will be sent in ASCII, the
TRMId field should also be transmitted in
ASCII because the Listener uses this field to
determine whether ASCII to EBCDIC
translation is required.

TRMTrnCod

CL8

The transaction code (TRANCODE) of the
IMS transaction to be started. It must not
begin with a / character; it must follow the
naming rules for IMS transactions. If the
Listener has determined that data will be
transmitted in ASCII, it translates the
transaction code to EBCDIC before any
further processing is done.

TRMUsrDat

XLn

Request-status message segment

If a transaction request is accepted, the IMS Listener does not send the
request-status message segment; if the transaction request is rejected, the IMS
Listener sends a request-status message segment (RSM) to the client. This segment
has the following format:

This variable-length field contains client
data that is passed directly to the security
exit without translation.

Field Format Description
RSMLen H Length of message (in binary), including this
field.
RSMRsv CL2 Reserved
RSMId CL8 Identifying string. Always *REQSTS*. This
field is translated to ASCII if the Listener
has determined that the client is
transmitting in ASCII.
F Return code, sent in
network byte order.
Set to nonzero (for
example, 4, 8, 12) to
indicate an error. The
nonzero value is
further explained by
the reason code
(RSMRsnCod).
RSMRsnCod F Reason Code, sent in network byte order.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Reason codes 0 — 100 are reserved for use
by the IMS Listener. Codes greater than 100
can be assigned by the user-written security
exit.

Request-status message reason codes

If the IMS Listener sends a request-status message (RSM) segment to the client
(indicating that it is unable to complete the processing of the client’s
transaction-request message (TRM), it sets the return and reason code in the RSM.

* If the security exit rejects a transaction request, it sets the return code and reason
code, and returns control to the Listener, which sends the request-status message
segment to the client.

* If the Listener detects other errors that cause a request to be rejected, it sets a
return code of 8 and a reason code from the following list.

1 The transaction was not defined to the IMS Listener.
2 An IMS error occurred and the transaction was unable to be started.
3 The transaction failed to perform the TAKESOCKET call within the 3

minute time frame.

4 The input buffer is full as the client has sent more than 32KB of data for
an implicit transaction.

5 An AIB error occurred when the IMS Listener tried to confirm if the
transaction was available to be started.

6 The transaction is not defined to IMS or is unavailable to be started.

7 The transaction-request message (TRM) segment was not in the correct
format.

9 The application data buffer for the Client-to-Server Data Stream contains
an invalid value for the data segment length.

100 up
Reason codes of 100 or higher are defined by the user-supplied security
exit.

Complete-status message segment

The complete-status message segment is sent by the Assist module to indicate the
successful completion of an implicit-mode transaction, including the fact that
database updates have been committed. The format of the complete-status message

segment is:

Field Format Description

Length H Length of the data segment (in binary)
including this field

CSMRsv H Reserved field; must be set to zero

CSMId CL8 *CSMOKY* This field is translated to ASCII

if the client is transmitting in ASCII.

End-of-message segment (EOM)

The end-of-message segment is defined as an IMS-type segment (with /lzz fields)
but no application data. Thus, the EOM segment has an I/zz field of '0400'; 04 is the
length of the llzz field.

Chapter 4. How to write an IMS TCP/IP client program 45

PL/I coding

PL/I programmers should note that (although the segments exchanged between
the Listener and implicit-mode servers resemble IMS segments) the segments are
actually sent by TCP/IP socket calls and do not necessarily follow the standard
IMS convention for the PL/I language interface. Specifically, the length field in a
segment (TRM or RSM), which is passed via a TCP/IP socket call, must be a
halfword (FIXED BIN(15)) and not a fullword.

46 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Chapter 5. How to write an IMS TCP/IP server program

When writing an IMS TCP/IP server program, the programmer must follow
conventions established by the IMS Listener; by the IMS Assist module (if the
server program uses it); and by the TCP/IP client. This chapter describes the call
sequences and input/output formats necessary for communication between a
TCP/IP client program and an IMS server program. (See [Chapter 4, “How to writd]
lan IMS TCP/IP client program,” on page 39| for a discussion of client
programming).

Server program logic flow —general

An IMS TCP/IP server program is executed in response to a transaction request
from a TCP/IP host. The server program can either explicitly issue TCP/IP socket
calls, or implicitly issue them through the IMS Assist module. However, the same
TCP/IP functions are completed in either case.

The following sections describe the server logic flow for each mode.

Explicit-mode server program logic flow

When an explicit-mode server begins execution, the Listener has received the
transaction-request message (TRM) from the client and has inserted the
transaction-initiation message (TIM) to the IMS message queue. The Listener has
also issued a GIVESOCKET call to pass the connection to the server.

The server’s first action is to obtain the TIM from the IMS message queue. This
message contains the information needed to issue the INITAPI and TAKESOCKET
calls.

Once the server has issued the TAKESOCKET call, the connection is between client
and server; the two can now communicate directly using socket READ/WRITE
calls. The number of reads/writes, and the format of the data exchanged, is
determined by agreement between the two programs.

At the end of processing a client’s request, the application program should follow
the IMS DC programming standard of issuing another GU to the I0/PCB. This
informs IMS that the database changes should be committed, and that the database
buffers should be emptied (flushed).

Note: For this reason, a transaction invoked by a TCP/IP client should be defined
(by the IMS-gen TRANSACT macro) as MODE=SNGL.

Explicit-mode call sequence

The suggested call sequence for an explicit-mode server follows. See |Chapter 7,|
[“Using the CALL instruction application programming interface (API),” on page 61|
for the call syntax of the socket calls.

Server call Explanation of Function

CALL CBLTDLI (GU) I/O PCB
Obtain transaction-initiation message (TIM) from
IMS message queue.

© Copyright IBM Corp. 1994, 2005 47

48

INITAPI Initialize the connection with TCP/IP.
Parameter Meaning

ADSNAME Server address space
(TIMSrvAddrSpc from the TIM)

SUBTASK Server task ID (TIMSrvTaskID from
the TIM)

TCPNAME TCP address space
(TIMTCPAddrSpc from the TIM)

TAKESOCKET Accept the socket from the Listener.
Parameter Meaning

CLIENT.name Listener address space
(TIMLstAddrSpc from the TIM)

CLIENT.task Listener task ID (TIMLstTaskID
from the TIM)

SOCRECV Socket descriptor (TIMSktDesc
from the TIM)

Note that the TAKESOCKET call returns a new
socket descriptor which must be used for the rest
of the process. (Do not continue to use the
descriptor passed by the Listener in TIMSktDesc.)

READ/WRITE Exchange application data with the client.

Database calls Read /write database records.

Note: TCP/IP and database calls can be

intermixed.
GU Force IMS synchronization point; update the
database from the buffers.
WRITE Send complete-status message to the client.
CLOSE Shut down the socket and release resources

associated with it.

TERMAPI End processing on the call interface.

Explicit-mode application data

Format
Other than the initial transaction-initiation message, explicit-mode imposes no
restrictions on the format of application data exchanged between client and server.

EBCDIC/ASCII data translation

If the TCP/IP host is transmitting ASCII data, explicit-mode servers are responsible
for data translation from EBCDIC to ASCII and from ASCII to EBCDIC. Data
translation is not performed by IMS TCP/IP. You can use the data translation
subroutines (EZACIC04 and EZACICO05 or EZACIC14 and EZACIC15) described in
Chapter 7, “Using the CALL instruction application programming interface (API),’]

on page 61 for this purpose.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

When the conversation is complete, the server should force an IMS commit and
close the connection. This causes IMS to complete the database updates.
Explicit-mode server logic is responsible for notifying the client of the success or
failure of the commit process.

Transaction-initiation message segment

Once the server has been started, the first segment it receives from the message
queue is the transaction-initiation message (TIM) segment, which was created by

the IMS Listener.

Field

Format

Explanation

TIMLen 3

H

The length of the
transaction-initiation message
segment (in binary),
including the length of this
field. (X'0038')

TIMRsv

Reserved field set to zero.
(X'0000").

TIMId

CL8

Identifies the message as
having been created by the
IMS Listener. Always
contains the characters
LISTNR.

TIMLstAddrSpc

CL8

Listener address space name.
Used in server
TAKESOCKET.

TIMLstTaskId

CL8

Listener task ID. Used in
server TAKESOCKET.

TIMSrvAddrSpc

CL8

Server address space name.
Used in server INITAPI.
Server address space IDs are
generated by the Listener and
consist of the 2-character
prefix specified in the
Listener configuration file
(Listener statement) followed
by a unique 6-character
hexadecimal number.

TIMSrvTaskID

CL8

Server task ID. Used in
server INITAPIL.

TIMSktDesc

Contains the descriptor of the
socket given by Listener.
Used in server
TAKESOCKET.

TIMTCPAddrSpc

CL8

The TCP/IP address space
name of TCP/IP. Used in
INITAPL

TIMDataType

Indicates the data type of the
client messages: ASCII(0) or
EBCDIC(1).

Chapter 5. How to write an IMS TCP/IP server program 49

Program design considerations

* Because MVS TCP/IP ends the connection when a server MPP completes, the
client has no way of knowing that the database changes have been committed.
Therefore, it is suggested that explicit-mode servers send a message to the client
confirming the COMMIT before terminating. (Implicit-mode servers send the
CSMOKY segment when the database changes have been committed.)

* When an explicit-mode server issues a ROLB command, the client has no
automatic way of knowing that the database updates have been rolled back. It is
suggested, therefore, that the server send a message to the client when a rollback
call completes.

I/0 PCB — explicit-mode server

When an IMS MPP issues a call for IMS TM services (like a GU or an ISRT), IMS
returns information about the results of the call in a control block called the I/O
program control block (I/O PCB). The contents of the I/O PCB are:

LTERM NAME Blanks (8 bytes)
RESERVED X'00" (2 bytes)

STATUS CODE See [“Status codes”|2 bytes)
DATE/TIME Undefined (8 bytes)
INPUT MSG. SEQ. # Undefined (4 bytes)

MESSAGE OUTPUT DESC. NAME
Blanks (8 bytes)

USERID PSBname of Listener (8 bytes)

Status codes

The I/0O PCB status code is set by IMS in response to the server GU for the TIM. A
status code of bb indicates successful completion of the GU call. Since the only
data explicit-mode servers receive from the message queue is the TIM, the only call
issued by the server is a GU, requesting a new TIM. Thus, the only status codes an
explicit-mode server should receive are bb, which indicates successful completion
of the GU; and QC, which indicates that there are no more messages on the
message queue for that transaction. In response to the QC status code, the server
program should end normally.

Explicit-mode server — PL/l programming considerations

PL/I programmers should note that I/O areas used to retrieve IMS segments must
follow standard IMS conventions. That is, the length field for the TIM segment
must be defined as a fullword (FIXED BIN(31)).

Implicit-mode server program logic flow

An implicit-mode server must perform all of the functions previously described for
an explicit-mode server (see [“Explicit-mode server program logic flow” on pagd

. However, the IMS Assist module issues the TCP/IP calls on behalf of the

server program; consequently, the implicit-mode application programmer need
only issue standard IMS Input/Output calls.

13.If you use PL/I, you must define the LLLL field as a binary fullword.

50

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Implicit-mode server call sequence

When writing an implicit-mode program, you must call the IMS Assist module
(CBLADLI, PLIADLI, ASMADLI, CADLI, as appropriate for the language you are
using) instead of the conventional IMS equivalent (CBLTDLI, PLITDLI, ASMTDLI,
CTDLI). This will cause the I/O PCB calls to be intercepted and processed (if
necessary) by the Assist module. The Assist module will pass database calls
directly to IMS for processing; it will intercept I/O PCB calls and issue the
appropriate sockets calls. A sample call sequence (using COBOL syntax) for an
implicit-mode server follows:

IMS Server Call Resulting Assist Module Function

CALL CBLADLI (GU) I/O PCB
Issue CALL CBLTDLI (GU) to obtain the (TIM).

CALL CBLADLI (GN) I/O PCB
(optional) Issue CALL CBLTDLI (GN), which
returns a subsequent segment of client input data
for each call.

CALL CBLADLI Read /write database records. '

CALL CBLADLI (ISRT) I/O PCB
Store segments in the sockets output buffer.

CALL CBLADLI (GU) I/O PCB
Issue WRITE to empty output buffers.

Implicit-mode application data

Format
All data exchanged between the client and an implicit-mode server is formatted
into IMS segments. Each data segment has the following format:

Field Format Description

Length H Length of the data segment
(in binary) including this
field.

Reserved H Reserved field; must be set to
Zero.

Data CLn Application data.

Data translation

Translation of input data (when necessary) is done by the Listener. As a result, all
data on the IMS message queue is in EBCDIC; output data is translated (when
necessary) by the Assist module.

Note that when data translation takes place, the entire application data portion of
the segment is translated from ASCII to EBCDIC, and vice versa; therefore, the
segment should contain only printable characters common to both character sets.
(For example, the EBCDIC cent sign and the ASCII left bracket are both printable
in their respective environments but are not translated because they do not have
an equivalent in the other character set.)

14. For database 1/0O, you can use either CBLTDLI or CBLADLI. The Assist module simply converts database calls from CBLADLI
to CBLTDLI

15. Database PCB and 1/O PCB calls can be intermixed.

Chapter 5. How to write an IMS TCP/IP server program 51

End-of-message segment

The last segment in a message (either sent by the client, or received from the

server) is indicated by an end-of-message (EOM) segment. (See ['End-of-messagé|

isegment (EOM)” on page 45).

* Implicit-mode messages sent by the client are received by the Listener and
inserted onto the IMS message queue. The end-of-message segment (defined
above) indicates to the Listener that there are no more segments to be inserted
for this message. (Note that the server program will not receive the EOM
segment; it will receive a QD status code, indicating that there are no more
segments for this message.)

* Implicit-mode messages to be sent by the server are actually written by the
Assist module on behalf of the server program. When the server program sends
application data to the client (using the ISRT call), the Assist module intercepts
the output data and accumulates it in an output buffer. When the server
program issues a subsequent GU to the I/O PCB, the Assist module interprets
the GU as an indication that the server has inserted the last segment for that
message. The Assist module then adds an end-of-message segment to the output
data and issues WRITE commands, which transmit the data to the client. (Note
that the server program should not attempt to insert an EOM segment to the
I/0 PCB.)

Programming to the Assist module interface

Programs written to the Assist module interface are very similar (in terms of I/O
calls) to conventional IMS Transaction Manager (TM) MPPs.

¢ To communicate with IMS TM, use the following calls (depending upon
programming language) — CBLADLI, PLIADLI, ASMADLI, or CADLI —
instead of CBLTDLI, PLITDLI, ASMTDLI, and CADLI, respectively.

¢ Use the same parameters as with the IMS TM counterparts.

* The first IMS call to the I/O PCB must be GU. Subsequent IMS calls to the I/O
PCB can be GN and/or ISRT (with intervening database calls, as appropriate).

* When the transaction is complete, the server program should issue another GU
to the I/O PCB to finalize processing of the present message. If the server
program receives a bb status code, (indicating another message has been
received for that program), it should loop back and process that message. Note
that the Assist module will have closed the previous connection and opened a
new connection associated with the new message. When the GU returns a QC
status code, no more messages have been received for that program and the
program should end.

A set of one GU, one or more GN calls, and one or more ISRT calls to the I/O
PCB (with intervening database calls, as required) constitute a transaction. The
Assist module interprets each GU as the start of a new transaction.

* The PURG call cannot be used to indicate end-of-message; the server should not
issue PURG calls to the I/O PCB.

* The Assist module GU reads the TIM into the I/O area defined in the server
program; consequently, the I/O area you define in the server must be at least 56
bytes in length (the length of the TIM).

e If the server program attempts to insert more than 32KB, the Assist module flags
this as an error by terminating processing and returning a status code of 7ZZ.

Implicit-mode server PL/l programming considerations

PL/I programmers should note that I/O areas passed to the Assist module must
follow standard IMS conventions. That is, the length field for a segment must be

52 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

defined as a fullword (FIXED BIN(31)). This applies to both input and output data
segments; however, the actual segment that is received from and sent to the client
uses a halfword (FIXED BIN(15)) length field. Thus, the messages exchanged
between the client and server are programming-language independent.

Implicit-mode server C language programming considerations
The following statements are required in IMS implicit-mode servers written in C
language:

#pragma runopts(env(IMS),plist(IMS))
#pragma linkage(cadli, 0S)

This is in addition to the standard requirements for using C language programs in
IMS.

I/0 PCB implicit-mode server

When an IMS MPP issues a call for IMS TM services (like a GU or an ISRT), IMS
returns information about the results of the call in a control block called the I/O
program control block (I/O PCB). When using the Assist module, the contents of
the 1/0O PCB are:

LTERM NAME Blanks (8 bytes)

RESERVED See|”Status codes”[2 bytes)

STATUS CODE See [“Status codes”|2 bytes)
DATE/TIME Undefined (8 bytes)

INPUT MSG. SEQ. # Undefined (4 bytes)

MESSAGE OUTPUT DESC. NAME
Blanks (8 bytes)

USERID PSBname of Listener (8 bytes)

Status codes

The I/0O PCB status code is set by IMS in response to the IMS calls that the Assist
module makes on behalf of the server. For example, GU and GN calls usually
result in bb, QC, or QD status codes. However, when the Assist module detects a
TCP/IP error, it sets the status code field of the I/O PCB to ZZ with further
information about the error in the reserved field of the I/O PCB. This field should
be initially tested as a signed, fixed binary halfword:

* If the halfword is positive, then a socket error has occurred, and the field should
continue to be treated as a signed fixed binary halfword. The field contains the 2
low-order bytes from the ERRNO resulting from the socket call. (See
|Appendix A, “Return codes,” on page 295).

* If the halfword is negative, then an IMS or other type of error has occurred, and
the field should be treated as a fixed-length, 2-byte character string containing
one of the following;:

Code Meaning

EA A call that used the AIB interface to determine the I/O PCB address
failed.

EB The output buffer is full. An attempt was made to insert (ISRT) more
than 32KB (including the segment length and reserved bytes) to be sent
to the client.

EC A QD status code was received in response to a GU or ROLB call when

Chapter 5. How to write an IMS TCP/IP server program 53

attempting to retrieve the first segment of data after the
transaction-initiation message (TIM) segment. This implies that the client
sent only the TIM segment followed by an end-of-message segment with
no actual data segments.

54 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Chapter 6. How to customize and operate the IMS Listener

The IMS Listener is an IMS batch message program (BMP) whose main purpose is
to validate connection requests from TCP/IP clients and to schedule IMS message
processing programs (MPP) servers.

This chapter describes the IMS Listener and the user-written security exit that can
be used to validate incoming transaction requests.

How to start the IMS Listener

//EZAIMSJL
/1%
//LISTENER
/1
//G.STEPLIB
/11

/1

/11
//G.LSTNCFG

The IMS Listener is executed as an MVS 'started task' using job control language
(JCL) statements. Copy the sample job in the hlq.SEZAINST(EZAIMS]JL) to your
system or recognized PROCLIB and modify it to suit your conditions. Below is a
sample of the JCL needed for the Listener BMP. Note the STEPLIB statements
pointing to MVS TCP/IP. Also note the EZAIMSJIL G.LSTNCFG DD statement points to
the Listener configuration file. For more information on configuring the IMS
Listener, see [“The IMS Listener configuration file” on page 56

PROC MBR=EZAIMSLN,PSB=EZAIMSLN,IMSID=IMS,CFG=TCPIMS,SOUT=A

EXEC PROC=IMSBATCH,MBR=&MBR.,SOUT=&SOUT.,IMSID=&IMSID.,
PSB=&PSB. ,CPUTIME=1440

DD DSN=IMSVS31.&SYS2.RESLIB,DISP=SHR

DD DSN=IMSVS31.&SYS2.PGMLIB,DISP=SHR

DD DSN=TCPIP.SEZALOAD,DISP=SHR

DD DSN=TCPIP.SEZATCP,DISP=SHR

DD DSN=TCPIP.LSTNCFG(&CFG.),DISP=SHR

//G.SYSPRINT DD SYSOUT=&SOUT,DCB=(LRECL=137,RECFM=VBA,BLKSIZE=1374),

/1

SPACE=(141, (2500,100) ,RLSE, ,ROUND)

Figure 11. JCL: Sample run Listener procedure

Once you have configured your JCL, you can start the Listener using the MVS
START command. The basic syntax and parameters of this command are given
below.

»>—START—procname |_ ><
. identifier—l

procname
The name of the cataloged procedure that defines the IMS Listener job to be
started.

identifier
A user-determined name which, with the procedure name, (procname) uniquely
identifies the started job. This name can be up to 8 characters long with the
first character being alphabetic. If the identifier is omitted, MVS automatically
uses the procedure name as the identifier.

© Copyright IBM Corp. 1994, 2005 55

How to stop the IMS Listener

The Listener is normally ended by issuing an MVS MODIFY command. The syntax
of this command and a description of the parameters is given below.

A\
A

»»>—MODIFY identifier—,—STOP
l—procname —|

procname
The name of the cataloged procedure that was used to start the Listener. This
is only required if an identifier that was different from procname was specified
with the START command when the Listener was started.

identifier
The user-determined identifier used on the START command when the
Listener was started. If an explicit identifier was not specified (on the START
command), MVS automatically uses the procedure name (procname) on the
START command as the default identifier.

stop
Stops the Listener.

On receipt of a MODIFY command, the Listener closes the socket bound to the
listening port so that no new requests can be accepted. It ends once all other
sockets have been closed following acceptance of each socket by the corresponding
server.

As a BMP, the Listener can be forcibly ended by issuing the IMS STOP REGION
command with the ABDUMP option.

The IMS Listener configuration file

56

The IMS Listener obtains startup parameters from a configuration file. In
the EZAIMSJL G.LSTNCFG DD statement points to the Listener

configuration file. This statement will be in the JCL sample you customize.

The configuration file contains three types of statements which must appear in the
following order:

1. TCPIP statement

2. LISTENER statement

3. TRANSACTION statements

The following describes each of the configuration statements and their respective
parameters.

TCPIP statement

Description: This statement is required and is used to specify the name of the
TCP/IP address space.

»»—TCPIP—ADDRSPC=name

v
A

ADDRSPC= name
Specifies the name of the TCP/IP address space. The name can be 1 to 8
characters long, consisting of the numbers 0-9, the letters A-Z, and the
characters $, @, and #.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

LISTENER statement

Description: This statement is required. It is used to specify configuration
information used by the IMS Listener.

v

»»—L ISTENER—PORT=port—MAXTRANS=maxtrans—MAXACTSKT=maxskt

|—BACKLOG=10

»—ADDRSPCPFX=prefix

|—BACKLOG=backZog—

PORT= port
Port number that the Listener binds to for connection requests. Use an integer
between 0 and 65 535, inclusive.

MAXTRANS= maxtrans
The maximum number of TRANSACTION statements to be processed in the
configuration file. Use an integer between 1 and 32 767, inclusive.

MAXACTSKT= maxskt
The maximum number of sockets the Listener can have open awaiting an MPP
TAKESOCKET at one time. This value is an integer from 1 to 2000, inclusive.
The number includes the socket bound to the port through which it accepts
incoming requests.

ADDRSPCPFX= prefix
One or two characters (consisting of the numbers 0-9, the letters A-Z, and the
characters $, @, and #) used in generating unique identifiers for started IMS
transactions.

BACKLOG-= backlog
This parameter is optional and is used to specify the length of the backlog
queue maintained in TCP/IP for connection requests that have not yet been
assigned sockets by the Listener. Use an unsigned number from 1 to 32 767
inclusive. The default value is 10.

TRANSACTION statement

Description: This statement specifies which transactions can be started by the
Listener. One statement is required for each transaction that can be initiated by a
TCP /IP-connected client.

Note that the transactions named here are subject to limitations:

¢ They must be defined to IMS as MODE=SNGL in the IMS TRANSACT macro;
this will ensure that the database buffers are emptied (flushed) to direct access
storage when the second and subsequent GU calls are issued.

* They must not be IMS conversational transactions.

e They cannot name transactions that are executed in a remote Multiple Systems
Coupling (MSC) environment.

* They must not use Message Format Services for messages to the client.

A\
A

»>—TRANSACTION—NAME=transi d—TYPE=—|:EXPLICIT
IMPLICIT—|

NAME-= transid
The name of an IMS transaction that is designed to interact with a

Chapter 6. How to customize and operate the IMS Listener 57

TCP/IP-connected program. This parameter must be 1 to 8 characters long,
containing alphanumeric characters, or the characters @, $, and #.

TYPE=
This parameter specifies whether the transaction uses the IMS Assist module. It
must specify either EXPLICIT or IMPLICIT.

The IMS Listener security exit

The IMS Listener includes an exit (IMSLSECX), which can be programmed by the
user to perform a security check on the incoming transaction-request. This Listener
exit can be designed to validate the contents of the UserData field in the
transaction request message.

To use the user-supplied security exit, you must define an entry point named
IMSLSECX. If a module with this name is link-edited with the Listener
(EZAIMSLN) load module, the security exit is called as part of transaction
verification. The security exit is called using standard MVS linkage with register 1
(R1) pointing to the parameter list (described below). Note that the security exit
must have the attribute AMODE(31).

The exit returns 2 indicators: a return code and a reason code. The Listener uses
the return code to determine whether to honor the request. Both the return code
and the reason code are passed back to the client. Data passed in the UserData
field is not translated from ASCII to EBCDIC; this translation is the responsibility
of the security exit. (EZACIC05 and EZACIC04 can be used to accomplish
translation between ASCII and EBCDIC. Refer to the chapter on CALL instructions
in |z/OS Communications Server: IP Sockets Application Programming Interface Guide and
[Reference| for a description of these utilities.)

The format of the data passed to the security exit is:

Field Format Description

IpAddr F The address of a fullword containing the
client’s IP address.

Port H The address of a halfword containing the
client’s port number.

TransNam CL8 The address of an 8-character string defining
the name of the requested transaction.

DataType H The address of a halfword containing the
data type (0 if ASCII or 1 if EBCDIC).

Datalen F The address of a fullword containing the
length of the user data.

Userdata XLn The address of the user-supplied data.

RetnCode F The address of a fullword set by the security

exit to indicate the return status. Set to
nonzero (4, 8, 12, ...) to indicate an error.

ReasnCode F The address of a fullword set by the security
exit as a reason code associated with the
value of the return code. Reason codes 0-100
are reserved for use by the Listener. The
security exit can use reason codes greater
than 100.

58 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

TCP/IP services definitions

To run IMS, you need to modify the tcpip. PROFILE.TCPIP data set and the
hlg. TCPIP.DATA data set that are part of the TCP/IP Services configuration file.

Guideline: In this document, the abbreviation hlq stands for an
installation-dependent high level qualifier which you must supply.

The hiqg.PROFILE.TCPIP data set
You define the IMS socket Listener to TCP/IP on MVS in the hlg.PROFILE.TCPIP
data set. In it, you must provide entries for the IMS socket Listener started task
name in the PORT statement, as shown in
The format for the PORT statement is:

»>—oport_number—TCP—IMS_socket_Listener_jobname ><

As an example, assume you want to define two different IMS control regions.
Create a different line for each port that you want to reserve. shows 2
entries, allocating port number 4000 for SERVA, and port number 4001 for SERVB.
SERVA and SERVB are the names of the IMS socket Listener started task names.

These 2 entries reserve port 4000 for exclusive use by SERVA and port 4001 for
exclusive use by SERVB. The Listener transactions for SERVA and SERVB should
be bound to ports 4000 and 4001 respectively. Other applications that want to
access TCP/IP on MVS are prevented from using these ports.

Ports that are not defined in the PORT statement can be used by any application,
including SERVA and SERVB if they need other ports.

hlq.PROFILE.TCPIP

This is a sample configuration file for the TCPIP address space.

For more information about this file, see "Configuring the TCPIP
Address Space" and "Configuring the Telnet Server" in the Planning and
Customization Manual.

Reserve PORTs for the following servers.

NOTE: A port that is not reserved in this 1list can be used by
any user. If you have TCP/IP hosts in your network that
reserve ports in the range 1-1023 for privileged
applications, you should reserve them here to prevent users
from using them.

PORT
4000 TCPSERVA ; IMS Port for SERVA
4001 TCP SERVB ; IMS Port for SERVB

Figure 12. Definition of the TCP/IP profile

Chapter 6. How to customize and operate the IMS Listener 59

The hlg.TCPIP.DATA data set

For IMS, you do not have to make any extra entries in hlq. TCPIP.DATA. However,
you need to check the TCPIPJOBNAME parameter that was entered during
TCP/IP Services setup. This parameter is the name of the started procedure used
to start the TCP/IP MVS address space. This must match the job name in the
Listener configuration file TCPIP statement, as described in|“TCPIP statement” on|
In the example below, TCPIPJOBNAME is set to TCPV3. The default
name is TCPIP.

MR R Rk Rk R R R R R R R R R R R Rk Rk R R R R R R R R R R Rk R R R R R R R R R R R R R R R R Rk
Name of Data Set: hlqg.TCPIP.DATA

This data, TCPIP.DATA, is used to specify configuration
information required by TCP/IP client programs.

we we we we ue we w
* Ok kX X %

;***
; TCPIPJOBNAME specifies the name of the started procedure which was
; used to start the TCP/IP address space. TCPIP is the default.

TCPIPJOBNAME TCPV3

Figure 13. The TCPIPJOBNAME Parameter in the DATA data set

60 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Chapter 7. Using the CALL instruction application

programming interface (API)

This chapter describes the CALL instruction API for IPv4 or IPv6 socket
applications. The following topics are included:

+ |“Environmental restrictions and programming requirements’|

» [“CALL instruction application programming interface (API)” on page 63|

» [“Understanding COBOL, Assembler, and PL /I call formats” on page 63

+ [“Converting parameter descriptions” on page 64|

» |“Diagnosing problems in applications using the CALL instruction API” on page|

* [“Error messages and return codes” on page 65

[“Code CALL instructions” on page 65|

+ |[“Using data translation programs for socket call interface” on page 181

[“Call interface sample programs” on page 201|

Environmental restrictions and programming requirements
The following restrictions apply to both the Macro Socket API and the Callable

Socket API:
Function Restriction
SRB mode These APIs can only be invoked in TCB mode (task

mode).

Cross-memory mode

These APIs can only be invoked in a
non-cross-memory environment
(PASN=SASN=HASN).

Functional Recovery Routine (FRR)

Do not invoke these APIs with an FRR set. This
causes system recovery routines to be bypassed and
severely damage the system.

Locks

No locks should be held when issuing these calls.

INITAPI/TERMAPI macros

The INITAPI/TERMAPI macros must be issued under
the same task.

Storage

Storage acquired for the purpose of containing data
returned from a socket call must be obtained in the
same key as the application program status word
(PSW) at the time of the socket call. This includes the
ECB that is posted upon completion of an
asynchronous EZASOKET macro call that is issued
after an EZASOKET TYPE=INITAPI with the
ASYNC=('ECB') option has been issued.

Nested socket API calls

You cannot issue nested API calls within the same
task. That is, if a request block (RB) issues a socket
API call and is interrupted by an interrupt request
block (IRB) in an STIMER exit, any additional socket
API calls that the IRB attempts to issue are detected
and flagged as errors.

© Copyright IBM Corp. 1994, 2005

61

Function

Restriction

Addressability mode (Amode)
considerations

The EZASOKET API can be invoked while the caller
is in either 31-bit or 24-bit Amode. However, if the
application is running in 24-bit addressability mode at
the time of the call, all addresses of parameters
passed by the application must be addressable in
31-bit Amode. This implies that even if the addresses
being passed reside in storage below the 16 MB line
(and therefore addressable by 24-bit Amode
programs) the high-order byte of these addresses
needs to be 0.

Use of z/OS UNIX System Services

Address spaces using the EZASOKET API should not
use any z/OS UNIX System Services socket API
facilities such as z/OS UNIX Assembler Callable
Services or Language Environment for z/OS C/C++.
Doing so can yield unpredictable results.

Linkage conventions for the CALL instruction API

Output register information

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system

15 For synchronous calls, it contains the entry point address of EZBSOHO03

When control returns to the caller, the access registers (ARs) contain:

Register
Contents
0-1 Used as work registers by the system
2-14 Unchanged
15 Used as a work register by the system

If a caller depends on register contents to remain the same before and after issuing
a service, the caller must save the contents of a register before issuing the service
and restore them after the system returns control.

Compatibility considerations

62

Unless noted in [z/0S Communications Server: New Function Summary} an application

program compiled and link edited on a release of z/OS Communications Server 1P
can be used on higher level releases. That is, the API is upward compatible.

Application programs that are compiled and link edited on a release of z/OS
Communications Server IP cannot be used on older releases. That is, the API is not

downward compatible.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

CALL instruction application programming interface (API)

This section describes the CALL instruction API for TCP/IP application programs
written in the COBOL, PL/I, or System/370 Assembler language. The format and
parameters are described for each socket call.

Notes:

1. Unless your program is running in a CICS® environment, reentrant code and
multithread applications are not supported by this interface.

2. Only one copy of an interface can exist in a single address space.

3. For a PL/I program, include the following statement before your first call
instruction.

DCL EZASOKET ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;

4. The entry point for the CICS Sockets Extended module (EZASOKET) is within

the EZACICAL module. Therefore EZACICAL should be included explicitly in

your link-edit JCL. If not included, you could experience problems, such as the
CICS region waiting for the socket calls to complete.

Understanding COBOL, Assembler, and PL/I call formats

This API is invoked by calling the EZASOKET program and performs the same
functions as the C language calls. The parameters look different because of the
differences in the programming languages.

COBOL language call format
The following is the "TEZASOKET’ call format for COBOL language programs:

»>—CALL 'EZASOKET' USING SOC-FUNCTION—parml, parmZ, ..—ERRNO,RETCODE.————><«

SOC-FUNCTION
A 16-byte character field, leftjustified and padded on the right with
blanks. Set to the name of the call. SOC-FUNCTION is case specific. It
must be in uppercase.

parmn A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls. It corresponds to the value returned
by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET
call. This value corresponds to the normal return value of a C function.

Assembler language call format
The following is the EZASOKET call format for assembler language programs.

»»>—CALL EZASOKET, (SOC-FUNCTION,—parml, parm2, ..—ERRNO,RETCODE),VL——— >«

Chapter 7. Using the CALL instruction application programming interface (API) 63

PL/I language call format
The following is the EZASOKET call format for PL/I language programs:

A\
A

»»—CALL EZASOKET (SOC-FUNCTION—parml, parm2, ...—ERRNO,RETCODE);

SOC-FUNCTION
A 16-byte character field, left-justified and padded on the right with
blanks. Set to the name of the call.

parmn A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls. It corresponds to the value returned
by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET
call. This value corresponds to the normal return value of a C function.

Converting parameter descriptions

64

The parameter descriptions in this chapter are written using the VS COBOL II PIC
language syntax and conventions, but you should use the syntax and conventions
that are appropriate for the language you want to use.

shows examples of storage definition statements for COBOL, PL/I, and
assembler language programs.

VS COBOL IT PIC

PIC S9(4) BINARY HALFWORD BINARY VALUE
PIC S9(8) BINARY FULLWORD BINARY VALUE
PIC X(n) CHARACTER FIELD OF N BYTES
COBOL PIC
PIC S9(4) COMP HALFWORD BINARY VALUE
PIC S9(4) BINARY HALFWORD BINARY VALUE
PIC S9(8) COMP FULLWORD BINARY VALUE
PIC S9(8) BINARY FULLWORD BINARY VALUE
PIC X(n) CHARACTER FIELD OF N BYTES

PL/I DECLARE STATEMENT

DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE
DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE
DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

ASSEMBLER DECLARATION

DS H HALFWORD BINARY VALUE
DS F FULLWORD BINARY VALUE
DS CLn CHARACTER FIELD OF n BYTES

Figure 14. Storage definition statement examples

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Diagnosing problems in applications using the CALL instruction API

TCP/IP provides a trace facility that can be helpful in diagnosing problems in
applications using the CALL instruction APIL. The trace is implemented using the
TCP/IP Component Trace (CTRACE) SOCKAPI trace option. The SOCKAPI trace
option allows all Call instruction socket API calls issued by an application to be
traced in the TCP/IP CTRACE. The SOCKAPI trace records include information
such as the type of socket call, input, and output parameters and return codes.
This trace can be helpful in isolating failing socket API calls and in determining
the nature of the error or the history of socket API calls that may be the cause of
an error. For more information on the SOCKAPI trace option, refer to
(Communications Server: IP Diagnosis Guide]

Error messages and return codes

For information about error messages, refer to [z/OS Communications Server: IP)
Messages Volume 1 (EZA)

For information about error codes that are returned by TCP/ID, see
[Return codes on page 295

Code CALL instructions

This section contains the description, syntax, parameters , and other related
information for each call instruction included in this APL

ACCEPT

A server issues the ACCEPT call to accept a connection request from a client. The
call points to a socket that was previously created with a SOCKET call and marked
by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call:

1. Accepts the first connection on a queue of pending connections.

2. Creates a new socket with the same properties as s, and returns its descriptor
in RETCODE. The original sockets remain available to the calling program to
accept more connection requests.

3. The address of the client is returned in NAME for use by subsequent server
calls.

Notes:

1. The blocking or nonblocking mode of a socket affects the operation of certain
commands. The default is blocking; nonblocking mode can be established by
use of the FCNTL and IOCTL calls. When a socket is in blocking mode, an I/O
call waits for the completion of certain events. For example, a READ call will
block until the buffer contains input data. When an 1/0 call is issued:

e If the socket is blocking, program processing is suspended until the event
completes.

* If the socket is nonblocking, program processing continues.

2. If the queue has no pending connection requests, ACCEPT blocks the socket
unless the socket is in nonblocking mode. The socket can be set to nonblocking
by calling FCNTL or IOCTL.

3. When multiple socket calls are issued, a SELECT call can be issued prior to the
ACCEPT to ensure that a connection request is pending. Using this technique
ensures that subsequent ACCEPT calls will not block.

Chapter 7. Using the CALL instruction application programming interface (API) 65

66

4. TCP/IP does not provide a function for screening clients. As a result, it is up to
the application program to control which connection requests it accepts, but it
can close a connection immediately after discovering the identity of the client.

The following requirements apply to this call:

Authorization:

Supervisor state or problem state, any PSW key.

Dispatchable unit mode:

Task.

Cross memory mode:

PASN = HASN.

Amode: 31-bit or 24-bit.
Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61|

ASC mode: Primary address space control (ASC) mode.

Interrupt status:

Enabled for interrupts.

Locks:

Unlocked.

Control parameters:

All parameters must be addressable by the caller and in the
primary address space.

shows an example of ACCEPT call instructions.

WORKING-STORAGE SECTION.

01 SOC-FUNCTION
01 S

PIC X(16) VALUE IS 'ACCEPT'.
PIC 9(4) BINARY.

* IPv4 socket address structure.

01 NAME.
03 FAMILY
03 PORT
03 IP-ADDRESS
03 RESERVED

PIC 9(4) BINARY.
PIC 9(4) BINARY.
PIC 9(8) BINARY.
PIC X(8).

* IPv6 socket address structure.

01 NAME.
03 FAMILY
03 PORT
03 FLOWINFO
03 IP-ADDRESS.
10 FILLER
10 FILLER
03 SCOPE-ID
01 ERRNO
01 RETCODE

PROCEDURE DIVISION.

PIC 9(4) BINARY.
PIC 9(4) BINARY.
PIC 9(8) BINARY.

PIC 9(16) BINARY.
PIC 9(16) BINARY.
PIC X(8) BINARY.
PIC 9(8) BINARY.
PIC S9(8) BINARY.

CALL "EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 15. ACCEPT call instructions example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64/

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing ACCEPT. Left-justify the field and pad
it on the right with blanks.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

S A halfword binary number specifying the descriptor of a socket that was
previously created with a SOCKET call. In a concurrent server, this is the
socket upon which the server listens.

Parameter values returned to the application

NAME
An IPv4 socket address structure that contains the client’s socket address.

FAMILY
A halfword binary field specifying the IPv4 addressing family. The
call returns the value decimal 2 for AF_INET.

PORT A halfword binary field that is set to the client’s port number.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 Internet
address, in network byte order, of the client’s host machine.

RESERVED
Specifies 8 bytes of binary zeros. This field is required, but not
used.

An IPv6 socket address structure that contains the client’s socket address.

FAMILY
A halfword binary field specifying the IPv6 addressing family. For
TCP/IP the value is decimal 19, indicating AF_INET®6.

PORT A halfword binary field that is set to the client’s port number.

FLOWINFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network-byte-order, of the client’s host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an

error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
If the RETCODE value is positive, the RETCODE value is the new socket
number.

If the RETCODE value is negative, check the ERRNO field for an error
number.

Value Description
>0 Successful call.
-1 Check ERRNO for an error code.

Chapter 7. Using the CALL instruction application programming interface (API) 67

68

BIND

In a typical server program, the BIND call follows a SOCKET call and completes
the process of creating a new socket.

The BIND macro can specify the port or let the system choose the port. A listener
program should always bind to the same well-known port so that clients know the
socket address to use when issuing a CONNECT, SENDTO, or SENDMSG request.

In addition to the port, the application also specifies an IP address on the BIND
macro. Most applications typically specify a value of 0 for the IP address, which
allows these applications to accept new TCP connections or receive UDP
datagrams that arrive over any of the network interfaces of the local host. This
enables client applications to contact the application using any of the IP addresses
associated with the local host.

Alternatively, an application can indicate that it is only interested in receiving new
TCP connections or UDP datagrams that are targeted towards a specific IP address
associated with the local host. This can be accomplished by specifying the IP
address in the appropriate field of the socket address structure passed on the
NAME parameter.

Note: Even if an application specifies a value of 0 for the IP address on the BIND,
the system administrator can override that value by specifying the BIND
parameter on the PORT reservation statement in the TCP/IP profile. This
has a similar effect to the application specifying an explicit IP address on the
BIND CALL. For more information, refer to the z/OS Communications Server|
[IP Confiquration Reference|

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming]
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

[Figure 16 on page 69 shows an example of BIND call instructions.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'BIND'.

01 S PIC 9(4) BINARY.
* [Pv4 socket address structure.
01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* [Pv6 socket address structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 16. BIND call instruction example

For equivalent PL/1 and assembler language declarations, see
[parameter descriptions” on page 64/

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing BIND. The field is leftjustified and
padded to the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
to be bound.

NAME
Specifies the IPv4 socket address structure for the socket that is to be
bound.
FAMILY

A halfword binary field specifying the IPv4 addressing family. The
value is always set to decimal 2, indicating AF_INET.

PORT A halfword binary field that is set to the port number to which
you want the socket to be bound.

Note: The application can call the GETSOCKNAME macro after
the BIND macro to discover the assigned port number.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 Internet
address (network byte order) of the socket to be bound.

RESERVED
Specifies an 8-byte character field that is required but not used.

Chapter 7. Using the CALL instruction application programming interface (API) 69

70

Specifies the IPv6 socket address structure for the socket that is to be
bound.

FAMILY
A halfword binary field specifying the IPv6 addressing family. For
TCP/IP the value is decimal 19, indicating AF_INET®6.

PORT A halfword binary field that is set to the port number to which
you want the socket to be bound.

Note: The application can call the GETSOCKNAME macro after
the BIND macro to discover the assigned port number.

FLOWINFO
A fullword binary field specifying the traffic class and flow label.
This field must be set to 0.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address (network byte order) of the socket to be bound.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field
does not identify the set of interfaces to be used, and may be
specified for any address types and scopes. For a link scope
IPv6-ADDRESS, SCOPE-ID may specify a link index which
identifies a set of interfaces. For all other address scopes,
SCOPE-ID must be set to 0.

Parameter values returned to the application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an
error number. See|Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

The CLOSE call performs the following functions:
¢ The CLOSE call shuts down a socket and frees all resources allocated to it. If the

socket refers to an open TCP connection, the connection is closed.

The CLOSE call is also issued by a concurrent server after it gives a socket to a
child server program. After issuing the GIVESOCKET and receiving notification

that the client child has successfully issued a TAKESOCKET, the concurrent
server issues the close command to complete the passing of ownership. In

high-performance, transaction-based systems the timeout associated with the
CLOSE call can cause performance problems. In such systems you should
consider the use of a SHUTDOWN call before you issue the CLOSE call. See
[“SHUTDOWN” on page 172| for more information.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Notes:

1.

If a stream socket is closed while input or output data is queued, the TCP
connection is reset and data transmission may be incomplete. The
SETSOCKOPT call can be used to set a linger condition, in which TCP/IP
will continue to attempt to complete data transmission for a specified period
of time after the CLOSE call is issued. See SO-LINGER in the description of
[‘SETSOCKOPT” on page 163

A concurrent server differs from an iterative server. An iterative server
provides services for one client at a time; a concurrent server receives
connection requests from multiple clients and creates child servers that
actually serve the clients. When a child server is created, the concurrent
server obtains a new socket, passes the new socket to the child server, and
then dissociates itself from the connection. The CICS Listener is an example
of a concurrent server.

After an unsuccessful socket call, a close should be issued and a new socket
should be opened. An attempt to use the same socket with another call
results in a nonzero return code.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.
Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming]|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of CLOSE call instructions.

WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE IS 'CLOSE'.

01 S PIC 9(4) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.

CALL 'EZASOKET' USING SOC-FUNCTION S ERRNO RETCODE.

Figure 17. CLOSE call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64/

Chapter 7. Using the CALL instruction application programming interface (API) 71

Parameter values set by the application

SOC-FUNCTION
A 16-byte field containing CLOSE. Left-justify the field and pad it on the
right with blanks.

S A halfword binary field containing the descriptor of the socket to be
closed.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See|Appendix A. Return codes on page 295 for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

CONNECT

The CONNECT call is issued by a client to establish a connection between a local
socket and a remote socket.

Stream sockets
For stream sockets, the CONNECT call is issued by a client to establish connection
with a server. The call performs two tasks:

* It completes the binding process for a stream socket if a BIND call has not been
previously issued.

* It attempts to make a connection to a remote socket. This connection is necessary
before data can be transferred.

UDP sockets
For UDP sockets, a CONNECT call need not precede an I/O call, but if issued, it
allows you to send messages without specifying the destination.

The call sequence issued by the client and server for stream sockets is:

1. The server issues BIND and LISTEN to create a passive open socket.

2. The client issues CONNECT to request the connection.

3. The server accepts the connection on the passive open socket, creating a new
connected socket.

The blocking mode of the CONNECT call conditions its operation.

* If the socket is in blocking mode, the CONNECT call blocks the calling program
until the connection is established, or until an error is received.

* If the socket is in nonblocking mode, the return code indicates whether the
connection request was successful.
— A 0 RETCODE indicates that the connection was completed.

— A nonzero RETCODE with an ERRNO of 36 (EINPROGRESS) indicates that
the connection is not completed, but since the socket is nonblocking, the
CONNECT call returns normally.

The caller must test the completion of the connection setup by calling SELECT
and testing for the ability to write to the socket.

72 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

The completion cannot be checked by issuing a second CONNECT. For more
information, see [“SELECT” on page 144.|

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61|

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of CONNECT call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'CONNECT'.

01 S PIC 9(4) BINARY.
* IPv4 socket address structure.
01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 socket address structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.

CALL '"EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 18. CONNECT call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64/

Chapter 7. Using the CALL instruction application programming interface (API)

73

74

Parameter values set by the application
SOC-FUNCTION

A 16-byte field containing CONNECT. Left-justify the field and pad it on
the right with blanks.

A halfword binary number specifying the socket descriptor of the socket
that is to be used to establish a connection.

An IPv4 socket address structure that contains the IPv4 socket address of
the target to which the local, client socket is to be connected.

FAMILY
A halfword binary field specifying the IPv4 addressing family. The
value must be decimal 2 for AF_INET.

PORT A halfword binary field that is set to the server’s port number in
network byte order. For example, if the port number is 5000 in
decimal, it is stored as X'1388' in hex.

IP-ADDRESS
A fullword binary field that is set to the 32-bit IPv4 Internet
address of the server’s host machine in network byte order. For
example, if the Internet address is 129.4.5.12 in dotted decimal
notation, it would be represented as X'8104050C" in hex.

RESERVED
Specifies an 8-byte reserved field. This field is required, but is not
used.

An IPv6 socket address structure that contains the IPv6 socket address of
the target to which the local, client socket is to be connected.

FAMILY
A halfword binary field specifying the IPv6 addressing family. For
TCP/IP the value is decimal 19 for AF_INETS6.

PORT A halfword binary field that is set to the server’s port number in
network byte order. For example, if the port number is 5000 in
decimal, it is stored as X'1388' in hex.

FLOWINFO
A fullword binary field specifying the traffic class and flow label.
This field must be set to 0.

IP-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address of the server’s host machine in network byte order. For
example, if the IPv6 Internet address is
12ab:0:0:cd30:123:4567:89ab:cedf in colon hex notation, it is set to
X'12AB00000000CD300123456789ABCDEF".

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field
does not identify the set of interfaces to be used, and may be
specified for any address types and scopes. For a link scope

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

IPv6-ADDRESS, SCOPE-ID may specify a link index which
identifies a set of interfaces. For all other address scopes,
SCOPE-ID must be set to 0.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See|Appendix A. Return codes on page 295 for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following;:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

FCNTL

The blocking mode of a socket can either be queried or set to nonblocking using
the FNDELAY flag described in the FCNTL call. You can query or set the
FNDELAY flag even though it is not defined in your program.

See [“IOCTL” on page 119 for another way to control a socket’s blocking mode.

Values for commands that are supported by the z/OS UNIX Systems Services fcntl
callable service will also be accepted. Refer to z/OS UNIX System Services Assembler
Callable Services Reference for more information.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming]
[requirements” on page 61/

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

[Figure 19 on page 76| shows an example of FCNTL call instructions.

Chapter 7. Using the CALL instruction application programming interface (API) 75

76

WORKING-STORAGE SECTION
01 SOC-FUNCTION PIC X(16) VALUE IS 'FCNTL'.

01 S PIC 9(4) BINARY.
01 COMMAND PIC 9(8) BINARY.
01 REQARG PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION
CALL '"EZASOKET' USING SOC-FUNCTION S COMMAND REQARG
ERRNO RETCODE.

Figure 19. FCNTL call instruction example

For equivalent PL/1 and assembler language declarations, see
[parameter descriptions” on page 64/

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing FCNTL. The field is left-justified and
padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
that you want to unblock or query.
COMMAND

A fullword binary number with the following values:

Value Description

3 Query the blocking mode of the socket.
4 Set the mode to blocking or nonblocking for the socket.
REQARG

A fullword binary field containing a mask that TCP/IP uses to set the
FNDELAY flag.

* If COMMAND is set to 3 ('query') the REQARG field should be set to 0.
* If COMMAND is set to 4 ('set')

- Set REQARG to 4 to turn the FNDELAY flag on. This places the
socket in nonblocking mode.

- Set REQARG to 0 to turn the FNDELAY flag off. This places the
socket in blocking mode.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following.
+ If COMMAND was set to 3 (query), a bit string is returned.

— If RETCODE contains X'00000004', the socket is nonblocking. (The
FNDELAY flag is on.)

— If RETCODE contains X'00000000', the socket is blocking. (The
FNDELAY flag is off.)

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

¢ If COMMAND was set to 4 (set), a successful call is indicated by 0 in
this field. In both cases, a RETCODE of —1 indicates an error (check the
ERRNO field for the error number).

FREEADDRINFO

The FREEADDRINFO call frees all the address information structures returned by
GETADDRINFO in the RES parameter.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of FREEADDRINFO call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'FREEADDRINFO'.

01 ADDRINFO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL '"EZASOKET' USING SOC-FUNCTION ADDRINFO
ERRNO RETCODE.

Figure 20. FREEADDRINFO call instruction example

Parameter values set by the application
Keyword Description

SOC-FUNCTION
A 16-byte character field containing FREEADDRINFO. The field is
left-justified and padded on the right with blanks.

ADDRINFO Input parameter. The address of a set of address information
structures returned by the GETADDRINFO RES argument.

Parameter values returned to the application

Keyword Description

ERRNO Output parameter. A fullword binary field. If RETCODE is
negative, ERRNO contains a valid error number. Otherwise, ignore
the ERRNO field.

Chapter 7. Using the CALL instruction application programming interface (API) 77

78

See|Appendix A. Return codes on page 295| for information about
ERRNO return codes.

RETCODE Output parameter. A fullword binary field that returns one of the
following:

Value Description
0 Successful call.

-1 Check ERRNO for an error code.

GETADDRINFO

The GETADDRINFO call translates either the name of a service location (for
example, a host name), a service name, or both, and returns a set of socket
addresses and associated information to be used in creating a socket with which to
address the specified service or sending a datagram to the specified service.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

[Figure 21 on page 79 shows an example of GETADDRINFO call instructions.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

WORKING-STORAGE SECTION.

01

LINKAGE
01

01

SOC-FUNCTION PIC X(16)

NODE PIC X(255).

NODELEN PIC 9(8) BINARY.
SERVICE PIC X(32).

SERVLEN PIC 9(8) BINARY.
AI-PASSIVE PIC 9(8) BINARY VALUE
AI-CANONNAMEOK PIC 9(8) BINARY VALUE
AI-NUMERICHOST PIC 9(8) BINARY VALUE
AI-NUMERICSERV PIC 9(8) BINARY VALUE
AI-VAMAPPED PIC 9(8) BINARY VALUE
AI-ALL PIC 9(8) BINARY VALUE
AI-ADDRCONFIG PIC 9(8) BINARY VALUE
HINTS USAGE IS POINTER.

RES USAGE IS POINTER.
CANNLEN PIC 9(8) BINARY.
ERRNO PIC 9(8) BINARY.
RETCODE PIC S9(8) BINARY.
SECTION.

HINTS-ADDRINFO.

03 FLAGS PIC 9(8) BINARY.
03 AF PIC 9(8) BINARY.
03 SOCTYPE PIC 9(8) BINARY.
03 PROTO PIC 9(8) BINARY.
03 FILLER PIC 9(8) BINARY.
03 FILLER PIC 9(8) BINARY.
03 FILLER PIC 9(8) BINARY.
03 FILLER PIC 9(8) BINARY.
RES-ADDRINFO.

03 FLAGS PIC 9(8) BINARY.
03 AF PIC 9(8) BINARY.
03 SOCTYPE PIC 9(8) BINARY.
03 PROTO PIC 9(8) BINARY.
03 NAMELEN PIC 9(8) BINARY.
03 CANONNAME USAGE IS POINTER.
03 NAME USAGE IS POINTER.
03 NEXT USAGE IS POINTER.

PROCEDURE DIVISION.
MOVE 'www.hostname.com' TO NODE.
MOVE 16 TO HOSTLEN.
MOVE 'TELNET' TO SERVICE.
MOVE 6 TO SERVLEN.
SET HINTS TO ADDRESS OF HINTS-ADDRINFO.

CALL 'EZASOKET' USING SOC-FUNCTION NODE NODELEN SERVICE SERVLEN HINTS

RES CANNLEN ERRNO RETCODE.

Figure 21. GETADDRINFO call instruction example

VALUE IS 'GETADDRINFO'.

=N =

16.
32.

Parameter values set by the application

Keyword

Description

SOC-FUNCTION

NODE

A 16-byte character field containing GETADDRINFO. The field is
left-justified and padded on the right with blanks.

An input parameter. Storage up to 255 bytes long that contains the

host name being queried. If the AI-NUMERICHOST flag is

specified in the storage pointed to by the HINTS field, then NODE
should contain the queried host’s IP address in presentation form.

Chapter 7. Using the CALL instruction application programming interface (API)

79

80

NODELEN

SERVICE

SERVLEN

HINTS

This is an optional field but if specified you must also code
NODELEN. The NODE name being queried will consist of up to
NODELEN or up to the first binary 0.

An input parameter. A fullword binary field set to the length of the
host name specified in the NODE field and should not include
extraneous blanks. This is an optional field but if specified you
must also code NODE.

An input parameter. Storage up to 32 bytes long that contains the
service name being queried. If the AI-NUMERICSERYV flag is
specified in the storage pointed to by the HINTS field, then
SERVICE should contain the queried port number in presentation
form. This is an optional field but if specified you must also code
SERVLEN. The SERVICE name being queried will consist of up to
SERVLEN or up to the first binary 0.

An input parameter. A fullword binary field set to the length of the
service name specified in the SERVICE field and should not
include extraneous blanks. This is an optional field but if specified
you must also code SERVICE.

An input parameter. If the HINTS argument is specified, it contains
the address of an addrinfo structure containing input values that
may direct the operation by providing options and limiting the
returned information to a specific socket type, address family, or
protocol. If the HINTS argument is not specified, then the
information returned will be as if it referred to a structure
containing the value 0 for the FLAGS, SOCTYPE and PROTO
fields, and AF_UNSPEC for the AF field. Include the EZBREHST
Resolver macro to enable your assembler program to contain the
assembler mappings for the ADDR_INFO structure.

This is an optional field.
The address information structure has the following fields:
Field Description

FLAGS
A fullword binary field. Must have the value of 0 of the
bitwise, OR of one or more of the following;:

AI-PASSIVE (X'00000001") or a decimal value of 1.

* Specifies how to fill in the NAME pointed to by
the returned RES.

* If this flag is specified, then the returned address
information will be suitable for use in binding a
socket for accepting incoming connections for
the specified service (for example, the BIND
call). In this case, if the NODE argument is not
specified, then the IP address portion of the
socket address structure pointed to by the
returned RES will be set to INADDR_ANY for
an IPv4 address or INGADDR_ANY for an IPv6
address.

e If this flag is not set, the returned address
information will be suitable for the CONNECT

call (for a connection-mode protocol) or for a
CONNECT, SENDTO, or SENDMSG call (for a

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

connectionless protocol). In this case, if the
NODE argument is not specified, then the IP
address portion of the socket address structure
pointed to by the returned RES will be set to the
default loopback address for an IPv4 address
(127.0.0.0) or the default loopback address for an
IPv6 address (::1).

* This flag is ignored if the NODE argument is
specified.

AI-CANONNAMEOK (X'00000002") or a decimal value of
2.

* If this flag is specified and the NODE argument
is specified, then the GETADDRINFO call
attempts to determine the canonical name
corresponding to the NODE argument.

AI-NUMERICHOST (X'00000004') or a decimal value of
4.

* If this flag is specified then the NODE argument
must be a numeric host address in presentation

form. Otherwise, an error of host not found
[EAI_NONAME] is returned.

AI-NUMERICSERV (X'00000008') or a decimal value of 8.

* If this flag is specified, the SERVICE argument
must be a numeric port in presentation form.
Otherwise, an error [EAI_NONAME] is returned.

AI-VAMAPPED (X'00000010') or a decimal value of 16.

* If this flag is specified along with the AF field
with the value of AF_INET6 or a value of
AF_UNSPEC when IPv6 is supported, the caller
will accept IPv4-mapped IPv6 addresses. When
the AI-ALL flag is not also specified, if no IPv6
addresses are found, a query is made for IPv4
addresses. If IPv4 addresses are found, they are
returned as IPv4-mapped IPv6 addresses.

* If the AF field does not have the value of
AF_INET6 or the AF field contains AF_UNSPEC
but IPv6 is not supported on the system, this
flag is ignored.

AI-ALL (X'00000020'") or a decimal value of 32.

* When the AF field has a value of AF_INET6 and
AI-ALL is set, the AI-VAMAPPED flag must also
be set to indicate that the caller will accept all
addresses (IPv6 and IPv4-mapped IPv6
addresses). When the AF field has a value of
AF_UNSPEC when the system supports IPv6
and AI-ALL is set, the caller accepts IPv6
addreses and either IPv4 address (if
AI-VAMAPPED is not set), or IPv4-mapped IPv6
addresses (if AI-VAMAPPED is set). A query is
first made for IPv6 addresses and if successful,
the IPv6 addresses are returned. Another query
is then made for IPv4 addresses, and any IPv4

Chapter 7. Using the CALL instruction application programming interface (API) 81

82

AF

addresses found are returned as either
IPv4-mapped IPv6 addresses (if AI-VAMAPPED
is also specified), or as IPv4 addresses (if
AI-VAMAPPED is not specified).

* If the AF field does not have the value of
AF_INET6 or does not have the value of
AF_UNSPEC when the system supports IPv6,
this flag is ignored.

AI-ADDRCONFIG (X'00000040") or a decimal value of 64.
If this flag is specified, then a query on the name
in NODE will occur if the Resolver determines
whether either of the following is true:

* If the system is IPv6 enabled and has at least
one IPv6 interface, then the Resolver will make a
query for IPv6 (AAAA or A6 DNS) records.

* If the system is IPv4 enabled and has at least
one IPv4 interface, then the Resolver will make a
query for IPv4 (A DNS) records.

The loopback address is not considered in this case
as a valid interface.

Note: To perform the binary OR’ing of the flags
above in a COBOL program, simply add the
necessary COBOL statements as in the
example below. Note that the value of the
FLAGS field after the COBOL ADD is a
decimal 80 or a X'00000050', which is the
sum of OR’ing AI_VAMAPPED and
AI_ADDRCONFIG or X'00000010" and
X'00000040":

01 AI-VAMAPPED PIC 9(8) BINARY VALUE 16.
01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.

ADD AI-VAMAPPED TO FLAGS.
ADD AI-ADDRCONFG TO FLAGS.

A fullword binary field. Used to limit the returned
information to a specific address family. The value of
AF_UNSPEC means that the caller will accept any protocol
family. The value of a decimal 0 indicates AF_UNSPEC.
The value of a decimal 2 indicates AF_INET, and the value
of a decimal 19 indicates AF _INET®6.

SOCTYPE

Type name
SOCK_STREAM
SOCK_DGRAM

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

A fullword binary field. Used to limit the returned
information to a specific socket type. A value of 0 means
that the caller will accept any socket type. If a specific
socket type is not given (for example, a value of 0) then
information on all supported socket types will be returned.

The following are the acceptable socket types:

Decimal value Description
1 for stream socket
2 for datagram socket

Type name

SOCK_RAW

Protocol name
IPPROTO_TCP
IPPROTO_UDP

Decimal value Description

3 for raw-protocol interface

Anything else will fail with return code EAI_SOCTYPE.
Note that although SOCK_RAW will be accepted, it will
only be valid when SERVICE is numeric (for example,
SERVICE=23). A lookup for a SERVICE name will never
occur in the appropriate services file (for example,

hlg. ETC.SERVICES) using any protocol value other than
SOCK_STREAM or SOCK_DGRAM.

If PROTO is not 0 and SOCTYPE is 0, then the only
acceptable input values for PROTO are IPPROTO_TCP and
IPPROTO_UDP. Otherwise, the GETADDRINFO call will
be failed with return code of EAI_BADFLAGS.

If SOCTYPE and PROTO are both specified as 0, then
GETADDRINFO will proceed as follows:

 If SERVICE is null, or if SERVICE is numeric, then any
returned addrinfos will default to a specification of
SOCTYPE as SOCK_STREAM.

* If SERVICE is specified as a service name (for example,
SERVICE=FTP), the GETADDRINFO call will search the
appropriate services file (for example,
hlg.ETC.SERVICES) twice. The first search will use
SOCK_STREAM as the protocol, and the second search
will use SOCK_DGRAM as the protocol. No default
socket type provision exists in this case.

If both SOCTYPE and PROTO are specified as nonzero,
then they should be compatible, regardless of the value
specified by SERVICE. In this context, compatible means one
of the following;:

* SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
* SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP

* SOCTYPE is specified as SOCK_RAW, in which case
PROTO can be anything

PROTO

A fullword binary field. Used to limit the returned
information to a specific protocol. A value of 0 means that
the caller will accept any protocol.

The following are the acceptable protocols:

Decimal value Description
6 TCP
17 user datagram

If SOCTYPE is 0 and PROTO is nonzero, the only
acceptable input values for PROTO are IPPROTO_TCP and
IPPROTO_UDP. Otherwise, the GETADDRINFO call will
be failed with return code of EAI_ BADFLAGS.

If PROTO and SOCTYPE are both specified as 0, then
GETADDRINFO will proceed as follows:

Chapter 7. Using the CALL instruction application programming interface (API) 83

84

 If SERVICE is null, or if SERVICE is numeric, then any
returned addrinfos will default to a specification of
SOCTYPE as SOCK_STREAM.

 If SERVICE is specified as a service name (for example,
SERVICE=FTP), the GETADDRINFO will search the
appropriate services file (for example, hlq.ETC.SERVICE)
twice. The first search will use SOCK_STREAM as the
protocol, and the second search will use SOCK_DGRAM
as the protocol. No default socket type provision exists
in this case.

If both PROTO and SOCTYPE are specified as nonzero,
they should be compatible, regardless of the value
specified by SERVICE. In this context, compatible means one
of the following:

* SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
* SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP

¢ SOCTYPE=SOCK_RAW, in which case PROTO can be
anything

If the lookup for the value specified in SERVICE fails [for
example, the service name does not appear in an
appropriate service file (such as, hlq. ETC.SERVICES) using
the input protocol], then the GETADDRINFO call will be
failed with return code of EAI_SERVICE.

NAMELEN A fullword binary field. On input, this field must be 0.

CANONNAME

A fullword binary field. On input, this field must be 0.
NAME A fullword binary field. On input, this field must be 0.
NEXT A fullword binary field. On input, this field must be 0.
RES

Initially a fullword binary field. On a successful return, this field
will contain a pointer to an addrinfo structure. The addrinfo
storage will be allocated in the caller’s key. This pointer will also
be used as input to the FREEADDRINFO call which must be used
to free storage obtained by this call.

The address information structure contains the following fields:
Field Description

FLAGS
A fullword binary field that is not used as output.

AF A fullword binary field. The value returned in this field
may be used as the AF argument on the SOCKET call to

create a socket suitable for use with the returned address
NAME.

SOCTYPE
A fullword binary field. The value returned in this field
may be used as the SOCTYPE argument on the SOCKET
call to create a socket suitable for use with the returned
address NAME.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

CANNLEN

ERRNO

RETCODE

PROTO
A fullword binary field. The value returned in this field
may be used as the PROTO argument on the SOCKET call
to create a socket suitable for use with the returned
address ADDR.

NAMELEN
A fullword binary field. The length of the NAME socket
address structure. The value returned in this field may be
used as the arguments for the CONNECT or BIND call
with such a socket, according to the AI-PASSIVE flag.

CANONNAME
A fullword binary field. The canonical name for the value
specified by NODE. If the NODE argument is specified,
and if the AI-FCANONNAMEOK flag was specified by the
HINTS argument, then the CANONNAME field in the first
returned address information structure will contain the
address of storage containing the canonical name
corresponding to the input NODE argument. If the
canonical name is not available, then the CANONNAME
field will refer to the NODE argument or a string with the
same contents. The CANNLEN field will contain the length
of the returned canonical name.

NAME
A fullword binary field. The address of the returned socket
address structure. The value returned in this field may be
used as the arguments for the CONNECT or BIND call
with such a socket, according to the AI-PASSIVE flag.

NEXT A fullword binary field. Contains the address of the next
address information structure on the list, or 0’s if it is the
last structure on the list.

Initially an input parameter. A fullword binary field used to
contain the length of the canonical name returned by the RES
CANONNAME field. This is an optional field.

Output parameter. A fullword binary field. If RETCODE is
negative, ERRNO contains a valid error number. Otherwise, ignore
the ERRNO field.

See|Appendix A. Return codes on page 295| for information about
ERRNO return codes.

Output parameter. A fullword binary field that returns one of the
following:

Value Description
0 Successful call.

-1 Check ERRNO for an error code.

The ADDRINFO structure uses indirect addressing to return a variable number of
NAMES. If you are coding in PL/I or assembler language, this structure can be
processed in a relatively straight-forward manner. If you are coding in COBOL,
this structure may be difficult to interpret. You can use the subroutine EZACIC09
to simplify interpretation of the information returned by the GETADDRINFO calls.

Chapter 7. Using the CALL instruction application programming interface (API) 85

GETCLIENTID

GETCLIENTID call returns the identifier by which the calling application is known
to the TCP/IP address space in the calling program. The CLIENT parameter is
used in the GIVESOCKET and TAKESOCKET calls. See [“GIVESOCKET” on page|
for a discussion of the use of GIVESOCKET and TAKESOCKET calls.

Do not be confused by the terminology; when GETCLIENTID is called by a server,
the identifier of the caller (not necessarily the client) is returned.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of GETCLIENTID call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETCLIENTID'.

01 CLIENT.
03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION CLIENT ERRNO RETCODE.

Figure 22. GETCLIENTID call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64)

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing GETCLIENTID. The field is
left-justified and padded to the right with blanks.

Parameter values returned to the application

CLIENT
A client-ID structure that describes the application that issued the call.

86 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

DOMAIN
This is a fullword binary number specifying the domain of the
client. On input this is an optional parameter for AF_INET, and
required parameter for AF_INET6 to specify the domain of the
client. For TCP/IP the value is a decimal 2, indicating AF_INET, or
a decimal 19, indicating AF_INET6. On output, this is the returned
domain of the client.

NAME
An 8-byte character field set to the caller’s address space name.

TASK An 8-byte field set to the task identifier of the caller.

RESERVED
Specifies 20-byte character reserved field. This field is required, but
not used.
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an
error number. See|Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

GETHOSTBYADDR

The GETHOSTBYADDR call returns the domain name and alias name of a host
whose IPv4 Internet address is specified in the call. A given TCP/IP host can have
multiple alias names and multiple host IPv4 Internet addresses. The address
resolution attempted depends on how the resolver is configured and if any local
host tables exist. Refer to the k/OS Communications Server: IP Configuration Guidd for
information about configuring the resolver and how local host tables can be used.

The following requirements apply to this call:

Authorization: Supervisor state or problem state. The PSW key must match
the key in which the MVS application task was attached

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61/

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

[Figure 23 on page 88| shows an example of GETHOSTBYADDR call instructions.

Chapter 7. Using the CALL instruction application programming interface (API) 87

88

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYADDR'.

01 HOSTADDR PIC 9(8) BINARY.
01 HOSTENT PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION HOSTADDR HOSTENT RETCODE.

Figure 23. GETHOSTBYADDR call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64)

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing GETHOSTBYADDR. The field is
left-justified and padded on the right with blanks.

HOSTADDR
A fullword binary field set to the Internet address (specified in network
byte order) of the host whose name is being sought. See
[Return codes on page 295|for information about ERRNO return codes.

Parameter values returned to the application

HOSTENT
A fullword containing the address of the HOSTENT structure.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

GETHOSTBYADDR returns the HOSTENT structure shown in [Figure 24 on page|

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Hostent

Hostname »
Address of » Name X'00'
Alias_List >
List
Address of _
. R »| Address of |—— Alias#1 X'00'
Family »
A f i '00'
X'00000002" ddress of [——p Alias#2 X'00
Hostaddr_Len —p Address of |——— Alias#3 X'00'
X'00000004" X'00000000"
Hostaddr_List =
Address of List
P Address of [—— INET Addr#1

Address of | INET Addr#2

Address of | INET Addr#3

X'00000000

Figure 24. HOSTENT structure returned by the GETHOSTBYADDR call

GETHOSTBYADDR returns the HOSTENT structure shown in figure The
HOSTENT structure is a tasks’s serially reusable storage area. It should not be
used or referenced between MVS tasks. The storage is freed when the task
terminates. The assembler mapping of the structure is defined in macro
EZBREHST, which is installed in the data set specified on your SMP/E DDDEF for
MACLIB. This structure contains:

* The address of the host name that is returned by the call. The name length is
variable and is ended by X'00".

* The address of a list of addresses that point to the alias names returned by the
call. This list is ended by the pointer X'00000000". Each alias name is a variable
length field ended by X'00'.

* The value returned in the FAMILY field is always 2 for AF_INET.

* The length of the host Internet address returned in the HOSTADDR_LEN field is
always 4 for AF_INET.

* The address of a list of addresses that point to the host Internet addresses
returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and Internet addresses. If you are coding in PL/I or assembler
language, this structure can be processed in a relatively straight-forward manner. If
you are coding in COBOL, this structure may be difficult to interpret. You can use
the subroutine EZACICO8 to simplify interpretation of the information returned by
the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about
EZACICO08, see ['EZACIC08” on page 189

Chapter 7. Using the CALL instruction application programming interface (API) 89

90

GETHOSTBYNAME

The GETHOSTBYNAME call returns the alias name and the IPv4 Internet address
of a host whose domain name is specified in the call. A given TCP/IP host can
have multiple alias names and multiple host IPv4 Internet addresses.

The name resolution attempted depends on how the resolver is configured and if
any local host tables exist. Refer to the|z/OS Communications Server: IP Configuration|
for information about configuring the resolver and how local host tables can
be used.

The following requirements apply to this call:

Authorization: Supervisor state or problem state. The PSW key must match
the key in which the MVS application task was attached.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of GETHOSTBYNAME call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYNAME'.

01 NAMELEN PIC 9(8) BINARY.
01 NAME PIC X(255).

01 HOSTENT PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME
HOSTENT RETCODE.

Figure 25. GETHOSTBYNAME call instruction example

For equivalent PL/1 and assembler language declarations, see
[parameter descriptions” on page 64/

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing GETHOSTBYNAME. The field is
left-justified and padded on the right with blanks.

NAMELEN
A value set to the length of the host name. The maximum length is 255.

NAME
A character string, up to 255 characters, set to a host name. Any trailing

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

blanks will be removed from the specified name prior to trying to resolve
it to an IP address. This call returns the address of the HOSTENT structure
for this name.

Parameter values returned to the application

HOSTENT
A fullword binary field that contains the address of the HOSTENT
structure.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call.
-1 An error occurred.
Hostent
Hostname >
Address of »| Name x00'
Alias_List >
List
Address of =
. »| Address of | —— Alias#1 X'00'
Family >
Add f i '00'
X'00000002" ress of | ———p Alias#2 X'00
Hostaddr_Len —p Address of |——— Alias#3 X'00'
X'00000004' X'00000000"
Hostaddr_List =
Address of List
P Address of |—— INET Addr#1

Address of [INET Addr#2

Address of |——» INET Addr#3

X'00000000'

Figure 26. HOSTENT structure returned by the GETHOSTYBYNAME call

GETHOSTBYNAME returns the HOSTENT structure shown in The
HOSTENT structure is a tasks’s serially reusable storage area. It should not be
used or referenced between MVS tasks. The storage is freed when the task
terminates. The assembler mapping of the structure is defined in macro
EZBREHST, which is installed in the data set specified on your SMP/E DDDEF for
MACLIB. This structure contains:

¢ The address of the host name that is returned by the call. The name length is
variable and is ended by X'00".

¢ The address of a list of addresses that point to the alias names returned by the
call. This list is ended by the pointer X'00000000'. Each alias name is a variable
length field ended by X'00".

* The value returned in the FAMILY field is always 2 for AF_INET.

Chapter 7. Using the CALL instruction application programming interface (API) 91

92

* The length of the host Internet address returned in the HOSTADDR_LEN field is
always 4 for AF_INET.

¢ The address of a list of addresses that point to the host Internet addresses
returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and Internet addresses. If you are coding in PL/I or assembler
language, this structure can be processed in a relatively straight-forward manner. If
you are coding in COBOL, this structure may be difficult to interpret. You can use
the subroutine EZACICO8 to simplify interpretation of the information returned by
the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about
EZACICO8, see ["EZACIC08” on page 189 .|

GETHOSTID

The GETHOSTID call returns the 32-bit Internet address for the current host.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming]|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of GETHOSTID call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTID'.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION RETCODE.

Figure 27. GETHOSTID call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64)

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing GETHOSTID. The field is left-justified
and padded on the right with blanks.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

RETCODE
Returns a fullword binary field containing the 32-bit Internet address of the
host. There is no ERRNO parameter for this call.

GETHOSTNAME
The GETHOSTNAME call returns the domain name of the local host.

Note: The host name returned is the host name the TCPIP stack learned at startup
from the TCPIP.DATA file that was found.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |[“Environmental restrictions and programming|
[requirements” on page 61|

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of GETHOSTNAME call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTNAME'.

01 NAMELEN PIC 9(8) BINARY.
01 NAME PIC X(24).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME
ERRNO RETCODE.

Figure 28. GETHOSTNAME call instruction example

For equivalent PL/1 and assembler language declarations, see

lparameter descriptions” on page 64/

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing GETHOSTNAME. The field is
left-justified and padded on the right with blanks.

NAMELEN
A fullword binary field set to the length of the NAME field.

Chapter 7. Using the CALL instruction application programming interface (API) 93

Parameter values returned to the application

NAME
Indicates the receiving field for the host name. TCP/IP Services allows a
maximum length of 24 characters. The Internet standard is a maximum
name length of 255 characters. The actual length of the NAME field is
found in NAMELEN.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

GETIBMOPT

The GETIBMOPT call returns the number of TCP/IP images installed on a given
MVS system and their status, versions, and names.

Note: Images from pre-V3R2 releases of TCP/IP Services are excluded. The
GETIBMOPT call is not meaningful for pre-V3R2 releases. With this
information, the caller can dynamically choose the TCP/IP image with
which to connect by using the INITAPI call. The GETIBMOPT call is
optional. If it is not used, follow the standard method to determine the
connecting TCP/IP image:

* Connect to the TCP/IP specified by TCPIPJOBNAME in the active
TCPIP.DATA file.

* Locate TCPIP.DATA using the search order described in the
[Communications Server: IP Configuration Referencel

For detailed information about the standard method, refer to [z/OS Communications|
[Server: New Function Summary}

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

94 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

shows an example of GETIBMOPT call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETIBMOPT'.
01 COMMAND PIC 9(8) BINARY VALUE IS 1.
01 BUF.
03 NUM-IMAGES PIC 9(8) COMP.
03 TCP-IMAGE OCCURS 8 TIMES.
05 TCP-IMAGE-STATUS PIC 9(4) BINARY.
05 TCP-IMAGE-VERSION PIC 9(4) BINARY.
05 TCP-IMAGE-NAME PIC X(8)
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.

CALL '"EZASOKET' USING SOC-FUNCTION COMMAND BUF ERRNO RETCODE.

Figure 29. GETIBMOPT call instruction example

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing GETIBMOPT. The field is
left-justified and padded on the right with blanks.

COMMAND A value or the address of a fullword binary number specifying the
command to be processed. The only valid value is 1.
Parameter values returned to the application

BUF A 100-byte buffer into which each active TCP/IP image status, version, and
name are placed.

On successful return, these buffer entries contain the status, names, and versions of
up to eight active TCP/IP images. The following layout shows the BUF field upon
completion of the call.

The NUM_IMAGES field indicates how many entries of TCP_IMAGE are included
in the total BUF field. If the NUM_IMAGES returned is 0, there are no TCP/IP
images present.

The status field can have a combination of the following information:

Status field =~ Meaning

X'8xxx' Active

X'dxxx' Terminating

X"2xxx' Down

X'Ixxx' Stopped or stopping

Note: In the above status fields, xxx is reserved for IBM use and can contain any
value.

When the status field is returned with a combination of Down and Stopped,

TCP/IP abended. Stopped, when returned alone, indicates that TCP/IP was
stopped.

Chapter 7. Using the CALL instruction application programming interface (API) 95

The version field is:

Version Field

TCP/IP z/0OS Communications Server VIR2 |X'0612'

TCP/IP z/OS Communications Server V1R4 |X'0614'

TCP/IP z/OS Communications Server VIR5 |X'0615'

TCP/IP z/OS Communications Server VIR6 |X'0616'

TCP/IP z/OS Communications Server VIR7 |X'0617"'

The name field is the PROC name, left-justified, and padded with blanks.

NUM_IMAGES
(4 bytes)

Status Version Name
(2 bytes) (2 bytes) (8 bytes)
Status Version Name
(2 bytes) (2 bytes) (8 bytes)
Status Version Name
(2 bytes) (2 bytes) (8 bytes)
Status Version Name
(2 bytes) (2 bytes) (8 bytes)
Status Version Name
(2 bytes) (2 bytes) (8 bytes)
Status Version Name
(2 bytes) (2 bytes) (8 bytes)
Status Version Name
(2 bytes) (2 bytes) (8 bytes)
Status Version Name
(2 bytes) (2 bytes) (8 bytes)

Figure 30. Example of name field

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error
number. See|Appendix A. Return codes on page 295 for information about
ERRNO return codes.

RETCODE
A fullword binary field with the following values:

Value Description
-1 Call returned error. See ERRNO field.

0 Successful call.

GETNAMEINFO

The GETNAMEINFO call returns the node name and service location of a socket
address that is specified in the call. On successful completion, GETNAMEINFO
returns the node and service named, if requested, in the buffers provided.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

The following requirements apply to this call:

Authorization:

Supervisor state or problem state, any PSW key.

Dispatchable unit mode:

Task.

Cross memory mode:

PASN = HASN.

Amode:

31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61

ASC mode:

Primary address space control (ASC) mode.

Interrupt status:

Enabled for interrupts.

Locks:

Unlocked.

Control parameters:

All parameters must be addressable by the caller and in the
primary address space.

Chapter 7. Using the CALL instruction application programming interface (API) 97

98

WORKING-STORAGE SECTION.
01 SOC-FUNCTION
01 NAMELEN
01 HOST
01 HOSTLEN
01 SERVICE
01 SERVLEN
01 FLAGS
01 NI-NOFQDN
01 NI-NUMERICHOST
01 NI-NAMEREQD
01 NI-NUMERICSERVER
01 NI-DGRAM

* IPv4 socket structure.
01 NAME.
03 FAMILY
03 PORT
03 IP-ADDRESS
03 RESERVED

* IPv6 socket structure.
01 NAME.

03 FAMILY

03 PORT

03 FLOWINFO

03 IP-ADDRESS.
10 FILLER
10 FILLER

03 SCOPE-ID

01 ERRNO
01 RETCODE

PROCEDURE DIVISION.
MOVE 28 TO NAMELEN.

MOVE 255 TO HOSTLEN
MOVE 32 TO SERVLEN.

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC 9(4)
PIC 9(4)
PIC 9(8)

X(16)
9(8) BINARY.

VALUE IS 'GETNAMEINFO'.

X(255).

9(8)

BINARY.

X(32).

9(8)
9(8)
9(8)
9(8)
9(8)
9(8)
9(8)

PIC X(8).

PIC 9(4)
PIC 9(4)
PIC 9(8)

BINARY.

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY

BINARY.
BINARY.
BINARY.

BINARY.
BINARY.
BINARY.

PIC 9(16) BINARY.
PIC 9(16) BINARY.
PIC 9(8) BINARY.

PIC 9(8) BINARY.
PIC S9(8) BINARY.

MOVE NI-NAMEREQD TO FLAGS.
CALL "EZASOKET' USING SOC-FUNCTION NAME NAMELEN HOST
HOSTLEN SERVICE SERVLEN FLAGS ERRNO RETCODE.

VALUE 0.
VALUE 1.
VALUE 2.
VALUE 4.
VALUE 8.
VALUE 16.

Figure 31. GETNAMEINFO call instruction example

Parameter values set by the application

Keyword Description

SOC-FUNCTION

A 16-byte character field containing GETNAMEINFO. The field is
left-justified and padded on the right with blanks.

NAME

An input parameter. A socket address structure to be translated
which has the following fields:

The IPv4 socket address structure must specify the following fields:

Field Description

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

NAMELEN

HOST

HOSTLEN

FAMILY
A halfword binary number specifying the IPv4 addressing
family. For TCP/IP the value is a decimal 2, indicating
AF_INET.

PORT A halfword binary number specifying the port number.

IP-ADDRESS
A fullword binary number specifying the 32-bit IPv4
Internet address.

RESERVED
An 8-byte reserved field. This field is required, but is not
used.

The IPv6 socket address structure specifies the following fields:
Field Description

FAMILY
A halfword binary field specifying the IPv6 addressing

family. For TCP/IP the value is a decimal 19, indicating
AF_INETS6.

PORT A halfword binary number specifying the port number.

FLOWINFO
A fullword binary field specifying the traffic class and flow
label. This value of this field is undefined.

IP-ADDRESS
A 16-byte binary field specifying the 128-bit IPv6 Internet
address, in network byte order.

SCOPE-ID
A fullword binary field which identifies a set of interfaces
as appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS,
SCOPE-ID contains the link index for the IPv6-ADDRESS.
For all other address scopes, SCOPE-ID is undefined.

An input parameter. A fullword binary field. The length of the
socket address structure pointed to by the NAME argument.

On input, storage capable of holding the returned resolved host
name, which may be up to 255 bytes long, for the input socket
address. If inadequate storage is specified to contain the resolved
host name, then the resolver will return the host name up to the
storage specified and truncation may occur. If the host’s name
cannot be located, the numeric form of the host’s address is
returned instead of its name. However, if the NI_ NAMEREQD
option is specified and no host name is located then an error is
returned. This is an optional field but if specified you must also
code HOSTLEN. Either HOST/HOSTLEN or SERVICE/SERVLEN
parameters, or both parameters, are required. An error occurs if
both are omitted.

An output parameter. A fullword binary field that contains the
length of the HOST storage used to contain the returned resolved
host name. HOSTLEN must be equal to or greater than the length
of the longest host name to be returned. GETNAMEINFO will
return the host name up to the length specified by HOSTLEN. On

Chapter 7. Using the CALL instruction application programming interface (API) 99

100

SERVICE

SERVLEN

FLAGS

Flag name

'NI_NOFQDN'

output, HOSTLEN will contain the length of the returned resolved
host name. If HOSTLEN is 0 on input, then the resolved host name
will not be returned. This is an optional field but if specified you
must also code HOST. Either HOST/HOSTLEN or
SERVICE/SERVLEN parameters, or both parameters, are required.
An error occurs if both are omitted.

On input, storage capable of holding the returned resolved service
name, which may be up to 32 bytes long, for the input socket
address. If inadequate storage is specified to contain the resolved
service name, then the resolver will return the service name up to
the storage specified and truncation may occur. If the service name
cannot be located, or if NI_NUMERICSERV was specified in the
FLAGS operand, then the numeric form of the service address is
returned instead of its name. This is an optional field but if
specified you must also code SERVLEN. Either HOST/HOSTLEN
or SERVICE/SERVLEN parameters, or both parameters, are
required. An error occurs if both are omitted.

An output parameter. A fullword binary field. The length of the
SERVICE storage used to contain the returned resolved service
name. SERVLEN must be equal to or greater than the length of the
longest service name to be returned. GETNAMEINFO will return
the service name up to the length specified by SERVLEN. On
output, SERVLEN will contain the length of the returned resolved
service name. If SERVLEN is 0 on input, then the service name
information will not be returned. This is an optional field but if
specified you must also code SERVICE. Either HOST/HOSTLEN or
SERVICE/SERVLEN parameters, or both parameters, are required.
An error occurs if both are omitted.

An input parameter. A fullword binary field. This is an optional
field. The FLAGS field must contain either a binary or decimal
value, depending on the programming language used:

Binary Decimal Description
value value

X'00000001" 1 Return the NAME portion of the fully
qualified domain name.

'NI_NUMERICHOST" X'00000002' 2 Only return the numeric form of host’s

address.

'NI_NAMEREQD' X'00000004' 4 Return an error if the host’s name cannot

be located.

'NI_NUMERICSERV' X'00000008' 8 Only return the numeric form of the service

‘NI_DGRAM'

ERRNO

address.

X'00000010' 16 Indicates that the service is a datagram
service. The default behavior is to assume
that the service is a stream service.

Output parameter. A fullword binary field. If RETCODE is
negative, ERRNO contains a valid error number. Otherwise, ignore
the ERRNO field.

See|Appendix A. Return codes on page 295| for information about
ERRNO return codes.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

RETCODE Output parameter. A fullword binary field that returns one of the

following:

Value Description

0
-1

GETPEERNAME

Successful call.

Check ERRNO for an error code.

The GETPEERNAME call returns the name of the remote socket to which the local

socket is connected.

The following requirements apply to this call:

Authorization:

Supervisor state or problem state, any PSW key.

Dispatchable unit mode:

Task.

Cross memory mode:

PASN = HASN.

Amode: 31-bit or 24-bit.
Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61|

ASC mode: Primary address space control (ASC) mode.

Interrupt status:

Enabled for interrupts.

Locks:

Unlocked.

Control parameters:

All parameters must be addressable by the caller and in the
primary address space.

[Figure 32 on page 102/ shows an example of GETPEERNAME call instructions.

Chapter 7. Using the CALL instruction application programming interface (API) 101

102

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETPEERNAME'.

01 S PIC 9(4) BINARY.
* IPv4 socket structure.
01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 socket structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOWINFO PIC 9(8) BINARY.
03 TIP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 32. GETPEERNAME call instruction example

For equivalent PL/1 and assembler language declarations, see
fparameter descriptions” on page 64/

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing GETPEERNAME. The field is
left-justified and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the local socket
connected to the remote peer whose address is required.

Parameter Values Returned to the Application

NAME
An IPv4 socket address structure to contain the peer name. The structure
that is returned is the socket address structure for the remote socket
connected to the local socket specified in field S.

FAMILY
A halfword binary field containing the connection peer’s IPv4
addressing family. The call always returns the value decimal 2,
indicating AF_INET.

PORT A halfword binary field set to the connection peer’s port number.

IP-ADDRESS
A fullword binary field set to the 32-bit IPv4 Internet address of
the connection peer’s host machine.

RESERVED
Specifies an 8-byte reserved field. This field is required, but not
used.

An IPv6 socket address structure to contain the peer name. The structure

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

that is returned is the socket address structure for the remote socket that is
connected to the local socket specified in field S.

FAMILY
A halfword binary field containing the connection peer’s IPv6
addressing family. The call always returns the value decimal 19,
indicating AF_INET®6.

PORT A halfword binary field set to the connection peer’s port number.

FLOWINFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 Internet address of the
connection peer’s host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

GETSOCKNAME

The GETSOCKNAME call returns the address currently bound to a specified
socket. If the socket is not currently bound to an address, the call returns with the
FAMILY field set, and the rest of the structure set to 0.

Since a stream socket is not assigned a name until after a successful call to either
BIND, CONNECT, or ACCEPT, the GETSOCKNAME call can be used after an

implicit bind to discover which port was assigned to the socket.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Chapter 7. Using the CALL instruction application programming interface (API) 103

104

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

shows an example of GETSOCKNAME call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKNAME'.

01 S PIC 9(4) BINARY.
* IPv4 socket address structure.
01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 socket address structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 33. GETSOCKNAME call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64/

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing GETSOCKNAME. The field is
left-justified and padded on the right with blanks.

S A halfword binary number set to the descriptor of a local socket whose
address is required.

Parameter values returned to the application

NAME
Specifies the IPv4 socket address structure returned by the call.

FAMILY
A halfword binary field containing the IPv4 addressing family. The
call always returns the value decimal 2, indicating AF_INET.

PORT A halfword binary field set to the port number bound to this
socket. If the socket is not bound, 0 is returned.

IP-ADDRESS
A fullword binary field set to the 32-bit Internet address of the
local host machine.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

RESERVED
Specifies 8 bytes of binary 0s. This field is required but not used.

NAME
Specifies the IPv6 socket address structure returned by the call.

FAMILY
A halfword binary field containing the IPv6 addressing family. The
call always returns the value decimal 19, indicating AF_INET6.

PORT A halfword binary field set to the port number bound to this
socket. If the socket is not bound, 0 is returned.

FLOWINFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IP-ADDRESS
A 16 byte binary field set to the 128-bit IPv6 Internet address in
network byte order, of the local host machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See|Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

GETSOCKOPT
The GETSOCKOPT call queries the options that are set by the SETSOCKOPT call.

Several options are associated with each socket. These options are described below.
You must specify the option to be queried when you issue the GETSOCKOPT call.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Chapter 7. Using the CALL instruction application programming interface (API) 105

106

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

shows an example of GETSOCKOPT call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKOPT'.

01 S PIC 9(4) BINARY.
01 OPTNAME PIC 9(8) BINARY.
01 OPTVAL PIC 9(8) BINARY.
If OPNAME = SO-LINGER then

01 OPTVAL PIC X(16).

01 OPTLEN PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S OPTNAME
OPTVAL OPTLEN ERRNO RETCODE.

Figure 34. GETSOCKORPT call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing GETSOCKOPT. The field is
left-justified and padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
requiring options.
OPTNAME

Set OPTNAME to the required option before you issue GETSOCKOPT. See
the following table for a list of the options and their unique requirements.

Note: COBOL programs cannot contain field names with the underbar
character. Fields representing the option name should contain dashes
instead.

OPTLEN
Input parameter. A fullword binary field containing the length of the data
returned in OPTVAL. See the following table for determining on what to
base the value of OPTLEN.

Parameter values returned to the application

OPTVAL
For the GETSOCKOPT API, OPTVAL will be an output parameter. See the
following table for a list of the options and their unique requirements.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

RETCODE

A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

Table 3. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL

(output)
IP_ ADD_MEMBERSHIP Contains the IP_MREQ structure as | N/A
defined in
Use this option to enable an application to join | 5YS1. MACLIB(BPXYSOCK). The
a multicast group on a specific interface. An IP_MREQ structure contains a
interface has to be specified with this option. 4-byte TPv4 multicast address
Only applications that want to receive multicast | followed by a 4-byte IPv4 interface
datagrams need to join multicast groups. address.
This is an IPv4-only socket option. See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.
The IP_MREQ definition for
COBOL:
01 IP-MREQ.
05 IMR-MULTIADDR
PIC 9(8) BINARY.
05 IMR-INTERFACE
PIC 9(8) BINARY.
IP_DROP_MEMBERSHIP Contains the IP_MREQ structure as |N/A

Use this option to enable an application to exit
a multicast group.

This is an IPv4-only socket option.

defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a
4-byte IPv4 multicast address
followed by a 4-byte IPv4 interface
address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

The IP_MREQ definition for
COBOL:

01 IP-MREQ.
05 IMR-MULTIADDR
PIC 9(8) BINARY.
05 IMR-INTERFACE
PIC 9(8) BINARY.

IP_MULTICAST_IF

Use this option to set or obtain the IPv4
interface address used for sending outbound
multicast datagrams from the socket
application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be transmitted
only on one interface at a time.

A 4-byte binary field containing an
IPv4 interface address.

A 4-byte binary field

containing an IPv4 interface

address.

Chapter 7. Using the CALL instruction application programming interface (API)

107

Table 3. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

IP_MULTICAST_LOOP

Use this option to control or determine whether

a copy of multicast datagrams are looped back
for multicast datagrams sent to a group to
which the sending host itself belongs. The
default is to loop the datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.
If enabled, will contain a 1.

If disabled, will contain a 0.

IP_MULTICAST_TTL

Use this option to set or obtain the IP
time-to-live of outgoing multicast datagrams.
The default value is '01’x meaning that
multicast is available only to the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing the
value of '00’x to 'FF'x.

A 1-byte binary field
containing the value of "00"x
to 'FF'x.

IPV6_JOIN_GROUP

Use this option to control the reception of
multicast packets and specify that the socket
join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6 interface
index number.

If the interface index number is 0,
then the stack chooses the local
interface.

See the SEZAINST(CBLOCK) for
the PL/I example of IPV6_MREQ.

The IPV6_MREQ definition for
COBOL:

01 IPV6-MREQ.
05 IPV6MR-MULTIADDR.
10 FILLER PIC 9(16)
BINARY.
10 FILLER PIC 9(16)
BINARY.
05 IPV6MR-INTERFACE PIC
9(8) BINARY.

N/A

108

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Table 3. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

IPV6_LEAVE_GROUP

Use this option to control the reception of
multicast packets and specify that the socket
leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6 interface
index number.

If the interface index number is 0,
then the stack chooses the local
interface.

See the SEZAINST(CBLOCK) for
the PL/I example of IPV6_MREQ.

The IPV6_MREQ definition for
COBOL:

01 IPV6-MREQ.
05 IPV6MR-MULTIADDR.
10 FILLER PIC 9(16)
BINARY.
10 FILLER PIC 9(16)
BINARY.
05 IPV6MR-INTERFACE PIC
9(8) BINARY.

N/A

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for
outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the multicast hops. If not
specified, then the default is 1 hop.

-1 indicates use stack default.

0 — 255 is the valid hop limit range.
Note: An application must be APF
authorized to enable it to set the
hop limit value above the system
defined hop limit value. CICS
applications cannot execute as APF
authorized.

Contains a 4-byte binary
value in the range 0 — 255
indicating the number of
multicast hops.

IPV6_MULTICAST_IF

Use this option to set or obtain the index of the
IPv6 interface used for sending outbound
multicast datagrams from the socket
application.

This is an IPv6-only socket option.

Contains a 4-byte binary field
containing an IPv6 interface index
number.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

IPV6_MULTICAST_LOOP

Use this option to control or determine whether
a multicast datagram is looped back on the
outgoing interface by the IP layer for local
delivery when datagrams are sent to a group to
which the sending host itself belongs. The
default is to loop multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

Chapter 7. Using the CALL instruction application programming interface (API)

109

Table 3. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

IPV6_UNICAST_HOPS

Use this option to set or obtain the hop limit
used for outgoing unicast IPv6 packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the unicast hops. If not
specified, then the default is 1 hop.

-1 indicates use stack default.

0 — 255 is the valid hop limit range.
Note: APF authorized applications
are permitted to set a hop limit that
exceeds the system configured
default. CICS applications cannot
execute as APF authorized.

Contains a 4-byte binary
value in the range 0 — 255
indicating the number of
unicast hops.

IPV6_V60ONLY

Use this option to set or determine whether the
socket is restricted to send and receive only
IPv6 packets. The default is to not restrict the
sending and receiving of only IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_ASCII

Use this option to set or determine the
translation to ASCII data option. When
SO_ASCII is set, data is translated to ASCII.
When SO_ASCII is not set, data is not
translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used
if translation is applied to the data.

If enabled, contains ON.

If disabled, contains OFF.
Note: The optvalue is
returned and is optionally
followed by the name of the
translation table that is used
if translation is applied to the
data.

SO_BROADCAST

Use this option to set or determine whether a
program can send broadcast messages over the
socket to destinations that can receive datagram
messages. The default is disabled.

Note: This option has no meaning for stream
sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the status
of the debug option. The default is disabled. The
debug option controls the recording of debug
information.

Notes:

1. This is a REXX-only socket option.

2. This option has meaning only for stream
sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

110 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Table 3. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

SO_EBCDIC

Use this option to set or determine the
translation to EBCDIC data option. When
SO_EBCDIC is set, data is translated to
EBCDIC. When SO_EBCDIC is not set, data is
not translated to or from EBCDIC. This option
is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used

if translation is applied to the data.

If enabled, contains ON.

If disabled, contains OFF.
Note: The optvalue is
returned and is optionally
followed by the name of the
translation table that is used
if translation is applied to the
data.

SO_ERROR

Use this option to request pending errors on the
socket or to check for asynchronous errors on
connected datagram sockets or for other errors
that are not explicitly returned by one of the
socket calls. The error status is clear afterwards.

N/A

A 4-byte binary field
containing the most recent
ERRNO for the socket.

SO_KEEPALIVE

Use this option to set or determine whether the
keep alive mechanism periodically sends a
packet on an otherwise idle connection for a
stream socket.

The default is disabled.

When activated, the keep alive mechanism
periodically sends a packet on an otherwise idle
connection. If the remote TCP does not respond
to the packet or to retransmissions of the
packet, the connection is terminated with the
error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

Chapter 7. Using the CALL instruction application programming interface (API)

111

Table 3. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

SO_LINGER

Use this option to control or determine how
TCP/IP processes data that has not been
transmitted when a CLOSE is issued for the
socket. The default is disabled.

Notes:

1. This option has meaning only for stream
sockets.

2. If you set a zero linger time, the connection
cannot close in an orderly manner, but
stops, resulting in a RESET segment being
sent to the connection partner. Also, if the
aborting socket is in nonblocking mode, the
close call is treated as though no linger
option had been set.

When SO_LINGER is set and CLOSE is called,
the calling program is blocked until the data is
successfully transmitted or the connection has

timed out.

When SO_LINGER is not set, the CLOSE
returns without blocking the caller, and TCP/IP
continues to attempt to send data for a
specified time. This usually allows sufficient
time to complete the data transfer.

Use of the SO_LINGER option does not
guarantee successful completion because
TCP/IP only waits the amount of time specified
in OPTVAL for SO_LINGER.

Contains an 8-byte field containing
two 4-byte binary fields.

Assembler coding:

ONOFF DS F
LINGER DS F
COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to
enable and set to 0 to disable this
option. Set LINGER to the number
of seconds that TCP/IP lingers after
the CLOSE is issued.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F
COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero value returned in
ONOFF indicates enabled, a 0
indicates disabled. LINGER
indicates the number of
seconds that TCP/IP will try
to send data after the CLOSE
is issued.

SO_OOBINLINE

Use this option to control or determine whether
out-of-band data is received.

Note: This option has meaning only for stream
sockets.

When this option is set, out-of-band data is
placed in the normal data input queue as it is
received and is available to a RECV or a
RECVFROM even if the OOB flag is not set in
the RECV or the RECVFROM.

When this option is disabled, out-of-band data
is placed in the priority data input queue as it
is received and is available to a RECV or a
RECVFROM only when the OOB flag is set in
the RECV or the RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

112 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Table 3. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

SO_RCVBUF

Use this option to control or determine the size
of the data portion of the TCP/IP receive buffer.

The size of the data portion of the receive
buffer is protocol-specific, based on the
following values prior to any SETSOCKOPT
call:

* TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP Socket

¢ UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP Socket

* The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP receive
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of
the data portion of the
TCP/IP receive buffer.

If disabled, contains a 0.

SO_REUSEADDR

Use this option to control or determine whether
local addresses are reused. The default is
disabled. This alters the normal algorithm used
with BIND. The normal BIND algorithm allows
each Internet address and port combination to
be bound only once. If the address and port
have been already bound, then a subsequent
BIND will fail and result error will be
EADDRINUSE.

When this option is enabled, the following
situations are supported:

* A server can BIND the same port multiple
times as long as every invocation uses a
different local IP address and the wildcard
address INADDR_ANY is used only one time
per port.

* A server with active client connections can be
restarted and can bind to its port without
having to close all of the client connections.

 For datagram sockets, multicasting is
supported so multiple bind() calls can be
made to the same class D address and port
number.

* If you require multiple servers to BIND to
the same port and listen on INADDR_ANY,
refer to the SHAREPORT option on the PORT
statement in TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

Chapter 7. Using the CALL instruction application programming interface (API)

113

Table 3. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

SO_SNDBUF

Use this option to control or determine the size
of the data portion of the TCP/IP send buffer.
The size is of the TCP/IP send buffer is
protocol specific and is based on the following:

¢ The TCPSENDBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP socket

¢ The UDPSENDBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP socket

e The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP send buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of
the data portion of the
TCP/IP send buffer.

If disabled, contains a 0.

SO_TYPE

Use this option to return the socket type.

N/A

A 4-byte binary field
indicating the socket type:

X’1” indicates
SOCK_STREAM.

X’2” indicates
SOCK_DGRAM.

X’3" indicates SOCK_RAW.

TCP_KEEPALIVE

Use this option to set or determine whether a
socket-specific timeout value (in seconds) is to
be used in place of a configuration-specific
value whenever keep alive timing is active for
that socket.

When activated, the socket-specified timer value
remains in effect until respecified by
SETSOCKOPT or until the socket is closed.
Refer to the[z/OS Communications Server: 1P|
[Programmer’s Guide and Referencd for more
information on the socket option parameters.

A 4-byte binary field.

To enable, set to a value in the
range of 1 — 2 147 460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the
specific timer value (in
seconds) that is in effect for
the given socket.

If disabled, contains a 0
indicating keep alive timing
is not active.

114 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

Table 3. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)
TCP_NODELAY A 4-byte binary field. A 4-byte binary field.
Use this option to set or determine whether To enable, set to a 0. If enabled, contains a 0.
data sent over the socket is subject to the Nagle
algorithm (RFC 896). To disable, set to a 1 or nonzero. If disabled, contains a 1.

Under most circumstances, TCP sends data
when it is presented. When this option is
enabled, TCP will wait to send small amounts
of data until the acknowledgment for the
previous data sent is received. When this option
is disabled, TCP will send small amounts of
data even before the acknowledgment for the
previous data sent is received.

Note: Use the following to set TCP_NODELAY
OPTNAME value for COBOL programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP

VALUE 2147483649.

01 TCP-NODELAY-REDEF REDEFINES

TCP-NODELAY-VAL.

05 FILLER PIC 9(6) BINARY.
05 TCP-NODELAY PIC 9(8) BINARY.

GIVESOCKET

The GIVESOCKET call is used to pass a socket from one process to another.

UNIX-based platforms use a command called FORK to create a new child process
that has the same descriptors as the parent process. You can use this new child
process in the same way that you used the parent process.

TCP/IP normally uses GETCLIENTID, GIVESOCKET, and TAKESOCKET calls in
the following sequence:

1.

A process issues a GETCLIENTID call to get the job name of its region and its
MVS subtask identifier. This information is used in a GIVESOCKET call.

The process issues a GIVESOCKET call to prepare a socket for use by a child
process.

The child process issues a TAKESOCKET call to get the socket. The socket now
belongs to the child process, and can be used by TCP/IP to communicate with
another process.

Note: The TAKESOCKET call returns a new socket descriptor in RETCODE.
The child process must use this new socket descriptor for all calls that
use this socket. The socket descriptor that was passed to the
TAKESOCKET call must not be used.

After issuing the GIVESOCKET command, the parent process issues a SELECT
command that waits for the child to get the socket.

When the child gets the socket, the parent receives an exception condition that
releases the SELECT command.

The parent process closes the socket.

Chapter 7. Using the CALL instruction application programming interface (API) 115

The original socket descriptor can now be reused by the parent.
Sockets that have been given, but not taken for a period of four days, will be
closed and will no longer be available for taking. If a select for the socket is

outstanding, it will be posted.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of GIVESOCKET call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'GIVESOCKET'.

01 S PIC 9(4) BINARY.
01 CLIENT.
03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S CLIENT ERRNO RETCODE.

Figure 35. GIVESOCKET call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64/

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing GIVESOCKET. The field is left-justified
and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to be
given.
CLIENT

A structure containing the identifier of the application to which the socket
should be given.

116 z/0S VIR7.0 Comm Svr: IP IMS Sockets Guide

DOMAIN
A fullword binary number that must be set to decimal 2, indicating
AF_INET, or decimal 19 indicating AF_INET®6.

Note: A socket given by GIVESOCKET can only be taken by a
TAKESOCKET with the same DOMAIN (AF_INET or
AF_INETS6).

NAME
Specifies an eight-character field, left-justified, padded to the right
with blanks, that can be set to the name of the MVS address space
that will contain the application that is going to take the socket.

* If the socket-taking application is in the same address space as
the socket-giving application (as in CICS), NAME can be
specified. The socket-giving application can determine its own
address space name by issuing the GETCLIENTID call.

* If the socket-taking application is in a different MVS address
space (as in IMS™), this field should be set to blanks. When this
is done, any MVS address space that requests the socket can
have it.

TASK Specifies an 8-byte field that can be set to blanks, or to the
identifier of the socket-taking MVS subtask. If this field is set to
blanks, any subtask in the address space specified in the NAME
field can take the socket.

* As used by IMS and CICS, the field should be set to blanks.
» If TASK identifier is non-blank, the socket-receiving task should
already be in execution when the GIVESOCKET is issued.

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following;:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

INITAPI

The INITAPI call connects an application to the TCP/IP interface. Almost all
sockets programs that are written in COBOL, PL/1, or assembler language must
issue the INITAPI macro before they issue other sockets macros.

The exceptions to this rule are the following calls, which, when issued first, will
generate a default INITAPI call.

e GETCLIENTID

* GETHOSTID

* GETHOSTNAME

* GETIBMOPT

* SELECT

Chapter 7. Using the CALL instruction application programming interface (API) 117

118

e SELECTEX
* SOCKET
* TAKESOCKET

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61|

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of INITAPI call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'INITAPI'.
01 MAXSOC PIC 9(4) BINARY.
01 IDENT.
02 TCPNAME PIC X(8).
02 ADSNAME PIC X(8).

01 SUBTASK PIC X(8).

01 MAXSNO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION MAXSOC IDENT SUBTASK
MAXSNO ERRNO RETCODE.

Figure 36. INITAPI call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64/

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing INITAPIL The field is left-justified and
padded on the right with blanks.

MAXSOC
A halfword binary field set to the maximum number of sockets this
application will ever have open at one time. The maximum number is
65535 and the minimum number is 50. This value is used to determine the

amount of memory that will be allocated for socket control blocks and
buffers. If less than 50 are requested, MAXSOC defaults to 50.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

IDENT
A structure containing the identities of the TCP/IP address space and the
calling program’s address space. Specify IDENT on the INITAPI call from
an address space.

TCPNAME
An 8-byte character field that should be set to the MVS job name
of the TCP/IP address space with which you are connecting.

ADSNAME
An 8-byte character field set to the identity of the calling program’s
address space. For explicit-mode IMS server programs, use the
TIMSrvAddrSpc field passed in the TIM. If ADSNAME is not
specified, the system derives a value from the MVS control block
structure.

SUBTASK
Indicates an 8-byte field, containing a unique subtask identifier which is
used to distinguish between multiple subtasks within a single address
space. Use your own job name as part of your subtask name. This will
ensure that, if you issue more than one INITAPI command from the same
address space, each SUBTASK parameter will be unique.

Parameter values returned to the application

MAXSNO
A fullword binary field that contains the highest socket number assigned
to this application. The lowest socket number is 0. If you have 50 sockets,
they are numbered from 0 to 49. If MAXSNO is not specified, the value for
MAXSNO is 49.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See|Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

IOCTL

The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL macro, you must load a value representing the
characteristic that you want to control into the COMMAND field.

The variable length parameters REQARG and RETARG are arguments that are
passed to and returned from IOCTL. The length of REQARG and RETARG is
determined by the value that you specify in COMMAND. See |Table 4 on page 125|
for information about REQARG and RETARG.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Chapter 7. Using the CALL instruction application programming interface (API) 119

Cross memory mode:

PASN = HASN.

Amode: 31-bit or 24-bit.
Note: See “Addressability mode (Amode) considerations”
under |[“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status:

Enabled for interrupts.

Locks:

Unlocked.

Control parameters:

All parameters must be addressable by the caller and in the
primary address space.

shows an example of IOCTL call instructions.

WORKING-STORAGE SECTION.

01 SOC-FUNCTION
01 S
01 COMMAND

01 IFREQ.
03 NAME
03 FAMILY
03 PORT
03 ADDRESS
03 RESERVED

01 IFREQOUT.
03 NAME
03 FAMILY
03 PORT
03 ADDRESS
03 RESERVED

01 GRP-IOCTL-TABLE.

02 TOCTL-ENTRY OCCURS 100

03 NAME
03 FAMILY
03 PORT
03 ADDRESS
03 NULLS

01 TIOCTL-REQARG
01 IOCTL-RETARG
01 ERRNO

01 RETCODE

PROCEDURE DIVISION.

PIC X(16) VALUE 'IOCTL'.
PIC 9(4) BINARY.
PIC 9(8) BINARY.

PIC
PIC
PIC
PIC
PIC

X(16).
9(4)
9(4)
9(8)
X(8).

BINARY.
BINARY.
BINARY.

PIC
PIC
PIC
PIC
PIC

X(16).
9(4)
9(4)
9(8)
X(8).

BINARY.
BINARY.
BINARY.

TIMES.
PIC X(16).
PIC 9(4)
PIC 9(4)
PIC 9(8)
PIC X(8).

BINARY.
BINARY.
BINARY.

USAGE IS POINTER.
USAGE IS POINTER.
PIC 9(8) BINARY.
PIC 9(8) BINARY.

CALL "EZASOKET' USING SOC-FUNCTION S COMMAND REQARG
RETARG ERRNO RETCODE.

Figure 37. IOCTL call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64/

120 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing IOCTL. The field is left-justified and
padded to the right with blanks.

S A halfword binary number set to the descriptor of the socket to be
controlled.
COMMAND

To control an operating characteristic, set this field to one of the following
symbolic names. A value in a bit mask is associated with each symbolic
name. By specifying one of these names, you are turning on a bit in a
mask which communicates the requested operating characteristic to
TCP/IP.

FIONBIO
Sets or clears blocking status.

FIONREAD
Returns the number of immediately readable bytes for the socket.

SIOCATMARK
Determines whether the current location in the data input is
pointing to out-of-band data.

SIOCGHOMEIF6
Requests all IPv6 home interfaces.

¢ When the SIOCGHOMEIF6 IOCTL is issued, the REGARQ must
contain a Network Configuration Header. The NETCONFHDR is
defined in the SYS1.MACLIB(BPXYIOCS6) for assembler
language. The following fields are input fields and must be filled
out:

NchEyeCatcher
Contains eye catcher '6NCH'

Nchloctl
Contains the command code

NchBufferLength
Buffer length large enough to contain all the IPv6
interface records. Each interface record is length of
HOME-IF-ADDRESS. If buffer is not large enough, then
errno will be set to ERANGE and the NchNumEntryRet
will be set to number of interfaces. Based on
NchNumEntryRet and size of HOME-IF-ADDRESS,
calculate the necessary storage to contain the entire list.

NchBufferPtr
This is a pointer to an array of HOME-IF structures
returned on a successful call. The size will depend on
the number of qualifying interfaces returned.

NchNumEntryRet
If return code is 0 this will be set to number of
HOME-IF-ADDRESS returned. If errno is ERANGE, then
will be set to number of qualifying interfaces. No
interfaces are returned. Recalculate The NchBufferLength

based on this value times the size of
HOME-IF-ADDRESS.

Chapter 7. Using the CALL instruction application programming interface (API) 121

122

REQARG and RETARG
Point to the arguments that are passed between the
calling program and IOCTL. The length of the argument
is determined by the COMMAND request. REQARG is
an input parameter and is used to pass arguments to
IOCTL. RETARG is an output parameter and is used for
arguments returned by IOCTL. For the lengths and
meanings of REQARG and RETARG for each
COMMAND type, see [Table 4 on page 125}

Working-Storage Section.

01 SIOCGHOMEIF6-VAL pic s9(10) binary value 3222599176.
01 SIOCGHOMEIF6-REDEF REDEFINES SIOCGHOMEIF6-VAL.

05 FILLER PIC 9(6) COMP.

05 SIOCGHOMEIF6 PIC 9(8) COMP.
01 TIOCTL-RETARG USAGE IS POINTER.

01 NET-CONF-HDR.
05 NCH-EYE-CATCHER PIC X(4) VALUE '6NCH'.

05 NCH-IOCTL PIC 9(8) BINARY.
05 NCH-BUFFER-LENTH PIC 9(8) BINARY.
05 NCH-BUFFER-PTR USAGE IS POINTER.
05 NCH-NUM-ENTRY-RET ~ PIC 9(8) BINARY.
01 HOME-IF.
03 HOME-IF-ADDRESS.
05 FILLER PIC 9(16) BINARY.

Linkage Section.

01 L1.
03 NetConfHdr.
05 NchEyeCatcher pic x(4).

05 Nchloctl pic 9(8) binary.
05 NchBufferLength pic 9(8) binary.
05 NchBufferPtr usage is pointer.

05 NchNumEntryRet pic 9(8) binary.
* Allocate storage based on your need.
03 Allocated-Storage pic x(nn).

Procedure Division using L1.
move '6NCH' to NchEyeCatcher.
set NchBufferPtr to address of Allocated-Storage.
* Set NchBufferLength to the length of your allocated storage.

move nn to NchBufferLength.

move SIOCGHOMEIF6 to NchIoctl.

Call 'EZASOKET' using soket-ioctl socket-descriptor
SIOCGHOMEIF6
NETCONFHDR NETCONFHDR
errno retcode.

Figure 38. COBOL language example for SIOCGHOMEIF6

SIOCGIFADDR
Requests the IPv4 network interface address for a given interface
name. See the NAME field in [Figure 39 on page 123|for the address
format.

SIOCGIFBRDADDR
Requests the IPv4 network interface broadcast address for a given
interface name. See the NAME field in [Figure 39 on page 123 for
the address format.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

SIOCGIFCONF
Requests the IPv4 network interface configuration. The
configuration is a variable number of 32-byte structures formatted

as shown in

* When IOCTL is issued, REQARG must contain the length of the
array to be returned. To determine the length of REQARG,
multiply the structure length (array element) by the number of
interfaces requested. The maximum number of array elements
that TCP/IP can return is 100.

* When IOCTL is issued, RETARG must be set to the beginning of
the storage area that you have defined in your program for the
array to be returned.

03 NAME PIC X(16).

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 ADDRESS PIC 9(8) BINARY.

03 RESERVED PIC X(8).

Figure 39. Interface request structure (IFREQ) for the IOCTL call

SIOCGIFDSTADDR
Requests the network interface destination address for a given
interface name. (See IFREQ NAME field, for format.)

SIOCGIFNAMEINDEX
Requests all interface names and interface indexes including local
loopback but excluding VIPAs. Information is returned for both
IPv4 and IPv6 interfaces whether they are active or inactive. For
IPv6 interfaces, information is only returned for an interface if it
has at least one available IP address.

The configuration consists of IF_NAMEINDEX structure, which is

defined in SYS1.MACLIB(BPX11IOCC) for the assembler language.

¢ When the SIOCGIFNAMEINDEX IOCTL is issued, the first word
in REQARG must contain the length (in bytes) to contain an

IF-NAME-INDEX structure to return the interfaces. The formula

to compute this length is as follows:

1. Determine the number of interfaces expected to be returned
upon successful completion of this command.

2. Multiply the number of interfaces by the array element (size
of IF-NIINDEX, IF-NINAME, and IF-NIEXT) to get the size
of the array element.

3. Add the size of the IF-NITOTALIF and IF-NIENTRIES to the
size of the array to get the total number of bytes needed to
accommodate the name and index information returned.

¢ When IOCTL is issued, RETARG must be set to the address of
the beginning of the area in your program’s storage that is
reserved for the IFNAMEINDEX structure that is to be returned
by IOCTL.

* The command 'SIOCGIFNAMEINDEX' returns a variable
number of all the qualifying network interfaces.

Chapter 7. Using the CALL instruction application programming interface (API) 123

124

WORKING-STORAGE SECTION.
01 SIOCGIFNAMEINDEX-VAL pic 9(10) binary value 1073804803.
01 SIOCGIFNAMEINDEX-REDEF REDEFINES SIOCGIFNAMEINDEX-VAL.

05 FILLER PIC 9(6) COMP.

05 SIOCGIFNAMEINDEX PIC 9(8) COMP.
01 regarg pic 9(8) binary.
01 reqgarg-header-only pic 9(8) binary.
01 IF-NIHEADER.

05 IF-NITOTALIF PIC 9(8) BINARY.

05 IF-NIENTRIES PIC 9(8) BINARY.

01 IF-NAME-INDEX-ENTRY.
05 IF-NIINDEX PIC 9(8) BINARY.
05 IF-NINAME PIC X(16).
05 IF-NINAMETERM PIC X(1).
05 IF-NIRESV1 PIC X(3).
01 OUTPUT-STORAGE PIC X(500).
Procedure Division.
move 8 to reqarg-header-only.
Call 'EZASOKET' using soket-ioctl socket-descriptor
STIOCGIFNAMEINDEX
REQARG-HEADER-ONLY IF-NIHEADER
errno retcode.
move 500 to reqarg.
Call 'EZASOKET' using soket-ioctl socket-descriptor
STIOCGIFNAMEINDEX
REQARG OUTPUT-STORAGE
errno retcode.

Figure 40. COBOL language example for SIOCGIFNAMEINDEX

SIOCTTLSCTL

Controls Application Transparent Transport Layer Security
(AT-TLS) for the connection. REQARG and RETARG must contain
a TTLS_IOCTL structure. If a partner certificate is requested, the
TTLS_IOCTL must include a pointer to additional buffer space and
the length of that buffer. Information is returned in the
TTLS_IOCTL structure. If a partner certificate is requested and one
is available, it is returned in the additional buffer space. The
TTLS_IOCTL structure is defined in members within SEZANMAC.
EZBZTLS1 defines the PL/I layout, EZBZTLSP defines the
assembler layout, and EZBZTLSB defines the COBOL layout. For
more usage information, refer to the [Application Transparent TLS]|
(AT-TLS) chapter of the f/OS Communications Server: 1
Programmer’s Guide and Referenced

Restriction:Use of this ioctl for functions other than query requires
that the AT-TLS policy mapped to the connection be defined with
the ApplicationControlled parameter set to On.

REQARG and RETARG
Points to arguments that are passed between the calling program and
IOCTL. The length of the argument is determined by the COMMAND
request. REQARG is an input parameter and is used to pass arguments to
IOCTL, and RETARG is an output parameter and receives arguments from
IOCTL. The REQARG and RETARG parameters are described in

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Table 4. IOCTL call arguments

COMMAND/CODE SIZE REQARG SIZE RETARG
FIONBIO X'8004A77E' 4 Set socket mode to: 0 Not used.
X'00'=blocking,
X'01'=nonblocking.
FIONREAD X'4004A77F' 0 Not used. 4 Number of characters available for read.
SIOCATMARK X'4004A707' 0 Not used. 4 X'00'= not at OOB data
X'01'= at OOB data.
SIOCGHOMEIF6 20 NetConfHdr See|Figure 38 on page 122 NetConfHdr.
X'C014F608'
SIOCGIFADDR X'C020A70D' 32 First 16 bytes - 32 Network interface address, see [Figure 39 on]
interface name. for format.
Last 16 bytes -
not used.
SIOCGIFBRDADDR 32 First 16 bytes - 32 Network interface address, see
X'C020A712' interface name. for format.
Last 16 bytes -
not used.
SIOCGIFCONF X'C008A714' 8 Size of RETARG. See note’.
SIOCGIFDSTADDR 32 First 16 bytes - 32 Destination interface address, see
X'C020A70F' interface name. for format.
Last 16 bytes -
not used.
SIOCGIFNAMEINDEX 4 First 4 bytes size of return See|Figure 40 on page 124 IF-FNAMEINDEX .
X'4000F603' buffer.
SIOCTTLSCTL X'C038D90B' 56 For IOCTL structure layout, 56 For IOCTL structure layout, refer to
refer to SEZANMAC(EZBZTLS]1) for PL/1,
SEZANMAC(EZBZTLS1) for SEZANMAC(EZBZTLSP) for assembler, and
PL/I, SEZANMAC(EZBZTLSB) for COBOL.
SEZANMAC(EZBZTLSP) for
assembler, and
SEZANMAC(EZBZTLSB) for
COBOL.
Notes:

1. When you call IOCTL with the SSIOCGIFCONF command set, REQARG should contain the length in bytes of RETARG. Each interface is assigned a
32-byte array element and REQARG should be set to the number of interfaces times 32. TCP/IP Services can return up to 100 array elements.

Parameter values returned to the application

RETARG
Returns an array whose size is based on the value in COMMAND. See
for information about REQARG and RETARG.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following;:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

The COMMAND SIOGIFCONF returns a variable number of network interface
configurations. contains an example of a COBOL II routine that can be
used to work with such a structure.

Chapter 7. Using the CALL instruction application programming interface (API) 125

126

Note: This call can only be programmed in languages that support address
pointers. shows a COBOL II example for SIOCGIFCONF.

WORKING-STORAGE SECTION.

77 REQARG PIC 9(8) COMP.

77 COUNT PIC 9(8) COMP VALUE max number of interfaces.
LINKAGE SECTION.

01 RETARG.

05 IOCTL-TABLE OCCURS 1 TO max TIMES DEPENDING ON COUNT.
10 NAME PIC X(16).
10 FAMILY PIC 9(4) BINARY.
10 PORT PIC 9(4) BINARY.
10 ADDR PIC 9(8) BINARY.
10 NULLS PIC X(8).
PROCEDURE DIVISION.
MULTIPLY COUNT BY 32 GIVING REQARQ.
CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND
REQARG RETARG ERRNO RETCODE.

Figure 41. COBOL Il example for SIOCGIFCONF

LISTEN
The LISTEN call:
* Completes the bind, if BIND has not already been called for the socket.

* Creates a connection-request queue of a specified length for incoming connection

requests.

Note: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is typically used by a server to receive connection requests from

clients. When a connection request is received, a new socket is created by a

subsequent ACCEPT call, and the original socket continues to listen for additional
connection requests. The LISTEN call converts an active socket to a passive socket
and conditions it to accept connection requests from clients. Once a socket becomes

passive it cannot initiate connection requests.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”

under [“Environmental restrictions and programming]

[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

[Figure 42 on page 127 shows an example of LISTEN call instructions.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

NTOP

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'LISTEN'.

01 S PIC 9(4) BINARY.
01 BACKLOG PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION S BACKLOG ERRNO RETCODE.

Figure 42. LISTEN call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64/

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing LISTEN. The field is left-justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor.

BACKLOG
A fullword binary number set to the number of communication requests to
be queued.

Rule: The BACKLOG value specified on the LISTEN call is limited to the
value configured by the SOMAXCONN statement in the stack’s TCPIP
PROFILE (default=10); no error is returned if a larger backlog is requested.
SOMAXCONN might need to be updated if a larger backlog is desired.
Refer to the /OS Communications Server: IP Configuration Reference| for
details.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

The NTOP call converts an IP address from its numeric binary form into a
standard text presentation form. On successful completion, NTOP returns the
converted IP address in the buffer provided.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.
Cross memory mode: PASN = HASN.

Chapter 7. Using the CALL instruction application programming interface (API) 127

128

Amode:

31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |[“Environmental restrictions and programming|

[requirements” on page 61|

ASC mode:

Primary address space control (ASC) mode.

Interrupt status:

Enabled for interrupts.

Locks:

Unlocked.

Control parameters:

All parameters must be addressable by the caller and in the

primary address space.

shows an example of NTOP call instructions.

WORKING-STORAGE SECTION.

01
01
01

= IPv4
01

* TPv6
01

01
01
01

01
01

SOC-ACCEPT-FUNCTION
SOC-NTOP-FUNCTION

S

socket structure.
NAME .

03 FAMILY PIC
03 PORT PIC
03 IP-ADDRESS PIC
03 RESERVED PIC
socket structure.
NAME .

03 FAMILY PIC
03 PORT PIC
03 FLOWINFO PIC
03 IP-ADDRESS.

03

10 FILLER PIC
10 FILLER PIC
SCOPE-ID PIC

NTOP-FAMILY PIC
ERRNO PIC
RETCODE PIC

PRESENTABLE-ADDRESS
PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY.

PROCEDURE DIVISION.

PIC X(16) VALUE IS 'ACCEPT'.
PIC X(16) VALUE IS 'NTOP'.
PIC 9(4) BINARY.

9(4) BINARY.
9(4) BINARY.
9(8) BINARY.
X(8).

9(4) BINARY.
9(4) BINARY.
9(8) BINARY.

9(16) BINARY.
9(16) BINARY.
9(8) BINARY.
9(8) BINARY.
9(8) BINARY.
S9(8) BINARY.

PIC X(45).

CALL "EZASOKET' USING SOC-ACCEPT-FUNCTION S NAME

ERRNO RETCODE.

CALL 'EZASOKET' USING SOC-NTOP-FUNCTION NTOP-FAMILY IP-ADDRESS
PRESENTABLE-ADDRESS
PRESENTABLE-ADDRESS-LEN ERRNO RETURN-CODE.

Figure 43. NTOP call instruction example

Parameter values set by the application

Keyword
FAMILY

IP-ADDRESS

Description

The addressing family for the IP address being converted. The
value of decimal 2 must be specified for AF_INET and 19 for

AF_INETS6.

A field containing the numeric binary form of the IPv4 or IPv6
address being converted. For an IPv4 address this field must be a

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

PTON

fullword and for an IPv6 address this field must be 16 bytes. The
address must be in network byte order.

Parameter values returned to the application

Keyword

Description

PRESENTABLE-ADDRESS

A field used to receive the standard text presentation form of the
IPv4 or IPv6 address being converted. For IPv4 the address will be
in dotted-decimal format and for IPv6 the address will be in
colon-hex format. The size of the IPv4 address will be a maximum
of 15 bytes and the size of the converted IPv6 address will be a
maximum of 45 bytes. Consult the value returned in
PRESENTABLE-ADDRESS-LEN for the actual length of the value
in PRESENTABLE-ADDRESS.

PRESENTABLE-ADDRESS-LEN

ERRNO

RETCODE

Initially, an input parameter. The address of a binary halfword field
that is used to specify the length of DSTADDR field on input and
upon a successful return will contain the length of converted IP
address.

Output parameter. A fullword binary field. If RETCODE is
negative, ERRNO contains a valid error number. Otherwise, ignore
the ERRNO field.

See|Appendix A. Return codes on page 295| for information about
ERRNO return codes.

A fullword binary field that returns one of the following:
Value Description
0 Successful call.

-1 Check ERRNO for an error code.

The PTON call converts an IP address in its standard text presentation form to its
numeric binary form. On successful completion, PTON returns the converted IP
address in the buffer provided.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.
Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Chapter 7. Using the CALL instruction application programming interface (API) 129

shows an example of PTON call instructions.

WORKING-STORAGE SECTION.

01 SOC-BIND-FUNCTION PIC X(16) VALUE IS 'BIND'.
01 SOC-PTON-FUNCTION PIC X(16) VALUE IS 'PTON'.
01 S PIC 9(4) BINARY.
* IPv4 socket structure.
01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 socket structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 AF-INET PIC 9(8) BINARY VALUE 2.
01 AF-INET6 PIC 9(8) BINARY VALUE 19.

* IPv4 address.
01 PRESENTABLE-ADDRESS PIC X(45).
01 PRESENTABLE-ADDRESS-IPV4 REDEFINES PRESENTABLE-ADDRESS.
05 PRESENTABLE-IPV4-ADDRESS PIC X(15) VALUE '192.26.5.19'.
05 FILLER PIC X(30).
01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 11.

* IPv6 address.
01 PRESENTABLE-ADDRESS PIC X(45)
VALUE '12f9:0:0:c30:123:457:9cb:1112".
01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 29.

* IPv4-mapped IPv6 address.
01 PRESENTABLE-ADDRESS PIC X(45)
VALUE '12f9:0:0:c30:123:457:192.26.5.19".
01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 32.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.

* IPv4 address.
CALL "EZASOKET' USING SOC-PTON-FUNCTION AF-INET PRESENTABLE-ADDRESS
PRESENTABLE-ADDRESS-LEN IP-ADDRESS ERRNO RETURN-CODE.
* IPv6 address.
CALL "EZASOKET' USING SOC-PTON-FUNCTION AF-INET6 PRESENTABLE-ADDRESS
PRESENTABLE-ADDRESS-LEN IP-ADDRESS ERRNO RETURN-CODE.
CALL "EZASOKET' USING SOC-BIND-FUNCTION S NAME ERRNO RETURN-CODE.

Figure 44. PTON call instruction example

Parameter values set by the application

Keyword Description

130 2z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

FAMILY The addressing family for the IP address being converted. The
value of decimal 2 must be specified for AF_INET and 19 for
AF_INET6.

PRESENTABLE-ADDRESS
A field containing the standard text presentation form of the IPv4
or IPv6 address being converted. For IPv4 the address will be in
dotted-decimal format and for IPv6 the address will be in
colon-hex format.

PRESENTABLE-ADDRESS-LEN
Input parameter. The address of a binary halfword field that must
contain the length of the IP address to be converted.

Parameter values returned to the application
Keyword Description

IP-ADDRESS A field containing the numeric binary form of the IPv4 or IPv6
address being converted. For an IPv4 address this field must be a
fullword and for an IPv6 address this field must be 16 bytes. The
address must be in network byte order.

ERRNO Output parameter. A fullword binary field. If RETCODE is
negative, ERRNO contains a valid error number. Otherwise, ignore
the ERRNO field.

See|Appendix A. Return codes on page 295| for information about
ERRNO return codes.

RETCODE A fullword binary field that returns one of the following;:

Value Description
0 Successful call.

-1 Check ERRNO for an error code.

READ

The READ call reads the data on socket s. This is the conventional TCP/IP read
data operation. If a datagram packet is too long to fit in the supplied bulffer,
datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
this call in a loop that repeats until all data has been received.

Note: See[“EZACIC05” on page 185|for a subroutine that will translate ASCII
input data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.
Cross memory mode: PASN = HASN.

Chapter 7. Using the CALL instruction application programming interface (API) 131

132

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |[“Environmental restrictions and programming|
[requirements” on page 61|

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of READ call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'READ'.

01 S PIC 9(4) BINARY.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S NBYTE BUF
ERRNO RETCODE.

Figure 45. READ call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64)

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing READ. The field is left-justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket that is
going to read the data.

NBYTE
A fullword binary number set to the size of BUE. READ does not return
more than the number of bytes of data in NBYTE even if more data is
available.

Parameter values returned to the application

BUF On input, a buffer to be filled by completion of the call. The length of BUF
must be at least as long as the value of NBYTE.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

0 A 0 return code indicates that the connection is closed and no data

is available.

>0 A positive value indicates the number of bytes copied into the

buffer.

-1 Check ERRNO for an error code.

READV

The READV function reads data on a socket and stores it in a set of buffers. If a
datagram packet is too long to fit in the supplied buffers, datagram sockets discard

extra bytes.

The following requirements apply to this call:

Authorization:

Supervisor state or problem state, any PSW key.

Dispatchable unit mode:

Task.

Cross memory mode:

PASN = HASN.

Amode: 31-bit or 24-bit.
Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61|

ASC mode: Primary address space control (ASC) mode.

Interrupt status:

Enabled for interrupts.

Locks:

Unlocked.

Control parameters:

All parameters must be addressable by the caller and in the
primary address space.

[Figure 46 on page 134 shows an example of READV call instructions.

Chapter 7. Using the CALL instruction application programming interface (API) 133

WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE 'READV'.
01 S PIC 9(4) BINARY.

01 TIOVCNT PIC 9(8) BINARY.

01 IO0V.

03 BUFFER-ENTRY OCCURS N TIMES.
05 BUFFER-POINTER USAGE IS POINTER.
05 RESERVED PIC X(4).
05 BUFFER_LENGTH PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

PROCEDURE DIVISION.

SET BUFFER-POINTER(1) TO ADDRESS OF BUFFERI.
SET BUFFER-LENGTH(1) TO LENGTH OF BUFFERL.
SET BUFFER-POINTER(2) TO ADDRESS OF BUFFER2.
SET BUFFER-LENGTH(2) TO LENGTH OF BUFFER2.

SET BUFFER-POINTER(n) TO ADDRESS OF BUFFERn.
SET BUFFER-LENGTH(n) TO LENGTH OF BUFFERn.
Call "EZASOCKET' USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 46. READV call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64)

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing READV. The field is left-justified and
padded to the right with blanks.

S A value or the address of a halfword binary number specifying the
descriptor of the socket into which the data is to be read.

IOV An array of tripleword structures with the number of structures equal to
the value in IOVCNT and the format of the structures as follows:

Fullword 1
Pointer to the address of a data buffer, which is filled in on
completion of the call

Fullword 2
Reserved

Fullword 3
The length of the data buffer referenced in fullword one

IOVCNT
A fullword binary field specifying the number of data buffers provided for
this call.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error

number. See|Appendix A. Return codes on page 295 for information about
ERRNO return codes.

134 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

RECV

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A 0 return code indicates that the connection is closed and no data
is available.

>0 A positive value indicates the number of bytes copied into the
buffer.

-1 Check ERRNO for an error code.

The RECV call, like READ, receives data on a socket with descriptor S. RECV
applies only to connected sockets. If a datagram packet is too long to fit in the
supplied buffers, datagram sockets discard extra bytes.

For additional control of the incoming data, RECV can:
¢ Peek at the incoming message without having it removed from the buffer
* Read out-of-band data

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
RECV in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode, RECV
blocks the caller until data arrives. If data is not available and the socket is in
nonblocking mode, RECV returns a —1 and sets ERRNO to 35 (EWOULDBLOCK).
See ["FCNTL” on page 75 or['IOCTL” on page 119|for a description of how to set
nonblocking mode.

For raw sockets, RECV adds a 20-byte header.

Note: See|"EZACIC05” on page 185 for a subroutine that will translate ASCII
input data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Chapter 7. Using the CALL instruction application programming interface (API) 135

shows an example of RECV call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'RECV'.

01 S PIC 9(4) BINARY.

01 FLAGS PIC 9(8) BINARY.
88 NO-FLAG VALUE IS 0.
88 00B VALUE IS 1.
88 PEEK VALUE IS 2.

01 NBYTE PIC 9(8) BINARY.

01 BUF PIC X(length of buffer).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE BUF
ERRNO RETCODE.

Figure 47. RECV call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64)

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing RECV. The field is left-justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to
receive the data.

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets

only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECV call will
read the same data.

NBYTE
A value or the address of a fullword binary number set to the size of BUF.
RECV does not receive more than the number of bytes of data in NBYTE
even if more data is available.

Parameter values returned to the application

BUF The input buffer to receive the data.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

136 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Value Description

0 The socket is closed.
>0 A positive return code indicates the number of bytes copied into
the buffer.

-1 Check ERRNO for an error code.

RECVFROM

The RECVFROM call receives data on a socket with descriptor S and stores it in a
buffer. The RECVFROM call applies to both connected and unconnected sockets.
The socket address is returned in the NAME structure. If a datagram packet is too
long to fit in the supplied buffers, datagram sockets discard extra bytes.

For datagram protocols, RECVFROM returns the source address associated with
each incoming datagram. For connection-oriented protocols like TCP,
GETPEERNAME returns the address associated with the other end of the
connection.

If NAME is nonzero, the call returns the address of the sender. The NBYTE
parameter should be set to the size of the buffer.

On return, NBYTE contains the number of data bytes received.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
RECVFROM in a loop that repeats until all data has been received.

For raw sockets, RECVFROM adds a 20-byte header.

If data is not available for the socket, and the socket is in blocking mode,
RECVFROM blocks the caller until data arrives. If data is not available and the
socket is in nonblocking mode, RECVFROM returns a —1 and sets ERRNO to 35
(EWOULDBLOCK). See ['FCNTL” on page 75|or ['IOCTL” on page 119 for a
description of how to set nonblocking mode.

Note: See|"EZACIC05” on page 185|for a subroutine that will translate ASCII
input data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.
Interrupt status: Enabled for interrupts.
Locks: Unlocked.

Chapter 7. Using the CALL instruction application programming interface (API) 137

138

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

shows an example of RECVFROM call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'RECVFROM'.

01 S PIC 9(4) BINARY.
01 FLAGS PIC 9(8) BINARY.
88 NO-FLAG VALUE IS 0.
88 00B VALUE IS 1.
88 PEEK VALUE IS 2.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
* IPv4 socket address structure.
01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 socket address structure.

01 NAME.
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOWINFO PIC 9(8) BINARY.
03 TIP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.

CALL "EZASOKET' USING SOC-FUNCTION S FLAGS
NBYTE BUF NAME ERRNO RETCODE.

Figure 48. RECVFROM call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64)

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing RECVFROM. The field is left-justified
and padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to
receive the data.

FLAGS
A fullword binary field containing flag values as follows:

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Literal Value Binary Value Description

NO-FLAG 0 Read data.

OOB

1 Receive out-of-band data (stream sockets
only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK

NBYTE

2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECVFROM
call will read the same data.

A fullword binary number specifying the length of the input buffer.

Parameter values returned to the application

BUF

NAME

Defines an input buffer to receive the input data.

An IPv4 socket address structure containing the address of the socket that
sent the data. The structure is as follows:

FAMILY
A halfword binary number specifying the IPv4 addressing family.
The value is always decimal 2, indicating AF_INET.

PORT A halfword binary number specifying the port number of the
sending socket.

IP-ADDRESS
A fullword binary number specifying the 32-bit IPv4 Internet
address of the sending socket.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

An IPv6 socket address structure containing the address of the socket that
sent the data. The structure is as follows:

Field Description

FAMILY
A halfword binary number specifying the IPv6 addressing family.
The value is decimal 19, indicating AF_INET®6.

PORT A halfword binary number specifying the port number of the
sending socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 Internet address of the
sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

Chapter 7. Using the CALL instruction application programming interface (API) 139

140

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 The socket is closed.

>0 A positive return code indicates the number of bytes of data
transferred by the read call.

-1 Check ERRNO for an error code.

RECVMSG

The RECVMSG call receives messages on a socket with descriptor S and stores
them in an array of message headers. If a datagram packet is too long to fit in the
supplied buffers, datagram sockets discard extra bytes.

For datagram protocols, RECVMSG returns the source address associated with
each incoming datagram. For connection-oriented protocols like TCP,
GETPEERNAME returns the address associated with the other end of the
connection.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

[Figure 49 on page 141{ shows an example of RECVMSG call instructions.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

WORKING-STORAGE SECTION.

VALUE IS 'RECVMSG'.

01 SOC-FUNCTION PIC X(16)

01 S PIC 9(4) BINARY.

01 MSG-HDR.
03 MSG-NAME USAGE IS POINTER.
03 MSG-NAME-LEN PIC 9(8) COMP.
03 10V USAGE IS POINTER.
03 TIOVCNT USAGE IS POINTER.

03 MSG-ACCRIGHTS

USAGE IS POINTER.

03 MSG-ACCRIGHTS-LEN USAGE IS POINTER.

01 FLAGS PIC 9(8) BINARY.
88 NO-FLAG VALUE IS 0
88 00B VALUE IS 1
88 PEEK VALUE IS 2
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.
LINKAGE SECTION.
01 L1.
03 RECVMSG-IOVECTOR.
05 IOV1A USAGE IS POINTER.
05 IOV1AL PIC 9(8) COMP.
05 IOVIL PIC 9(8) COMP.
05 I0V2A USAGE IS POINTER.
05 IOV2AL PIC 9(8) COMP.
05 I0VZ2L PIC 9(8) COMP.
05 IOV3A USAGE IS POINTER.
05 TOV3AL PIC 9(8) COMP.
05 I0V3L PIC 9(8) COMP.
03 RECVMSG-BUFFER1 PIC X(16).
03 RECVMSG-BUFFER2 PIC X(16).
03 RECVMSG-BUFFER3 PIC X(16).

03 RECVMSG-BUFNO PIC 9(8) COMP.

* IPv4 socket address structure.
03 NAME.
05 FAMILY PIC 9(4) BINARY.
05 PORT PIC 9(4) BINARY.
05 IP-ADDRESS PIC 9(8) BINARY.
05 RESERVED PIC X(8).
* IPv6 socket address structure.
03 NAME.
05 FAMILY PIC 9(4) BINARY.
05 PORT PIC 9(4) BINARY.
53 FLOWINFO PIC 9(8) BINARY.

05 TIP-ADDRESS.

10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
05 SCOPE-ID PIC 9(8) BINARY.

Figure 49. RECVMSG call instruction example (Part 1 of 2)

Chapter 7. Using the CALL instruction application programming interface (API)

141

PROCEDURE DIVISION USING L1.

SET MSG-NAME TO ADDRESS OF NAME.

MOVE LENGTH OF NAME TO MSG-NAME-LEN.

SET IOV TO ADDRESS OF RECVMSG-IOVECTOR.
MOVE 3 TO RECVMSG-BUFNO.

SET IOVCNT TO ADDRESS OF RECVMSG-BUFNO.
SET IOVIA TO ADDRESS OF RECVMSG-BUFFERL.
MOVE 0 TO IOVI1AL.

MOVE LENGTH OF RECVMSG-BUFFER1 TO IOVIL.
SET IOV2A TO ADDRESS OF RECVMSG-BUFFERZ.
MOVE O TO IQV2AL.

MOVE LENGTH OF RECVMSG-BUFFERZ TO IOVZ2L.
SET IOV3A TO ADDRESS OF RECVMSG-BUFFER3.
MOVE 0 TO IOV3AL.

MOVE LENGTH OF RECVMSG-BUFFER3 TO IOV3L.
SET MSG-ACCRIGHTS TO NULLS.

SET MSG-ACCRIGHTS-LEN TO NULLS.

MOVE O TO FLAGS.

MOVE SPACES TO RECVMSG-BUFFERL.

MOVE SPACES TO RECVMSG-BUFFERZ.

MOVE SPACES TO RECVMSG-BUFFER3.

CALL '"EZASOKET' USING SOC-FUNCTION S MSG-HDR FLAGS ERRNO RETCODE.

Figure 49. RECVMSG call instruction example (Part 2 of 2)

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64)

Parameter values set by the application

S A value or the address of a halfword binary number specifying the socket
descriptor.

MSG On input, a pointer to a message header into which the message is
received upon completion of the call.

Field Description

NAME
On input, a pointer to a buffer where the sender address is stored
upon completion of the call. The storage being pointed to should
be for an IPv4 socket address or an IPv6 socket address. The IPv4
socket address structure contains the following fields:

Field Description

FAMILY
Output parameter. A halfword binary number specifying
the IPv4 addressing family. The value for IPv4 socket
descriptor (S parameter) is decimal 2, indicating AF_INET.

PORT Output parameter. A halfword binary number specifying
the port number of the sending socket.

IP-ADDRESS
Output parameter. A fullword binary number specifying
the 32-bit IPv4 Internet address of the sending socket.

RESERVED
Output parameter. An 8-byte reserved field. This field is
required, but is not used.

142 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

The IPv6 socket address structure contains the following fields:
Field Description

FAMILY
Output parameter. A halfword binary number specifying
the IPv6 addressing family. The value for IPv6 socket
descriptor (S parameter) is decimal 19, indicating
AF_INETS.

PORT Output parameter. A halfword binary number specifying
the port number of the sending socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow
label. This value of this field is undefined.

IP-ADDRESS
Output parameter. A 16 byte binary field specifying the
128-bit IPv6 Internet address, in network byte order, of the
sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces
as appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS,
SCOPE-ID contains the link index for the IPv6-ADDRESS.
For all other address scopes, SCOPE-ID is undefined.

NAME-LEN
On input, a pointer to the size of the NAME.

IOV On input, a pointer to an array of tripleword structures with the
number of structures equal to the value in IOVCNT and the format
of the structures as follows:

Fullword 1
A pointer to the address of a data buffer. This data buffer
must be in the home address space.

Fullword 2
Reserved. This storage will be cleared.

Fullword 3
A pointer to the length of the data buffer referenced in
fullword 1.

In COBOL, the IOV structure must be defined separately in the
Linkage section, as shown in the example.

IOVCNT
On input, a pointer to a fullword binary field specifying the
number of data buffers provided for this call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is
ignored.

ACCRLEN
On input, a pointer to the length of the access rights received. This
field is ignored.

FLAGS
A fullword binary field with values as follows:

Chapter 7. Using the CALL instruction application programming interface (API) 143

Literal Value Binary Value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets
only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECVMSG call
will read the same data.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error
number. See|Appendix A. Return codes on page 295 for information about
ERRNO return codes.

RETCODE
A fullword binary field with the following values:

Value Description
<0 Call returned error. See ERRNO field.
0 Connection partner has closed connection.

>0 Number of bytes read.

SELECT

In a process where multiple I/O operations can occur it is necessary for the
program to be able to wait on one or several of the operations to complete.

For example, consider a program that issues a READ to multiple sockets whose
blocking mode is set. Because the socket would block on a READ call, only one
socket could be read at a time. Setting the sockets nonblocking would solve this
problem, but would require polling each socket repeatedly until data became
available. The SELECT call allows you to test several sockets and to execute a
subsequent I/0O call only when one of the tested sockets is ready, thereby ensuring
that the 1/0O call will not block.

To use the SELECT call as a timer in your program, do one of the following;:
* Set the read, write, and except arrays to zeros.

* Specify MAXSOC <= 0.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |[“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

144 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Defining which sockets to test
The SELECT call monitors for read operations, write operations, and exception
operations:

* When a socket is ready to read, one of the following has occurred:

— A buffer for the specified sockets contains input data. If input data is
available for a given socket, a read operation on that socket will not block.

— A connection has been requested on that socket.

* When a socket is ready to write, TCP/IP can accommodate additional output
data. If TCP/IP can accept additional output for a given socket, a write
operation on that socket will not block.

* When an exception condition has occurred on a specified socket it is an
indication that a TAKESOCKET has occurred for that socket.

Each socket descriptor is represented by a bit in a bit string. The bit strings are
contained in 32-bit fullwords, numbered from right to left. The rightmost bit
represents socket descriptor 0, the leftmost bit represents socket descriptor 31, and
so on. If your process uses 32 or fewer sockets, the bit string is 1 fullword. If your
process uses 33 sockets, the bit string is 2 fullwords. You define the sockets that
you want to test by turning on bits in the string.

Note: To simplify string processing in COBOL, you can use the program
EZACICO06 to convert each bit in the string to a character. For more
information, see [“EZACIC06” on page 187

Read operations

Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or
RECVMSG calls. A socket is ready to be read when data has been received for it or
when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits
in RSNDMSK to one before issuing the SELECT call. When the SELECT call
returns, the corresponding bits in the RRETMSK indicate sockets are ready for
reading.

Write operations
A socket is selected for writing (ready to be written) when:

e TCP/IP can accept additional outgoing data.

¢ The socket is marked nonblocking and a previous CONNECT did not complete
immediately. In this case, CONNECT returned an ERRNO with a value of 36
(EINPROGRESS). This socket will be selected for write when the CONNECT
completes.

A call to WRITE, SEND, or SENDTO blocks when the amount of data to be sent
exceeds the amount of data TCP/IP can accept. To avoid this, you can precede the
write operation with a SELECT call to ensure that the socket is ready for writing.
Once a socket is selected for WRITE, the program can determine the amount of
TCP/IP buffer space available by issuing the GETSOCKOPT call with the
SO-SNDBUF option.

Chapter 7. Using the CALL instruction application programming interface (API) 145

To test whether any of several sockets is ready for writing, set the WSNDMSK bits
representing those sockets to 1 before issuing the SELECT call. When the SELECT
call returns, the corresponding bits in the WRETMSK indicate sockets are ready for
writing.

Exception operations
For each socket to be tested, the SELECT call can check for an existing exception
condition. Two exception conditions are supported:

* The calling program (concurrent server) has issued a GIVESOCKET command
and the target child server has successfully issued the TAKESOCKET call. When
this condition is selected, the calling program (concurrent server) should issue
CLOSE to dissociate itself from the socket.

¢ A socket has received out-of-band data. On this condition, a READ will return
the out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the
ESNDMSK bits representing those sockets to 1. When the SELECT call returns, the
corresponding bits in the ERETMSK indicate sockets with exception conditions.

MAXSOC parameter

The SELECT call must test each bit in each string before returning results. For
efficiency, the MAXSOC parameter can be used to specify the largest socket
descriptor number that needs to be tested for any event type. The SELECT call
tests only bits in the range 0 through the MAXSOC value minus one.

Example: If MAXSOC is set to 5, the range would be 0 through 49.

TIMEOUT parameter
If the time specified in the TIMEOUT parameter elapses before any event is
detected, the SELECT call returns, and the RETCODE is set to 0.

shows an example of SELECT call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.
01 MAXSOC PIC 9(8) BINARY.
01 TIMEOUT.
03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MICROSEC PIC 9(8) BINARY.

01 RSNDMSK PIC X(*).
01 WSNDMSK PIC X(*).
01 ESNDMSK PIC X(*).
01 RRETMSK PIC X(x).
01 WRETMSK PIC X(*).
01 ERETMSK PIC X(*).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT
RSNDMSK WSNDMSK ESNDMSK
RRETMSK WRETMSK ERETMSK
ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:
((maximum socket number +32)/32 (drop the remainder))x4

Figure 50. SELECT call instruction example

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Bit masks are 32-bit fullwords with one bit for each socket. Up to 32 sockets fit into
one 32-bit mask [PIC X(4)]. If you have 33 sockets, you must allocate two 32-bit
masks [PIC X(8)].

For equivalent PL/1 and assembler language declarations, see
|parameter descriptions” on page 64.|

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing SELECT. The field is left-justified and
padded on the right with blanks.

MAXSOC
Input parameter; a fullword binary field set to the largest socket descriptor
number being checked.

TIMEOUT
If TIMEOUT is a positive value, it specifies the maximum interval to wait
for the selection to complete. If TIMEOUT-SECONDS is a negative value,
the SELECT call blocks until a socket becomes ready. To poll the sockets
and return immediately, specify the TIMEOUT value to be 0.
TIMEOUT is specified in the two-word TIMEOUT as follows:

« TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds
component of the timeout value.

 TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the
microseconds component of the timeout value (0—999999).

For example, if you want SELECT to time out after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
A bit string sent to request read event status.

* For each socket to be checked for pending read events, the
corresponding bit in the string should be set to 1.

* For sockets to be ignored, the value of the corresponding bit should be
set to 0.

If this parameter is set to all zeros, the SELECT will not check for read
events.

WSNDMSK
A bit string sent to request write event status.

* For each socket to be checked for pending write events, the
corresponding bit in the string should be set to 1.

* For sockets to be ignored, the value of the corresponding bit should be
set to 0.

If this parameter is set to all zeros, the SELECT will not check for write
events.

ESNDMSK
A bit string sent to request exception event status.

¢ For each socket to be checked for pending exception events, the
corresponding bit in the string should be set to 1.

* For each socket to be ignored, the corresponding bit should be set to 0.

Chapter 7. Using the CALL instruction application programming interface (API) 147

148

If this parameter is set to all zeros, the SELECT will not check for
exception events.

Parameter values returned to the application

RRETMSK
A bit string returned with the status of read events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that is ready to read, the corresponding bit in the string
will be set to 1; bits that represent sockets that are not ready to read will
be set to 0.

WRETMSK
A bit string returned with the status of write events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that is ready to write, the corresponding bit in the string
will be set to 1; bits that represent sockets that are not ready to be written
will be set to 0.

ERETMSK
A bit string returned with the status of exception events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that has an exception status, the corresponding bit will be
set to 1; bits that represent sockets that do not have exception status will
be set to 0.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

>0 Indicates the sum of all ready sockets in the three masks.
0 Indicates that the SELECT time limit has expired.

-1 Check ERRNO for an error code.

SELECTEX

The SELECTEX call monitors a set of sockets, a time value, and an ECB. It
completes when either one of the sockets has activity, the time value expires, or
one of the ECBs is posted.

To use the SELECTEX call as a timer in your program, do either of the following:
* Set the read, write, and except arrays to zeros.

* Specify MAXSOC <= 0.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.
Cross memory mode: PASN = HASN.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |[“Environmental restrictions and programming|
[requirements” on page 61.|

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Defining which sockets to test
The SELECTEX call monitors for read operations, write operations, and exception
operations:

* When a socket is ready to read, one of the following has occurred:

— A buffer for the specified sockets contains input data. If input data is
available for a given socket, a read operation on that socket will not block.

— A connection has been requested on that socket.

* When a socket is ready to write, TCP/IP can accommodate additional output
data. If TCP/IP can accept additional output for a given socket, a write
operation on that socket will not block.

* When an exception condition has occurred on a specified socket it is an
indication that a TAKESOCKET has occurred for that socket.

Each socket descriptor is represented by a bit in a bit string. The bit strings are
contained in 32-bit fullwords, numbered from right to left. The rightmost bit
represents socket descriptor 0, the leftmost bit represents socket descriptor 31, and
so on. If your process uses 32 or fewer sockets, the bit string is 1 fullword. If your
process uses 33 sockets, the bit string is 2 fullwords. You define the sockets that
you want to test by turning on bits in the string.

Note: To simplify string processing in COBOL, you can use the program
EZACICO06 to convert each bit in the string to a character. For more
information, see ["EZACIC06” on page 187

Read operations

Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or
RECVMSG calls. A socket is ready to be read when data has been received for it or
when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits
in RSNDMSK to one before issuing the SELECTEX call. When the SELECTEX call
returns, the corresponding bits in the RRETMSK indicate sockets are ready for
reading.

Write operations
A socket is selected for writing (ready to be written) when:

e TCP/IP can accept additional outgoing data.

* The socket is marked nonblocking and a previous CONNECT did not complete
immediately. In this case, CONNECT returned an ERRNO with a value of 36
(EINPROGRESS). This socket will be selected for write when the CONNECT
completes.

Chapter 7. Using the CALL instruction application programming interface (API) 149

150

A call to WRITE, SEND, or SENDTO blocks when the amount of data to be sent
exceeds the amount of data TCP/IP can accept. To avoid this, you can precede the
write operation with a SELECTEX call to ensure that the socket is ready for
writing. Once a socket is selected for WRITE, the program can determine the
amount of TCP/IP buffer space available by issuing the GETSOCKOPT call with
the SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits
representing those sockets to 1 before issuing the SELECTEX call. When the
SELECTEX call returns, the corresponding bits in the WRETMSK indicate sockets
are ready for writing.

Exception operations

For each socket to be tested, the SELECTEX call can check for an existing exception

condition. Two exception conditions are supported:

* The calling program (concurrent server) has issued a GIVESOCKET command
and the target child server has successfully issued the TAKESOCKET call. When
this condition is selected, the calling program (concurrent server) should issue
CLOSE to dissociate itself from the socket.

e A socket has received out-of-band data. On this condition, a READ will return
the out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the
ESNDMSK bits representing those sockets to 1. When the SELECTEX call returns,
the corresponding bits in the ERETMSK indicate sockets with exception conditions.

MAXSOC parameter

The SELECTEX call must test each bit in each string before returning results. For
efficiency, the MAXSOC parameter can be used to specify the largest socket
descriptor number that needs to be tested for any event type. The SELECTEX call
tests only bits in the range 0 through the MAXSOC value minus one.

Example: If MAXSOC is set to 5, the range would be 0 through 49.

TIMEOUT parameter
If the time specified in the TIMEOUT parameter elapses before any event is
detected, the SELECTEX call returns, and the RETCODE is set to 0.

[Figure 51 on page 151| shows an example of SELECTEX call instructions.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

If an application intends to pass a single ECB on the SELECTEX call, then the corresponding
working storage definitions and CALL instruction should be coded as below:

WORKING-

STORAGE SECTION.
SOC-FUNCTION PIC
MAXSOC PIC
TIMEOUT.

03 TIMEOUT-SECONDS
03 TIMEOUT-MINUTES

RSNDMSK PIC
WSNDMSK PIC
ESNDMSK PIC
RRETMSK PIC
WRETMSK PIC
ERETMSK PIC
SELECB PIC
ERRNO PIC

RETCODE PIC

X(16) VALUE IS 'SELECTEX'.
9(8) BINARY.

PIC 9(8) BINARY.
PIC 9(8) BINARY.
X(*).
X(*).
X(*).
X(*).
X(*).
X(*).
X(4).
9(8) BINARY.
S9(8) BINARY.

Where * is the size of the select mask

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK
RRETMSK
SELECB E

WSNDMSK ESNDMSK
WRETMSK ERETMSK
RRNO RETCODE.

However, if the application intends to pass the address of an ECB list on the SELECTEX
call, then the application must set the high order bit in the ECB list address and pass that
address using the BY VALUE option as documented in the following example. The
remaining parameters must be set back to the default by specifying BY REFERENCE before

ERRNO:

WORKING-STORAGE SECTION.

01
01
01

01
01
01
01
01

SOC-FUNCTION PIC
MAXSOC PIC
TIMEOUT.

03 TIMEOUT-SECONDS
03 TIMEOUT-MINUTES

RSNDMSK PIC
WSNDMSK PIC
ESNDMSK PIC
RRETMSK PIC
WRETMSK PIC
ERETMSK PIC
ECBLIST-PTR USA

ERRNO PIC
RETCODE PIC

X(16) VALUE IS 'SELECTEX'.
9(8) BINARY.

PIC 9(8) BINARY.
PIC 9(8) BINARY.
X(*).
X(*).
X(*).
X(*).
X(*).
X(*).
GE IS POINTER.
9(8) BINARY.
S9(8) BINARY.

Where * is the size of the select mask

PROCEDURE DIVISION.
CALL '"EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK
RRETMSK
BY VALUE
BY REFER

WSNDMSK ESNDMSK

WRETMSK ERETMSK
ECBLIST-PTR

ENCE ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))=4

Figure 51. SELECTEX call instruction example

Chapter 7. Using the CALL instruction application programming interface (API) 151

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing SELECT. The field is leftjustified and
padded on the right with blanks.

MAXSOC
A fullword binary field specifying the largest socket descriptor number
being checked.

TIMEOUT
If TIMEOUT is a positive value, it specifies a maximum interval to wait for
the selection to complete. If TIMEOUT-SECONDS is a negative value, the
SELECT call blocks until a socket becomes ready. To poll the sockets and
return immediately, set TIMEOUT to be zeros.

TIMEOUT is specified in the two-word TIMEOUT as follows:

 TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds
component of the timeout value.

 TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the
microseconds component of the timeout value (0—999999).

For example, if you want SELECTEX to time out after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
The bit-mask array to control checking for read interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT
will not check for read interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

WSNDMSK
The bit-mask array to control checking for write interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT
will not check for write interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

ESNDMSK
The bit-mask array to control checking for exception interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT

will not check for exception interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

SELECB
An ECB which, if posted, causes completion of the SELECTEX.

ECBLIST-PTR
A pointer to an ECB list. The application must set the high order bit in the
ECB list address and pass that address using the BY VALUE option. The
remaining parameters must be set back to the default by specifying BY
REFERENCE before ERRNO.

Parameter values returned to the application

ERRNO
A fullword binary field; if RETCODE is negative, this contains an error

number. See|Appendix A. Return codes on page 295 for information about
ERRNO return codes.

RETCODE
A fullword binary field

152 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

SEND

Value Meaning
>0 The number of ready sockets.

0 Either the SELECTEX time limit has expired (ECB value will be 0)
or one of the caller’s ECBs has been posted (ECB value will be
nonzero and the caller’s descriptor sets will be set to 0). The caller
must initialize the ECB values to 0 before issuing the SELECTEX
macro.

-1 Check ERRNO for an error code.

RRETMSK
The bit-mask array returned by the SELECT if RSNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

WRETMSK
The bit-mask array returned by the SELECT if WSNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

ERETMSK
The bit-mask array returned by the SELECT if ESNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

The SEND call sends data on a specified connected socket.

The FLAGS field allows you to:

¢ Send out-of-band data, such as interrupts, aborts, and data marked urgent. Only
stream sockets created in the AF_INET address family support out-of-band data.

* Suppress use of local routing tables. This implies that the caller takes control of
routing and writing network software.

For datagram sockets, SEND transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes,
with the number of bytes sent returned in RETCODE. Therefore, programs using
stream sockets should place this call in a loop, reissuing the call until all data has
been sent.

Note: See|"EZACIC04” on page 183|for a subroutine that will translate EBCDIC
input data to ASCIL.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming]|
[requirements” on page 61,

ASC mode: Primary address space control (ASC) mode.

Chapter 7. Using the CALL instruction application programming interface (API) 153

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

shows an example of SEND call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SEND'.

01 S PIC 9(4) BINARY.

01 FLAGS PIC 9(8) BINARY.
88 NO-FLAG VALUE IS 0.
88 00B VALUE IS 1.
88 DONT-ROUTE VALUE IS 4.

01 NBYTE PIC 9(8) BINARY.

01 BUF PIC X(length of buffer).

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE
BUF ERRNO RETCODE.

Figure 52. SEND call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing SEND. The field is left-justified and
padded on the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket
that is sending data.

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG 0 No flag is set. The command behaves like a

WRITE call.
OOB 1 Send out-of-band data. (Stream sockets

only.) Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the
calling program.

NBYTE
A fullword binary number set to the number of bytes of data to be
transferred.

BUF The buffer containing the data to be transmitted. BUF should be the size
specified in NBYTE.

154 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following;:

Value Description

20 A successful call. The value is set to the number of bytes
transmitted.

-1 Check ERRNO for an error code.

SENDMSG

The SENDMSG call sends messages on a socket with descriptor S passed in an
array of messages.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

[Figure 53 on page 156 shows an example of SENDMSG call instructions.

Chapter 7. Using the CALL instruction application programming interface (API) 155

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDMSG'.

01 S PIC 9(4) BINARY.

01 MSG-HDR.
03 MSG-NAME USAGE IS POINTER.
03 MSG-NAME-LEN PIC 9(8) BINARY.
03 10V USAGE IS POINTER.
03 TIOVCNT USAGE IS POINTER.

03 MSG-ACCRIGHTS USAGE IS POINTER.
03 MSG-ACCRIGHTS-LEN USAGE IS POINTER.

01 FLAGS PIC 9(8) BINARY.
88 NO-FLAG VALUE IS 0.
88 00B VALUE IS 1.
88 DONTROUTE VALUE IS 4

01 ERRNO PIC 9(8) BINARY.

01 RETCODE PIC S9(8) BINARY.

01 SENDMSG-IPV4ADDR PIC 9(8) BINARY.
01 SENDMSG-IPV6ADDR.

05 FILLER PIC9(16) BINARY.
05 FILLER PIC9(16) BINARY.
LINKAGE SECTION.
01 L1.
03 SENDMSG-IOVECTOR.
05 IOVIA USAGE IS POINTER.
05 IOVIAL PIC 9(8) COMP.
05 IOVIL PIC 9(8) COMP.
05 I0V2A USAGE IS POINTER.
05 IOVZAL PIC 9(8) COMP.
05 I0V2L PIC 9(8) COMP.
05 IOV3A USAGE IS POINTER.
05 TOV3AL PIC 9(8) COMP.
05 I0V3L PIC 9(8) COMP.

03 SENDMSG-BUFFER1 PIC X(16).
03 SENDMSG-BUFFER2 PIC X(16).
03 SENDMSG-BUFFER3 PIC X(16).
03 SENDMSG-BUFNO PIC 9(8) COMP.

* IPv4 socket address structure.

03 NAME.
05 FAMILY PIC 9(4) BINARY.
05 PORT PIC 9(4) BINARY.

05 IP-ADDRESS PIC 9(8) BINARY.
05 RESERVED PIC X(8) BINARY.

* IPv6 socket address structure.

03 NAME.
05 FAMILY PIC 9(4) BINARY.
05 PORT PIC 9(4) BINARY.

05 FLOWINFO PIC 9(8) BINARY.
05 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
05 SCOPE-ID PIC 9(8) BINARY.

Figure 53. SENDMSG call instruction example (Part 1 of 2)

156 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

PROCEDURE DIVISION USING L1.

* For IPv6.

* For IPv4.

MOVE 19 TO FAMILY.
MOVE 1234 TO PORT.
MOVE O TO FLOWINFO.
MOVE SENDMSG-IPV6ADDR TO IP-ADDRESS.
MOVE O TO SCOPE-ID.

MOVE 2 TO FAMILY.
MOVE 1234 TO PORT.
MOVE SENDMSG-IPV4ADDR TO IP-ADDRESS.

SET MSG-NAME TO ADDRESS OF NAME.

MOVE LENGTH OF NAME TO MSG-NAME-LEN.

SET IOV TO ADDRESS OF SENDMSG-IOVECTOR.
MOVE 3 TO SENDMSG-BUFNO.

SET MSG-IOVCNT TO ADDRESS OF SENDMSG-BUFNO.
SET IOV1A TO ADDRESS OF SENDMSG-BUFFERI.
MOVE O TO IOVIAL.

MOVE LENGTH OF SENDMSG-BUFFER1 TO IOVIL.
SET IOV2A TO ADDRESS OF SENDMSG-BUFFERZ.
MOVE 0 TO IOV2AL.

MOVE LENGTH OF SENDMSG-BUFFER2 TO IOVZL.
SET IOV3A TO ADDRESS OF SENDMSG-BUFFER3.
MOVE 0 TO IOV3AL.

MOVE LENGTH OF SENDMSG-BUFFER3 TO IOV3L.
SET MSG-ACCRIGHTS TO NULLS.

SET MSG-ACCRIGHTS-LEN TO NULLS.

MOVE O TO FLAGS.

MOVE 'MESSAGE TEXT 1 ' TO SENDMSG-BUFFERL.
MOVE 'MESSAGE TEXT 2 ' TO SENDMSG-BUFFERZ.
MOVE 'MESSAGE TEXT 3 ' TO SENDMSG-BUFFER3.

CALL 'EZASOKET' USING SOC-FUNCTION S MSG-HDR FLAGS ERRNO RETCODE.

Figure 53. SENDMSG call instruction example (Part 2 of 2)

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64

Parameter values set by the application
SOC-FUNCTION

MSG

A 16-byte

character field containing SENDMSG. The field is leftjustified

and padded on the right with blanks.

A value or the address of a halfword binary number specifying the socket
descriptor.

A pointer

to an array of message headers from which messages are sent.

Field Description

NAME

On input, a pointer to a buffer where the sender’s address is stored
upon completion of the call. The storage being pointed to should
be for an IPv4 socket address or an IPv6 socket address. The IPv4
socket address structure contains the following fields:

Field Description

Chapter 7. Using the CALL instruction application programming interface (API) 157

FAMILY
Output parameter. A halfword binary number specifying
the IPv4 addressing family. The value for IPv4 socket
descriptor (S parameter) is decimal 2, indicating AF_INET.

PORT Output parameter. A halfword binary number specifying
the port number of the sending socket.

IP-ADDRESS
Output parameter. A fullword binary number specifying
the 32-bit IPv4 Internet address of the sending socket.

RESERVED
Output parameter. An 8-byte reserved field. This field is
required, but is not used.

The IPv6 socket address structure contains the following fields:
Field Description

FAMILY
Output parameter. A halfword binary number specifying
the IPv6 addressing family. The value for IPv6 socket
descriptor (S parameter) is decimal 19, indicating
AF_INET6.

PORT Output parameter. A halfword binary number specifying
the port number of the sending socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow
label. This field must be set to 0.

IP-ADDRESS
Output parameter. A 16-byte binary field set to the 128-bit
IPv6 Internet address of the sending socket.

SCOPE-ID
A fullword binary field which identifies a set of interfaces
as appropriate for the scope of the address carried in the
IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID
field does not identify the set of interfaces to be used, and
may be specified for any address types and scopes. For a
link scope IPv6-ADDRESS, SCOPE-ID may specify a link
index which identifies a set of interfaces. For all other
address scopes, SCOPE-ID must be set to 0.

NAME-LEN
On input, a pointer to the size of the address buffer.

IOV On input, a pointer to an array of three fullword structures with
the number of structures equal to the value in IOVCNT and the
format of the structures as follows:

Fullword 1
A pointer to the address of a data bulffer.

Fullword 2
Reserved.

Fullword 3
A pointer to the length of the data buffer referenced in
Fullword 1.

158 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

In COBOL, the IOV structure must be defined separately in the
Linkage section, as shown in the example.

IOVCNT
On input, a pointer to a fullword binary field specifying the
number of data buffers provided for this call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is
ignored.

ACCRIGHTS-LEN
On input, a pointer to the length of the access rights received. This
field is ignored.

FLAGS
A fullword field containing the following:
Literal Value Binary Value Description
NO-FLAG 0 No flag is set. The command behaves like a
WRITE call.
OOB 1 Send out-of-band data. (Stream sockets

only.) Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

DONTROUTE 4 Do not route. Routing is provided by the
calling program.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error
number. See|Appendix A. Return codes on page 295| for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

20 A successful call. The value is set to the number of bytes
transmitted.

-1 Check ERRNO for an error code.

SENDTO

SENDTO is similar to SEND, except that it includes the destination address
parameter. The destination address allows you to use the SENDTO call to send
datagrams on a UDP socket, regardless of whether the socket is connected.

The FLAGS parameter allows you to:
* Send out-of-band data, such as interrupts, aborts, and data marked as urgent.

* Suppress use of local routing tables. This implies that the caller takes control of
routing, which requires writing network software.

For datagram sockets, SENDTO transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

Chapter 7. Using the CALL instruction application programming interface (API) 159

160

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes,
with the number of bytes sent returned in RETCODE. Therefore, programs using
stream sockets should place SENDTO in a loop that repeats the call until all data

has been sent.

Note: See|"EZACIC04” on page 183|for a subroutine that will translate EBCDIC

input data to ASCII.

The following requirements apply to this call:

Authorization:

Supervisor state or problem state, any PSW key.

Dispatchable unit mode:

Task.

Cross memory mode:

PASN = HASN.

Amode: 31-bit or 24-bit.
Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status:

Enabled for interrupts.

Locks:

Unlocked.

Control parameters:

All parameters must be addressable by the caller and in the
primary address space.

[Figure 54 on page 161/ shows an example of SENDTO call instructions.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDTO'.

01 S PIC 9(4) BINARY.
01 FLAGS. PIC 9(8) BINARY.
88 NO-FLAG VALUE IS 0.
88 (0B VALUE IS 1.
88 DONT-ROUTE VALUE IS 4.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
* IPv4 socket address structure.
01 NAME
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 socket address structure.

01 NAME
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.

03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
03 SCOPE-ID PIC 9(8) BINARY.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.

CALL "EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE
BUF NAME ERRNO RETCODE.

Figure 54. SENDTO call instruction example

For equivalent PL/1 and assembler language declarations, see
[parameter descriptions” on page 64

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing SENDTO. The field is left-justified and
padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket
sending the data.

FLAGS
A fullword field that returns one of the following:

Literal Value Binary Value Description

NO-FLAG 0 No flag is set. The command behaves like a

WRITE call.
OOB 1 Send out-of-band data. (Stream sockets

only.) Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the
calling program.

Chapter 7. Using the CALL instruction application programming interface (API) 161

NBYTE
A fullword binary number set to the number of bytes to transmit.

BUF Specifies the buffer containing the data to be transmitted. BUF should be
the size specified in NBYTE.

NAME
Specifies the IPv4 socket address structure as follows:

FAMILY
A halfword binary field containing the IPv4 addressing family. For
TCP/IP the value must be decimal 2, indicating AF_INET.

PORT A halfword binary field containing the port number bound to the
socket.

IP-ADDRESS
A fullword binary field containing the socket’s 32-bit IPv4 Internet
address.

RESERVED
Specifies eight-byte reserved field. This field is required, but not
used.

Specifies the IPv6 socket address structure as follows:

FAMILY
A halfword binary field containing the IPv6 addressing family. For
TCP/IP the value is decimal 19, indicating AF_INET®6.

PORT A halfword binary field containing the port number bound to the
socket.

FLOWINFO
A fullword binary field specifying the traffic class and flow label.
This field must be set to 0.

IP-ADDRESS
A 16-byte binary field set to the 128-bit IPv6 Internet address, in
network byte order.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. A value of 0 indicates the SCOPE-ID field
does not identify the set of interfaces to be used, and may be
specified for any address types and scopes. For a link scope
IPv6-ADDRESS, SCOPE-ID may specify a link index which
identifies a set of interfaces. For all other address scopes,
SCOPE-ID must be set to 0.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295 for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

162 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

=0

-1

SETSOCKOPT
The SETSOCKOPT call sets the options associated with a socket. SETSOCKOPT

A successful call. The value is set to the number of bytes

transmitted.

Check ERRNO for an error code.

can be called only for sockets in the AF_INET or AF_INET6 domains.

The OPTVAL and OPTLEN parameters are used to pass data used by the
particular set command. The OPTVAL parameter points to a buffer containing the
data needed by the set command. The OPTLEN parameter must be set to the size
of the data pointed to by OPTVAL.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.
Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.
Note: See “Addressability mode (Amode) considerations”
under [“Environmental restrictions and programming]|
[requirements” on page 61|

ASC mode: Primary address space control (ASC) mode.

Interrupt status:

Enabled for interrupts.

Locks:

Unlocked.

Control parameters:

primary address space.

All parameters must be addressable by the caller and in the

shows an example of SETSOCKOPT call instructions.

WORKING-STORAGE SECTION.

01
01

SOC-FUNCTION PIC
S PIC
OPTNAME PIC
OPTVAL PIC
OPTLEN PIC

ERRNO PIC
RETCODE PIC
OPTVAL PIC
OPTLEN PIC

ERRNO PIC
RETCODE PIC

PROCEDURE DIVISION
CALL "EZASOKET' USING SOC-FUNCTION S OPTNAME
OPTVAL OPTLEN ERRNO RETCODE.

X(16) VALUE IS 'SETSOCKOPT'.
9(4) BINARY.
9(8) BINARY.
9(16) BINARY.
9(8) BINARY.
9(8) BINARY.
S9(8) BINARY.
9(16) BINARY.
9(8) BINARY.
9(8) BINARY.
S9(8) BINARY.

Figure 55. SETSOCKORPT call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64/

Chapter 7. Using the CALL instruction application programming interface (API)

163

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing SETSOCKOPT. The field is left-justified
and padded to the right with blanks.

S A halfword binary number set to the socket whose options are to be set.

OPTNAME
Input parameter. See the table below for a list of the options and their
unique requirements.

Note: COBOL programs cannot contain field names with the underbar
character. Fields representing the option name should contain dashes
instead.

OPTVAL
Contains data which further defines the option specified in OPTNAME.
For the SETSOCKOPT API, OPTVAL will be an input parameter. See the
table below for a list of the options and their unique requirements.

OPTLEN
Input parameter. A fullword binary field containing the length of the data
returned in OPTVAL. See the table below for determining on what to base
the value of OPTLEN.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an

error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

Table 5. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL
(output)
IP_ADD_MEMBERSHIP Contains the IP_MREQ structure as |N/A
defined in
Use this option to enable an application to join [S5YS1.MACLIB(BPXYSOCK). The
a multicast group on a specific interface. An IP_MREQ structure contains a
interface has to be specified with this option. 4-byte IPv4 multicast address
Only applications that want to receive multicast | followed by a 4-byte IPv4 interface
datagrams need to join multicast groups. address.
This is an IPv4-only socket option. See SEZAINST(CBLOCK) for the

PL/I example of IP_MREQ.

The IP_MREQ definition for
COBOL:

01 IP-MREQ.
05 IMR-MULTIADDR
PIC 9(8) BINARY.
05 IMR-INTERFACE
PIC 9(8) BINARY.

164

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Table 5. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

IP_DROP_MEMBERSHIP

Use this option to enable an application to exit
a multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ structure as
defined in
SYS1.MACLIB(BPXYSOCK). The
IP_MREQ structure contains a
4-byte IPv4 multicast address
followed by a 4-byte IPv4 interface
address.

See SEZAINST(CBLOCK) for the
PL/I example of IP_MREQ.

The IP_MREQ definition for
COBOL:

01 IP-MREQ.
05 IMR-MULTIADDR
PIC 9(8) BINARY.
05 IMR-INTERFACE
PIC 9(8) BINARY.

N/A

IP_MULTICAST_IF

Use this option to set or obtain the IPv4
interface address used for sending outbound
multicast datagrams from the socket
application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be transmitted
only on one interface at a time.

A 4-byte binary field containing an
IPv4 interface address.

A 4-byte binary field
containing an IPv4 interface
address.

IP_MULTICAST_LOOP

Use this option to control or determine whether
a copy of multicast datagrams are looped back
for multicast datagrams sent to a group to
which the sending host itself belongs. The
default is to loop the datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.
If enabled, will contain a 1.

If disabled, will contain a 0.

IP_MULTICAST_TTL

Use this option to set or obtain the IP
time-to-live of outgoing multicast datagrams.
The default value is '01’x meaning that
multicast is available only to the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing the
value of 00’x to "FF’x.

A 1-byte binary field
containing the value of "00"x
to 'FF'x.

Chapter 7. Using the CALL instruction application programming interface (API)

165

Table 5. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

IPV6_JOIN_GROUP

Use this option to control the reception of
multicast packets and specify that the socket

join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6 interface
index number.

If the interface index number is 0,
then the stack chooses the local
interface.

See the SEZAINST(CBLOCK) for
the PL/I example of IPV6_MREQ.

The IPV6_MREQ definition for
COBOL:

01 IPV6-MREQ.
05 IPV6MR-MULTIADDR.
10 FILLER PIC 9(16)
BINARY.
10 FILLER PIC 9(16)
BINARY.
05 IPV6MR-INTERFACE PIC
9(8) BINARY.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception of
multicast packets and specify that the socket

leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ structure
as defined in
SYS1.MACLIB(BPXYSOCK). The
IPV6_MREQ structure contains a
16-byte IPv6 multicast address
followed by a 4-byte IPv6 interface
index number.

If the interface index number is 0,
then the stack chooses the local
interface.

See the SEZAINST(CBLOCK) for
the PL/I example of IPV6_MREQ.

The IPV6_MREQ definition for
COBOL:

01 IPV6-MREQ.
05 IPV6MR-MULTIADDR.
10 FILLER PIC 9(16)
BINARY.
10 FILLER PIC 9(16)
BINARY.
05 IPV6MR-INTERFACE PIC
9(8) BINARY.

N/A

166 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Table 5. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for
outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the multicast hops. If not
specified, then the default is 1 hop.

-1 indicates use stack default.

0 — 255 is the valid hop limit range.
Note: An application must be APF
authorized to enable it to set the
hop limit value above the system
defined hop limit value. CICS
applications cannot execute as APF
authorized.

Contains a 4-byte binary
value in the range 0 — 255
indicating the number of
multicast hops.

IPV6_MULTICAST_IF

Use this option to set or obtain the index of the
IPv6 interface used for sending outbound
multicast datagrams from the socket
application.

This is an IPv6-only socket option.

Contains a 4-byte binary field
containing an IPv6 interface index
number.

Contains a 4-byte binary field
containing an IPv6 interface
index number.

IPV6_MULTICAST_LOOP

Use this option to control or determine whether
a multicast datagram is looped back on the
outgoing interface by the IP layer for local
delivery when datagrams are sent to a group to
which the sending host itself belongs. The
default is to loop multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the hop limit
used for outgoing unicast IPv6 packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value
specifying the unicast hops. If not
specified, then the default is 1 hop.

-1 indicates use stack default.

0 — 255 is the valid hop limit range.
Note: APF authorized applications
are permitted to set a hop limit that
exceeds the system configured
default. CICS applications cannot
execute as APF authorized.

Contains a 4-byte binary
value in the range 0 — 255
indicating the number of
unicast hops.

IPV6_V60ONLY

Use this option to set or determine whether the
socket is restricted to send and receive only
IPv6 packets. The default is to not restrict the
sending and receiving of only IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.
To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

Chapter 7. Using the CALL instruction application programming interface (API)

167

Table 5. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

SO_ASCII

Use this option to set or determine the
translation to ASCII data option. When
SO_ASCII is set, data is translated to ASCII.
When SO_ASCII is not set, data is not
translated to or from ASCIIL.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used

if translation is applied to the data.

If enabled, contains ON.

If disabled, contains OFF.
Note: The optvalue is
returned and is optionally
followed by the name of the
translation table that is used
if translation is applied to the
data.

SO_BROADCAST

Use this option to set or determine whether a
program can send broadcast messages over the
socket to destinations that can receive datagram
messages. The default is disabled.

Note: This option has no meaning for stream
sockets.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the status
of the debug option. The default is disabled. The
debug option controls the recording of debug
information.

Notes:
1. This is a REXX-only socket option.

2. This option has meaning only for stream
sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the
translation to EBCDIC data option. When
SO_EBCDIC is set, data is translated to
EBCDIC. When SO_EBCDIC is not set, data is
not translated to or from EBCDIC. This option
is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and
is optionally followed by the name
of the translation table that is used

if translation is applied to the data.

If enabled, contains ON.

If disabled, contains OFF.
Note: The optvalue is
returned and is optionally
followed by the name of the
translation table that is used
if translation is applied to the
data.

SO_ERROR

Use this option to request pending errors on the
socket or to check for asynchronous errors on
connected datagram sockets or for other errors
that are not explicitly returned by one of the
socket calls. The error status is clear afterwards.

N/A

A 4-byte binary field
containing the most recent
ERRNO for the socket.

168 2z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Table 5. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

SO_KEEPALIVE

Use this option to set or determine whether the
keep alive mechanism periodically sends a
packet on an otherwise idle connection for a
stream socket.

The default is disabled.

When activated, the keep alive mechanism
periodically sends a packet on an otherwise idle
connection. If the remote TCP does not respond
to the packet or to retransmissions of the
packet, the connection is terminated with the
error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine how
TCP/IP processes data that has not been
transmitted when a CLOSE is issued for the
socket. The default is disabled.

Notes:

1. This option has meaning only for stream
sockets.

2. If you set a zero linger time, the connection
cannot close in an orderly manner, but
stops, resulting in a RESET segment being
sent to the connection partner. Also, if the
aborting socket is in nonblocking mode, the
close call is treated as though no linger
option had been set.

When SO_LINGER is set and CLOSE is called,
the calling program is blocked until the data is
successfully transmitted or the connection has

timed out.

When SO_LINGER is not set, the CLOSE
returns without blocking the caller, and TCP/IP
continues to attempt to send data for a
specified time. This usually allows sufficient
time to complete the data transfer.

Use of the SO_LINGER option does not
guarantee successful completion because
TCP/IP only waits the amount of time specified
in OPTVAL for SO_LINGER.

Contains an 8-byte field containing
two 4-byte binary fields.

Assembler coding:

ONOFF DS F
LINGER DS F
COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to
enable and set to 0 to disable this
option. Set LINGER to the number
of seconds that TCP/IP lingers after
the CLOSE is issued.

Contains an 8-byte field
containing two 4-byte binary
fields.

Assembler coding:

ONOFF DS F
LINGER DS F
COBOL coding:

ONOFF PIC 9(8) BINARY.
LINGER PIC 9(8) BINARY.

A nonzero value returned in
ONOFF indicates enabled, a 0
indicates disabled. LINGER
indicates the number of
seconds that TCP/IP will try
to send data after the CLOSE
is issued.

Chapter 7. Using the CALL instruction application programming interface (API)

169

Table 5. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

SO_OOBINLINE

Use this option to control or determine whether
out-of-band data is received.

Note: This option has meaning only for stream
sockets.

When this option is set, out-of-band data is
placed in the normal data input queue as it is
received and is available to a RECV or a
RECVFROM even if the OOB flag is not set in
the RECV or the RECVFROM.

When this option is disabled, out-of-band data
is placed in the priority data input queue as it
is received and is available to a RECV or a
RECVFROM only when the OOB flag is set in
the RECV or the RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine the size
of the data portion of the TCP/IP receive buffer.

The size of the data portion of the receive
buffer is protocol-specific, based on the
following values prior to any SETSOCKOPT
call:

¢ TCPRCVBufrsize keyword on the
TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP Socket

* UDPRCVBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP Socket

* The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP receive
buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of
the data portion of the
TCP/IP receive buffer.

If disabled, contains a 0.

170 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Table 5. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

SO_REUSEADDR

Use this option to control or determine whether
local addresses are reused. The default is
disabled. This alters the normal algorithm used
with BIND. The normal BIND algorithm allows
each Internet address and port combination to
be bound only once. If the address and port
have been already bound, then a subsequent
BIND will fail and result error will be
EADDRINUSE.

When this option is enabled, the following
situations are supported:

* A server can BIND the same port multiple
times as long as every invocation uses a
different local IP address and the wildcard
address INADDR_ANY is used only one time
per port.

* A server with active client connections can be
restarted and can bind to its port without
having to close all of the client connections.

* For datagram sockets, multicasting is
supported so multiple bind() calls can be
made to the same class D address and port
number.

¢ If you require multiple servers to BIND to
the same port and listen on INADDR_ANY,
refer to the SHAREPORT option on the PORT
statement in TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive
value.

To disable, set to 0.

A 4-byte binary field.
If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine the size
of the data portion of the TCP/IP send buffer.
The size is of the TCP/IP send buffer is
protocol specific and is based on the following:

* The TCPSENDBufrsize keyword on the

TCPCONFIG statement in the
PROFILE.TCPIP data set for a TCP socket

¢ The UDPSENDBufrsize keyword on the
UDPCONFIG statement in the
PROFILE.TCPIP data set for a UDP socket

* The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value
specifying the size of the data
portion of the TCP/IP send bulffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive
value indicating the size of
the data portion of the
TCP/IP send bulffer.

If disabled, contains a 0.

SO_TYPE

Use this option to return the socket type.

N/A

A 4-byte binary field
indicating the socket type:

X’1” indicates
SOCK_STREAM.

X’2” indicates
SOCK_DGRAM.

X’3" indicates SOCK_RAW.

Chapter 7. Using the CALL instruction application programming interface (API)

171

Table 5. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input)

SETSOCKOPT, OPTVAL (input)

GETSOCKOPT, OPTVAL
(output)

TCP_KEEPALIVE

Use this option to set or determine whether a
socket-specific timeout value (in seconds) is to
be used in place of a configuration-specific
value whenever keep alive timing is active for
that socket.

When activated, the socket-specified timer value
remains in effect until respecified by
SETSOCKOPT or until the socket is closed.
Refer to the [z/0S Communications Server: IP|

[Programmer’s Guide and Referencd for more

information on the socket option parameters.

A 4-byte binary field.

To enable, set to a value in the
range of 1 — 2 147 460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the
specific timer value (in
seconds) that is in effect for
the given socket.

If disabled, contains a 0
indicating keep alive timing
is not active.

TCP_NODELAY

Use this option to set or determine whether
data sent over the socket is subject to the Nagle
algorithm (RFC 896).

Under most circumstances, TCP sends data
when it is presented. When this option is
enabled, TCP will wait to send small amounts
of data until the acknowledgment for the
previous data sent is received. When this option
is disabled, TCP will send small amounts of
data even before the acknowledgment for the
previous data sent is received.

Note: Use the following to set TCP_NODELAY
OPTNAME value for COBOL programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP
VALUE 2147483649.

01 TCP-NODELAY-REDEF REDEFINES
TCP-NODELAY-VAL.

05 FILLER PIC 9(6) BINARY.

05 TCP-NODELAY PIC 9(8) BINARY.

A 4-byte binary field.
To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.
If enabled, contains a 0.

If disabled, contains a 1.

SHUTDOWN

One way to terminate a network connection is to issue the CLOSE call which
attempts to complete all outstanding data transmission requests prior to breaking
the connection. The SHUTDOWN call can be used to close one-way traffic while
completing data transfer in the other direction. The HOW parameter determines

the direction of traffic

to shutdown.

When the CLOSE call is used, the SETSOCKOPT OPTVAL LINGER parameter
determines the amount of time the system will wait before releasing the
connection. For example, with a LINGER value of 30 seconds, system resources
(including the IMS or CICS transaction) will remain in the system for up to 30
seconds after the CLOSE call is issued. In high volume, transaction-based systems
like CICS and IMS, this can impact performance severely.

If the SHUTDOWN call is issued when the CLOSE call is received, the connection
can be closed immediately, rather than waiting for the 30-second delay.

172 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |[“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of SHUTDOWN call instructions.

WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE IS 'SHUTDOWN'.

01 S PIC 9(4) BINARY.
01 HOW PIC 9(8) BINARY.
88 END-FROM VALUE 0.
88 END-TO VALUE 1.
88 END-BOTH VALUE 2.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.

CALL "EZASOKET' USING SOC-FUNCTION S HOW ERRNO RETCODE.

Figure 56. SHUTDOWN call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64

Parameter values set by the application
SOC-FUNCTION

HOW

A 16-byte character field containing SHUTDOWN. The field is left-justified
and padded on the right with blanks.

A halfword binary number set to the socket descriptor of the socket to be
shutdown.

A fullword binary field. Set to specify whether all or part of a connection is
to be shut down. The following values can be set:

Value Description

0 (END-FROM)
Ends further receive operations.

1 (END-TO) Ends further send operations.

2 (END-BOTH)
Ends further send and receive operations.

Chapter 7. Using the CALL instruction application programming interface (API) 173

174

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See[Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

SOCKET

The SOCKET call creates an endpoint for communication and returns a socket
descriptor representing the endpoint.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of SOCKET call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'SOCKET'.

* AF_INET
01 AF PIC 9(8) COMP VALUE 2.
* AF_INET6
01 AF PIC 9(8) COMP VALUE 19.
01 SOCTYPE PIC 9(8) BINARY.
88 STREAM VALUE 1.
88 DATAGRAM VALUE 2.
88 RAW VALUE 3.
01 PROTO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION AF SOCTYPE
PROTO ERRNO RETCODE.

Figure 57. SOCKET call instruction example

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

For equivalent PL/1 and assembler language declarations, see

f[parameter descriptions” on page 64)

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing SOCKET. The field is left-justified and
padded on the right with blanks.

AF A fullword binary field set to the addressing family. For TCP/IP the value
is set to decimal 2 for AF_INET, or decimal 19, indicating AF_INET®6.

SOCTYPE
A fullword binary field set to the type of socket required. The types are:

Value Description

1 Stream sockets provide sequenced, two-way byte streams that are
reliable and connection-oriented. They support a mechanism for
out-of-band data.

2 Datagram sockets provide datagrams, which are connectionless
messages of a fixed maximum length whose reliability is not
guaranteed. Datagrams can be corrupted, received out of order,
lost, or delivered multiple times.

3 Raw sockets provide the interface to internal protocols (such as IP
and ICMP).

PROTO
A fullword binary field set to the protocol to be used for the socket. If this
field is set to 0, the default protocol is used. For streams, the default is
TCP; for datagrams, the default is UDP.

PROTO numbers are found in the hlg.etc.proto data set. For IPv6 raw
sockets, PROTO cannot be set to the following:

Protocol name Numeric value
IPROTO_HOPOPTS 0
IPPROTO_TCP 6
IPPROTO_UDP 17
IPPROTO_IPV6 41
IPPROTO_ROUTING 43
IPPROTO_FRAGMENT 44
IPPROTO_ESP 50
IPPROTO_AH 51
IPPROTO_NONE 59
IPPROTO_DSTOPTS 60

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an

error number. See[Appendix A. Return codes on page 295 for information
about ERRNO return codes.

Chapter 7. Using the CALL instruction application programming interface (API) 175

RETCODE
A fullword binary field that returns one of the following:

Value Description
>or=0

Contains the new socket descriptor.
-1 Check ERRNO for an error code.

TAKESOCKET

The TAKESOCKET call acquires a socket from another program and creates a new
socket. Typically, a child server issues this call using client ID and socket descriptor
data that it obtained from the concurrent server. See ['GIVESOCKET” on page 115|
for a discussion of the use of GETSOCKET and TAKESOCKET calls.

Note: When TAKESOCKET is issued, a new socket descriptor is returned in
RETCODE. You should use this new socket descriptor in subsequent calls
such as GETSOCKOPT, which require the S (socket descriptor) parameter.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |“Environmental restrictions and programming|
[requirements” on page 61/

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of TAKESOCKET call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'TAKESOCKET'.

01 SOCRECV PIC 9(4) BINARY.
01 CLIENT.
03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION SOCRECV CLIENT
ERRNO RETCODE.

Figure 58. TAKESOCKET call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64)

176 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing TAKESOCKET. The field is
left-justified and padded to the right with blanks.

SOCRECV
A halfword binary field set to the descriptor of the socket to be taken. The
socket to be taken is passed by the concurrent server.

CLIENT
Specifies the client ID of the program that is giving the socket. In CICS and

IMS, these parameters are passed by the Listener program to the program
that issues the TAKESOCKET call.

* In CICS, the information is obtained using EXEC CICS RETRIEVE.
* In IMS, the information is obtained by issuing GU TIM.
DOMAIN
A fullword binary field set to the domain of the program giving

the socket. It is decimal 2, indicating AF_INET, or decimal 19,
indicating AF_INET®6.

Note: The TAKESOCKET can only acquire a socket of the same
address family from a GIVESOCKET.

NAME
Specifies an 8-byte character field set to the MVS address space
identifier of the program that gave the socket.

TASK Specifies an 8-byte field set to the task identifier of the task that
gave the socket.

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application

ERRNO
A fullword binary field. If the value of RETCODE is negative, the field
contains an error number. See |Appendix A. Return codes on page 295|for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following;:

Value Description
z0 Contains the new socket descriptor.
-1 Check ERRNO for an error code.

TERMAPI

This call terminates the session created by INITAPL

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.
Cross memory mode: PASN = HASN.

Chapter 7. Using the CALL instruction application programming interface (API) 177

178

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |[“Environmental restrictions and programming|
[requirements” on page 61|

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of TERMAPI call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'TERMAPI'.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION.

Figure 59. TERMAPI call instruction example

For equivalent PL/1 and assembler language declarations, see
fparameter descriptions” on page 64

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing TERMAPL The field is left-justified
and padded to the right with blanks.

WRITE

The WRITE call writes data on a connected socket. This call is similar to SEND,
except that it lacks the control flags available with SEND.

For datagram sockets the WRITE call writes the entire datagram if it fits into the
receiving buffer.

Stream sockets act like streams of information with no boundaries separating data.
For example, if a program wishes to send 1000 bytes, each call to this function can
send any number of bytes, up to the entire 1000 bytes. The number of bytes sent
will be returned in RETCODE. Therefore, programs using stream sockets should
place this call in a loop, calling this function until all data has been sent.

See ["EZACIC04” on page 183 for a subroutine that will translate EBCDIC output
data to ASCII.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.
Cross memory mode: PASN = HASN.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |[“Environmental restrictions and programming|
[requirements” on page 61.|

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of WRITE call instructions.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS 'WRITE'.

01 S PIC 9(4) BINARY.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL "EZASOKET' USING SOC-FUNCTION S NBYTE BUF
ERRNO RETCODE.

Figure 60. WRITE call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64)

Parameter values set by the application

SOC-FUNCTION
A 16-byte character field containing WRITE. The field is left-justified and
padded on the right with blanks.

S A halfword binary field set to the socket descriptor.

NBYTE
A fullword binary field set to the number of bytes of data to be
transmitted.

BUF Specifies the buffer containing the data to be transmitted.

Parameter values returned to the application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See|Appendix A. Return codes on page 295| for information
about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

20 A successful call. A return code greater than 0 indicates the number
of bytes of data written.

-1 Check ERRNO for an error code.

Chapter 7. Using the CALL instruction application programming interface (API) 179

180

WRITEV

The WRITEV function writes data on a socket from a set of buffers.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under |[“Environmental restrictions and programming|
[requirements” on page 61|

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

shows an example of WRITEV call instructions.

WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE 'WRITEV'.
01 S PIC 9(4) BINARY.

01 TIOVCNT PIC 9(8) BINARY.

01 I0v.

03 BUFFER-ENTRY OCCURS N TIMES.
05 BUFFER-POINTER USAGE IS POINTER.
05 RESERVED PIC X(4).
05 BUFFER-LENGTH PIC 9(8) USAGE IS BINARY.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

PROCEDURE DIVISION.

SET BUFFER-POINTER(1) TO ADDRESS OF BUFFERL.
SET BUFFER-LENGTH(1) TO LENGTH OF BUFFERL.
SET BUFFER-POINTER(2) TO ADDRESS OF BUFFER2.
SET BUFFER-LENGTH(2) TO LENGTH OF BUFFER2.

SET BUFFER-POINTER(n) TO ADDRESS OF BUFFERn.
SET BUFFER-LENGTH(n) TO LENGTH OF BUFFERn.

CALL "EZASOKET' USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 61. WRITEV call instruction example

For equivalent PL/1 and assembler language declarations, see
fparameter descriptions” on page 64/

Parameter values set by the application

S A value or the address of a halfword binary number specifying the
descriptor of the socket from which the data is to be written.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

IOV An array of tripleword structures with the number of structures equal to
the value in IOVCNT and the format of the structures as follows:

Fullword 1
The address of a data buffer.

Fullword 2
Reserved.

Fullword 3
The length of the data buffer referenced in Fullword 1.

IOVCNT
A fullword binary field specifying the number of data buffers provided for
this call.

Parameters returned by the application

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error

number. See|Appendix A. Return codes on page 295| for information about
ERRNO return codes.

RETCODE
A fullword binary field.

Value Meaning
<0 Check ERRNO for an error code.
0 Connection partner has closed connection.

>0 Number of bytes sent.

Using data translation programs for socket call interface

In addition to the socket calls, you can use the following utility programs to
translate data:

Data translation

TCP/IP hosts and networks use ASCII data notation; MVS TCP/IP and its

subsystems use EBCDIC data notation. In situations where data must be translated

from one notation to the other, you can use the following utility programs:

* EZACIC04 translates EBCDIC data to ASCII data using the translation table
documented in the |z/OS Communications Server: IP Configuration Referencel

* EZACICO5 translates ASCII data to EBCDIC data using the translation table
documented in the [z/OS Communications Server: IP Confiquration Referencel

* EZACIC14 provides an alternative to EZACIC04 and translates EBCDIC data to
ASCII data using the translation table documented in [Figure 69 on page 197

* EZACIC15 provides an alternative to EZACICO05 and translates ASCII data to
EBCDIC data using the translation table documented in [Figure 71 on page 199}

Bit-string processing

In C-language, bit strings are often used to convey flags, switch settings, and so
on; TCP/IP makes frequent uses of bit strings. However, since bit strings are
difficult to decode in COBOL, TCP/IP includes the following:

* EZACICO6 translates bit-masks into character arrays and character arrays into
bit-masks.

* EZACICO8 interprets the variable length address list in the HOSTENT structure
returned by GETHOSTBYNAME or GETHOSTBYADDR.

Chapter 7. Using the CALL instruction application programming interface (API) 181

* EZACICQ9 interprets the ADDRINFO structure returned by GETADDRINFO.

182 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

EZACIC04

The EZACIC04 program is used to translate EBCDIC data to ASCII data.

shows how EZACIC04 translates a byte of EBCDIC data.

ASCII second hex digit of byte of EBCDIC data
output by |------mm e
EZACICO4 o 1] 2| 3| 4| 5| 6] 7] 8] 9] A| B] ¢c| D] E| F
ittt ki ke etk sEl D SR PR R el R Tl Sl sl ol et
0 |o0|01]62|03|1A[09|1A|7F|1A|1A|1A]6B|0C|OD|OE|OF
B e e e e o e e e e Rl LR E Sl Sl Rl sl T
1 |10|11]12]13|1A|0A|08|1A|18]19|1A|1A]1C|1D|1E|1F
B e e e e e el L ol T EE o Eh Sl sl sl TP
2 |1A|1A|1C|1A|1A|0A|17|1B|1A|1A|1A]|1A|1A|05]06]07
B e e e e e e e etk S (o
3 |1A|1A|16|1A|1A|1E|1A|04|1A|1A|1A|1A] 14| 15| 1A] 1A
B e e e b e e e Rk S S
4 |20|A6|E1|80|EB|90|9F|E2|AB|8B|9B|2E|3C|28|2B]|7C
B e e e e e e e e e bttt ST S o B
5 |26|A9|AA|9C|DB|A5|99|E3|A8|9E|21|24|2A|29|3B]5E
T S e gy i Sy
first | 6 |2D|2F|DF|DC|9A|DD|DE|98|9D|AC|BA|2C|25|5F|3E|3F
hex L T T e S R e T JETEE R s B e e
digit | 7 |D7|88|94|B0|B1|B2|FC|D6|FB|60|3A|23]|40|27|3D|22
of T S S S Tr gy " S
byte 8 |F8|61]62|63|64]65]66|67]|68]69|96]|A4|F3|AF|AE|C5
of e e e e e e el o Rl L SR h Sl sl sl T
EBCDIC | 9 |8C|6A|6B|6C|6D|6E|6F[70]71|72|97(87|CE|93|F1|FE
data B e T T T e T It et (UL TR SEPt P
A |Cc8|7E|73|74|75|76|77|78|79|7A|EF|CO|DA|5B|F2|AE
B e e e e e bt S
B |B5|B6|FD|B7|B8|B9|E6|BB|BC|BD|8D|DI|BF|5D|D8|C4
B e e e e e D e e e e e e Rttt s S L
C |7B|41|42|43|44|45|46(|47]48|49|CB|CA|BE|ES|EC|ED
T S e gy i Sy
D |7D|4A|4B|4C|4D|4E|4F|50|51|52|AL|AD|F5|F4|A3|8F
B e e e e e e e Rl LD sl Sl R Sl
E |5C|E7|53|54|55|56|57|58|59|5A|A0|85|8E|E9|E4|D1
B e e e e e e e e o Tl L Rl Sl Rl sl TP
F |30]31|32|33|34|35|36/37|38|39|B3|F7|FO|FA|A7|FF

Figure 62. EZACIC04 EBCDIC-to-ASCII table

shows an example of EZACIC04 call instructions.

WORKING-STORAGE SECTION.

01 OUT-BUFFER PIC X(length of output).

01 LENGTH PIC 9(8) BINARY.

PROCEDURE DIVISION.

CALL 'EZACICO4' USING OUT-BUFFER LENGTH.

Figure 63. EZACICO04 call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64

OUT-BUFFER

A buffer that contains the following:

* When called, EBCDIC data
* Upon return, ASCII data

Chapter 7. Using the CALL instruction application programming interface (API)

183

LENGTH
Specifies the length of the data to be translated.

184 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

EBCDIC second hex digit of byte of ASCII data
output by |----mmmmm e o
EZACICO5 o 1| 2| 3| 4| 5| 6] 7| 8| 9] Al B] c| D] E| F
eyt P LT PRy U YRR P S Ty R
0 |00]01]|02|03]|37|2D|2E|2F|16|05|25|0B]|0C|0D|0E|OF
B e D e e e s el e Tl TRl el el ol Sl b
1 |10|11]12]13|3C|3D|32|26|18]|19]|3F|27|22|1D|35]1F
B e e e e e Ll s Sl e Sl TRl el ol el el TP
2 |40|5A|7F|78|58B]6C|50|7D|4D|5D|5C|4E|6B|60|4B|61
B T e e e e S e e o ol P SRl Pl sl Sl TP
3 |FO|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F
Bt R L S Mt st e e R e e e e e e T
4 |7c|c1|c2|c3|ca|c5|ce|c7|c8]|co|D1|D2|D3|D4|D5|D6
Bt R e b it sl L R R S T T el S T
5 |D7|D8|D9|E2|E3|E4|E5|E6|E7|ES|E9|AD|EQ|BD|5F|6D
e R e et e e e R e o T st sl Tl S
first | 6 |79]|81|82|83|84|85|86|87|88]|89|91|92|93]|94|95|96
hex Pt T T Y U PR S . .
digit | 7 |97|98|99|A2|A3|A4|A5|A6|A7|A8|A9|CO|4F|DO|AL|0O7
of B e D e e el s el e sl TRl el el Rl Sl T
byte | 8 |00|01|02]|03|37|2D|2E|2F|16|05|25|0B|0C|0D|OE|0OF
of B e e e e e e e e e Tl TRl el el el Ll T
ASCII | 9 |10|11]12|13|3C|3D|32|26|18|19|3F|27|22|1D|35]1F
(o L - T T S e T e Rt T R SRS P e TS
A |40|5A|7F|78B|5B|6C|50|7D|4D|5D|5C|4E|6B|60|AF|61
BT e e b e e e ks sl S T e e o e s
B |FO|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F
B e e e Mt s S L R D S e e el S e
C |7c|c1|cz|c3|c4a|c5|c6|c7|c8|c9|D1|D2|D3|D4|D5|D6
e R e et e e e R e o T st sl Tl S
D |D7|D8|D9|E2|E3|E4|E5|E6|E7|ES|E9|AD|EO|BD|5F]|6D
B e Uy e Y S LTy i g
E |79|81|82|83|84|85|86|87|88|89]|91]92]93|94]|95|96
B e D e e e Ll L Sl s Tl TRl el el el Sl T
F |97|98]|99|A2|A3|A4|A5|A6|A7|A8|A9|CO|4F|DO|AL|0O7

EZACICO05

The EZACICO05 program is used to translate ASCII data to EBCDIC data. EBCDIC

data is required by COBOL, PL/I, and assembler language programs.
shows how EZACICO5 translates a byte of ASCII data.

Figure 64. EZACIC05 ASCII-to-EBCDIC table

shows an example of EZACICO5 call instructions.

WORKING-STORAGE SECTION.

01 IN-BUFFER PIC X(length of output)
01 LENGTH PIC 9(8) BINARY VALUE

PROCEDURE DIVISION.

CALL 'EZACICO5' USING IN-BUFFER LENGTH.

Figure 65. EZACICO05 call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64

IN-BUFFER

A buffer that contains the following:

* When called, ASCII data

Chapter 7. Using the CALL instruction application programming interface (API)

185

¢ Upon return, EBCDIC data

LENGTH
Specifies the length of the data to be translated.

186 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

EZACICO06

The SELECT call uses bit strings to specify the sockets to test and to return the
results of the test. Because bit strings are difficult to manage in COBOL, you might
want to use the assembler language program EZACICO06 to translate them to
character strings to be used with the SELECT call.

shows an example of EZACICO06 call instructions.

WORKING-STORAGE SECTION.
01 CHAR-MASK.

05 CHAR-STRING PIC X(nn).
01 CHAR-ARRAY REDEFINES CHAR-MASK.
05 CHAR-ENTRY-TABLE OCCURS nn TIMES.
10 CHAR-ENTRY PIC X(1).
01 BIT-MASK.
05 BIT-ARRAY-FWDS OCCURS (nn+31)/32 TIMES.
10 BIT_ARRAY_WORD PIC 9 (8) COMP.
01 BIT-FUNCTION-CODES.
05 CTOB PIC X(4) VALUE 'CTOB'.
05 BTOC PIC X(4) VALUE 'BTOC'.
01 CHAR-MASK-LENGTH PIC 9(8) COMP VALUE nn.

PROCEDURE CALL (to convert from character to binary)
CALL 'EZACICO6' USING CTOB
BIT-MASK
CHAR-MASK
CHAR-MASK-LENGTH
RETCODE.

PROCEDURE CALL (to convert from binary to character)
CALL "EZACICO6' USING BTOC
BIT-MASK
CHAR-MASK
CHAR-MASK-LENGTH
RETCODE.

Figure 66. EZACICO06 call instruction example

For equivalent PL/1 and assembler language declarations, see

[parameter descriptions” on page 64/

TOKEN
Specifies a 16-character identifier. This identifier is required and it must be
the first parameter in the list.

CHAR-MASK
Specifies the character array where nn is the maximum number of sockets
in the array. The first character in the array represents socket 0, the second
represents socket 1, and so on. Note that the index is 1 greater than the
socket number [for example, CHAR-ENTRY(1) represents socket 0,
CHAR-ENTRY (2) represents socket 1, and so on.]

BIT-MASK
Specifies the bit string to be translated for the SELECT call. Within each
fullword of the bit string, the bits are ordered right to left. The right-most

Chapter 7. Using the CALL instruction application programming interface (API) 187

bit in the first fullword represents socket 0 and the left-most bit represents
socket 31. The right-most bit in the second fullword represents socket 32
and the left-most bit represents socket 63. The number of fullwords in the
bit string should be calculated by dividing the sum of 31 and the character
array lenth by 32 (truncate the remainder).

COMMAND
BTOC specifies bit string to character array translation.

CTOB specifies character array to bit string translation.

CHAR-MASK-LENGTH
Specifies the length of the character array. This field should be no greater
than 1 plus the MAXSNO value returned on the INITAPI (which is usually
the same as the MAXSOC value specified on the INITAPI).

RETCODE
A binary field that returns one of the following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

Examples: If you want to use the SELECT call to test sockets 0, 5, and 32, and
you are using a character array to represent the sockets, you must set the
appropriate characters in the character array to 1. In this example, index positions
1, 6 and 33 in the character array are set to 1. Then you can call EZACIC06 with
the COMMAND parameter set to CTOB. When EZACICO06 returns, the first
fullword of BIT-MASK contains B'00000000000000000000000000100001" to indicate
that sockets 0 and 5 will be checked. The second word of BIT-MASK contains
B'00000000000000000000000000000001" to indicate that socket 32 will be checked.
These instructions process the bit string shown in the following example:

MOVE ZEROS TO CHAR-STRING.

MOVE '1' TO CHAR-ENTRY(1), CHAR-ENTRY(6), CHAR-ENTRY(33).

CALL 'EZACICO6' USING TOKEN CTOB BIT-MASK CH-MASK

CHAR-MASK-LENGTH RETCODE.
MOVE BIT-MASK TO

When the select call returns and you want to check the bit-mask string for socket
activity, enter the following instructions.

MOVE TO BIT-MASK.
CALL 'EZACICO6' USING TOKEN BTOC BIT-MASK CH-MASK
CHAR-MASK-LENGTH RETCODE.
PERFORM TEST-SOCKET THRU TEST-SOCKET-EXIT VARYING IDX
FROM 1 BY 1 UNTIL IDX EQUAL CHAR-MASK-LENGTH.

TEST-SOCKET.
IF CHAR-ENTRY(IDX) EQUAL '1'
THEN PERFORM SOCKET-RESPONSE THRU SOCKET-RESPONSE-EXIT
ELSE NEXT SENTENCE.
TEST-SOCKET-EXIT.
EXIT.

188 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

EZACICO08

The GETHOSTBYNAME and GETHOSTBYADDR calls were derived from C socket
calls that return a structure known as HOSTENT. A given TCP/IP host can have
multiple alias names and host Internet addresses.

TCP/IP uses indirect addressing to connect the variable number of alias names
and Internet addresses in the HOSTENT structure that are returned by the
GETHOSTBYADDR AND GETHOSTBYNAME calls.

If you are coding in PL/I or assembler language, the HOSTENT structure can be
processed in a relatively straight-forward manner. However, if you are coding in
COBOL, HOSTENT can be more difficult to process and you should use the
EZACICO8 subroutine to process it for you.

It works as follows:

1. GETHOSTBYADDR or GETHOSTBYNAME returns a HOSTENT structure that
indirectly addresses the lists of alias names and Internet addresses.

2. Upon return from GETHOSTBYADDR or GETHOSTBYNAME, your program
calls EZACICO8 and passes it the address of the HOSTENT structure.
EZACICO08 processes the structure and returns the following:

* The length of host name, if present

* The host name

e The number of alias names for the host

¢ The alias name sequence number

* The length of the alias name

* The alias name

¢ The host Internet address type, always 2 for AF_INET
* The host Internet address length, always 4 for AF_INET
¢ The number of host Internet addresses for this host

* The host Internet address sequence number

* The host Internet address

3. If the GETHOSTBYADDR or GETHOSTBYNAME call returns more than one
alias name or host Internet address, the application program should repeat the
call to EZACICO08 until all alias names and host Internet addresses have been
retrieved.

[Figure 67 on page 190 shows an example of EZACICO08 call instructions.

Chapter 7. Using the CALL instruction application programming interface (API) 189

190

WORKING-STORAGE SECTION.

01 HOSTENT-ADDR PIC 9(8) BINARY.
01 HOSTNAME-LENGTH PIC 9(4) BINARY.
01 HOSTNAME-VALUE PIC X(255).

01 HOSTALIAS-COUNT PIC 9(4) BINARY.
01 HOSTALIAS-SEQ PIC 9(4) BINARY.
01 HOSTALIAS-LENGTH PIC 9(4) BINARY.
01 HOSTALIAS-VALUE PIC X(255).

01 HOSTADDR-TYPE PIC 9(4) BINARY.
01 HOSTADDR-LENGTH PIC 9(4) BINARY.
01 HOSTADDR-COUNT PIC 9(4) BINARY.

01 HOSTADDR-SEQ PIC 9(4) BINARY.
01 HOSTADDR-VALUE PIC 9(8) BINARY.
01 RETURN-CODE PIC 9(8) BINARY.

PROCEDURE DIVISION.

CALL 'EZASOKET' USING 'GETHOSTBYADDR'
HOSTADDR HOSTENT-ADDR
RETCODE.

CALL '"EZASOKET' USING 'GETHOSTBYNAME'
NAMELEN NAME HOSTENT-ADDR
RETCODE.

CALL '"EZACICO8' USING HOSTENT-ADDR HOSTNAME-LENGTH
HOSTNAME-VALUE HOSTALIAS-COUNT HOSTALIAS-SEQ
HOSTALIAS-LENGTH HOSTALIAS-VALUE
HOSTADDR-TYPE HOSTADDR-LENGTH HOSTADDR-COUNT
HOSTADDR-SEQ HOSTADDR-VALUE RETURN-CODE.

Figure 67. EZAZICO8 call instruction example

For equivalent PL/1 and assembler language declarations, see
[parameter descriptions” on page 64

Parameter values set by the application

HOSTENT-ADDR
This fullword binary field must contain the address of the HOSTENT
structure (as returned by the GETHOSTBYxxxx call). This variable is the
same as the variable HOSTENT in the GETHOSTBYADDR and
GETHOSTBYNAME socket calls.

HOSTALIAS-SEQ
This halfword field is used by EZACICO08 to index the list of alias names.
When EZACICO8 is called, it adds 1 to the current value of
HOSTALIAS-SEQ and uses the resulting value to index into the table of
alias names. Therefore, for a given instance of GETHOSTBYxxxx, this field
should be set to 0 for the initial call to EZACICO08. For all subsequent calls
to EZACICO8, this field should contain the HOSTALIAS-SEQ number
returned by the previous invocation.

HOSTADDR-SEQ
This halfword field is used by EZACICO08 to index the list of IP addresses.
When EZACICO08 is called, it adds 1 to the current value of
HOSTADDR-SEQ and uses the resulting value to index into the table of IP
addresses. Therefore, for a given instance of GETHOSTBYxxxx, this field
should be set to 0 for the initial call to EZACICO08. For all subsequent calls
to EZACICO08, this field should contain the HOSTADDR-SEQ number
returned by the previous call.

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Parameter values returned to the application

HOSTNAME-LENGTH
This halfword binary field contains the length of the host name (if host
name was returned).

HOSTNAME-VALUE
This 255-byte character string contains the host name (if host name was
returned).

HOSTALIAS-COUNT
This halfword binary field contains the number of alias names returned.

HOSTALIAS-SEQ
This halfword binary field is the sequence number of the alias name
currently found in HOSTALIAS-VALUE.

HOSTALIAS-LENGTH
This halfword binary field contains the length of the alias name currently
found in HOSTALIAS-VALUE.

HOSTALIAS-VALUE
This 255-byte character string contains the alias name returned by this
instance of the call. The length of the alias name is contained in
HOSTALIAS-LENGTH.

HOSTADDR-TYPE
This halfword binary field contains the type of host address. For FAMILY
type AF_INET, HOSTADDR-TYPE is always 2.

HOSTADDR-LENGTH
This halfword binary field contains the length of the host Internet address
currently found in HOSTADDR-VALUE. For FAMILY type AF_INET,
HOSTADDR-LENGTH is always set to 4.

HOSTADDR-COUNT
This halfword binary field contains the number of host Internet addresses
returned by this instance of the call.

HOSTADDR-SEQ
This halfword binary field contains the sequence number of the host
Internet address currently found in HOSTADDR-VALUE.

HOSTADDR-VALUE
This fullword binary field contains a host Internet address.

RETURN-CODE
This fullword binary field contains the EZACICO08 return code:

Value Description

0 Successful completion.

-1 HOSTENT address is not valid.

-2 A value of HOSTALIAS-SEQ is not valid.
-3 A value of HOSTADDR-SEQ is not valid.

Chapter 7. Using the CALL instruction application programming interface (API) 191

EZACICO09

The GETADDRINFO call was derived from the C socket call that return a structure
known as RES. A given TCP/IP host can have multiple sets of NAMES. TCP/IP
uses indirect addressing to connect the variable number of NAMES in the RES
structure that is returned by the GETADDRINFO call. If you are coding in PL/T or
assembler language, the RES structure can be processed in a relatively
straight-forward manner. However, if you are coding in COBOL, RES can be more
difficult to process and you should use the EZACIC09 subroutine to process it for
you. It works as follows:

1. GETADDRINFO returns a RES structure that indirectly addresses the lists of
socket address structures.

2. Upon return from GETADDRINFO, your program calls EZACIC09 and passes
it the address of the next address information structure as referenced by the
NEXT argument. EZACIC09 processes the structure and returns the following:
a. The socket address structure b. The next address information structure.

3. If the GETADDRINFO call returns more than one socket address structure the
application program should repeat the call to EZACIC09 until all socket
address structures have been retrieved.

[Figure 68 on page 193/ shows an example of EZACICQ9 call instructions.

192 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

WORKING-STORAGE SECTION.

*

* Variables used for the GETADDRINFO call

*

01 getaddrinfo-parms.

02
02
02
02

*

node-name pic x(255).

node-name-len pic 9(8) binary.
service-name pic x(32).
service-name-len pic 9(8) binary.
canonical-name-Ten pic 9(8) binary.
ai-passive pic 9(8) binary value 1.
ai-canonnameok pic 9(8) binary value 2.
ai-numerichost pic 9(8) binary value 4.
ai-numericserv pic 9(8) binary value 8.
ai-vdmapped pic 9(8) binary value 16.
ai-all pic 9(8) binary value 32.
ai-addrconfig pic 9(8) binary value 64.

* Variables used for the EZACICO9 call

*

01 ezacic09-parms.

02
02
02
02
02

*

res usage is pointer.

res-name-len pic 9(8) binary.
res-canonical-name pic x(256).
res-name usage is pointer.
res-next-addrinfo usage is pointer.

* Socket address structure

*

01 server-socket-address.

05
05
05
05

05

server-family pic 9(4) Binary Value 19.
server-port pic 9(4) Binary Value 9997.

server-flowinfo pic 9(8) Binary Value 0.

server-ipaddr.

10 filler pic 9(16) binary value 0.

10 filler pic 9(16) binary value 0.
server-scopeid pic 9(8) Binary Value 0.

Figure 68. EZACICO09 call instruction example (Part 1 of 3)

Chapter 7. Using the CALL instruction application programming interface (API)

193

LINKAGE SECTION.
01 LI.

03 HINTS-ADDRINFO.
05 HINTS-AI-FLAGS PIC 9(8) BINARY.
05 HINTS-AI-FAMILY PIC 9(8) BINARY.
05 HINTS-AI-SOCKTYPE PIC 9(8) BINARY.
05 HINTS-AI-PROTOCOL PIC 9(8) BINARY.
05 FILLER PIC 9(8) BINARY.
05 FILLER PIC 9(8) BINARY.
05 FILLER PIC 9(8) BINARY.
05 FILLER PIC 9(8) BINARY.

03 HINTS-ADDRINFO-PTR USAGE IS POINTER.

03 RES-ADDRINFO-PTR USAGE IS POINTER.

*

* RESULTS ADDRESS INFO

*

01 RESULTS-ADDRINFO.
05 RESULTS-AI-FLAGS PIC 9(8) BINARY.
05 RESULTS-AI-FAMILY PIC 9(8) BINARY.
05 RESULTS-AI-SOCKTYPE PIC 9(8) BINARY.
05 RESULTS-AI-PROTOCOL PIC 9(8) BINARY.
05 RESULTS-AI-ADDR-LEN PIC 9(8) BINARY.
05 RESULTS-AI-CANONICAL-NAME USAGE IS POINTER.
05 RESULTS-AI-ADDR-PTR USAGE IS POINTER.
05 RESULTS-AI-NEXT-PTR USAGE IS POINTER.

*

* SOCKET ADDRESS STRUCTURE FROM EZACICO9.
*
01 OUTPUT-NAME-PTR USAGE IS POINTER.
01 OUTPUT-IP-NAME.
03 OUTPUT-IP-FAMILY PIC 9(4) BINARY.
03 OUTPUT-IP-PORT PIC 9(4) BINARY.
03 OUTPUT-IP-SOCK-DATA PIC X(24).
03 OUTPUT-IPV4-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.
05 OUTPUT-IPV4-IPADDR PIC 9(8) BINARY.
05 FILLER PIC X(20).
03 OUTPUT-IPV6-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.
05 OUTPUT-IPV6-FLOWINFO PIC 9(8) BINARY.
05 OUTPUT-IPV6-IPADDR.
10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.
05 OUTPUT-IPV6-SCOPEID PIC 9(8) BINARY.

Figure 68. EZACICO09 call instruction example (Part 2 of 3)

194 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

PROCEDURE DIVISION USING L1.

*

* Get and

*
move
move
move
move
move
move
move
move

address from the resolver.

'yournodename' to node-name.
12 to node-name-Ten.

spaces to service-name.

0 to service-name-len.
af-inet6 to hints-ai-family.
49 to hints-ai-flags

0 to hints-ai-socktype.

0 to hints-ai-protocol.

set address of results-addrinfo to res-addrinfo-ptr.
set hints-addrinfo-ptr to address of hints-addrinfo.

call

*

"EZASOKET' using soket-getaddrinfo
node-name node-name-1len
service-name service-name-len
hints-addrinfo-ptr
res-addrinfo-ptr
canonical-name-Ten
errno retcode.

* Use EZACICO9 to extract the IP address

*

set address of results-addrinfo to res-addrinfo-ptr.
set res to address of results-addrinfo.

move
move

zeros to res-name-len.
spaces to res-canonical-name.

set res-name to nulls.
set res-next-addrinfo to nulls.

call

"EZACICO9' using res
res-name-len
res-canonical-name
res-name
res-next-addrinfo
retcode.

set address of output-ip-name to res-name.

move

output-ipv6-ipaddr to server-ipaddr.

Figure 68. EZACICO09 call instruction example (Part 3 of 3)

For equivalent PL/I and assembler language declarations, see

[parameter descriptions” on page 64

Parameter values set by the application:

RES

This fullword binary field must contain the address of the
ADDRINFO structure (as returned by the GETADDRINFO call).
This variable is the same as the RES variable in the
GETADDRINFO socket call.

RES-NAME-LEN

A fullword binary field that will contain the length of the socket
address structure as returned by the GETADDRINFO call.

Parameter values returned to the application:

Description

RES-CANONICAL-NAME

RES-NAME

A field large enough to hold the canonical name. The maximum
field size is 256 bytes. The canonical name length field will indicate
the length of the canonical name as returned by the
GETADDRINFO call.

The address of the subsequent socket address structure.

Chapter 7. Using the CALL instruction application programming interface (API) 195

RES-NEXT The address of the next address information structure.

RETURN-CODE
CODE This fullword binary field contains the EZACIC09 return
code:

Value Description
0 Successful call.

-1 Invalid RES address.

196 2z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

output b
EZACIC14

first
hex
digit
of
byte
of
EBCDIC
data

EZACIC14

The EZACIC14 program is an alternative to EZACIC04, which translates EBCDIC
data to ASCII data. shows how EZACIC14 translates a byte of EBCDIC

data.

y ___
o] 1 2| 3| 4] 5| 6| 7| 8] 9| A| B] c| D| E| F
B LT (TUpuE U SR P YR P S
0 |oo]e1]62|03|9C|09|86]|7F|97|8D|8E|6B|OC|OD|OE|OF
B e D e e e s el e Tl TRl el el ol Sl b
1 |10]11]12]13|9D|85|08|87|18]|19]92|8F|1C|1D|1E|1F
B e e e e e Ll s Sl e Sl TRl el ol el el TP
2 |80|81|82|83|84|0A|17|1B|88|89|8A|8B|8C|05|06|07
B T e e e e S e e o ol P SRl Pl sl Sl TP
3 190]|91]16]93]94]|95]96]|04|98]|99|9A|9B|14|15|9E|1A
—— ettt ettt b e -
4 |20|A0|E2|E4|EOQ|EL|E3|E5|E7|F1|A2|2E|3C|28]2B]7C
B e e R e e etk ST S e e e e Sl S
5 |26|E9|EA|EB|E8|ED|EE|EF|EC|DF|21]24]2A|29|3B|5E
B e e e R s s S e L it i E sEEE SRl SRl SRl S
6 |2p|2F|c2|ca|co|c1|c3|c5|c7|D1]|A6]2C|25]5F|3E|3F
Pt T T Y U PR S . .
7 |F8|C9|CA|CB|C8|CD|CE|CF|CC|60|3A|23]40]27|3D]22
B e D e e el s el e sl TRl el el Rl Sl T
8 |D8|61|62|63|64|65|66|67|68|69|AB|BB|FO|FD|FE|B1
B e e e e e e e e e Tl TRl el el el Ll T
9 |BO|6A|6B|6C|6D|6E|6F|70|71]|72|AA|BA|EG|BS|C6|A4
B e e e Rt e e e S e e e e o Sl S
A |B5|7E|73|74|75|76|77|78|79|7A|A1|BF|DO|5B|DE|AE
B e e s s e S S S e B e el s
B |AC|A3|A5|B7|A9|A7|B6|BC|BD|BE|DD|A8|AF|5D|B4|D7
e e e Rt e e S et i EE sE sl Sl Sl el S
C |7B|41]42|43|44]|45|46]|47|48]|49|AD|F4|F6|F2|F3|F5
B e e e R s s S e L it i E sEEE SRl SRl SRl S
D |7D|4A|4B|4C|4D|4E|4F|50|51]|52|B9|FB|FC|F9|FA|FF
B e Uy e Y S LTy i g
E |5C|F7|53|54|55|56|57|58|59|5A|B2|D4|D6|D2|D3|D5
B e D e e e Ll L Sl s Tl TRl el el el Sl T

F |30]|31]32|33|34|35|36|37|38|39|B4|DB|DC|D9|DA|9F

Figure 69. EZACIC14 EBCDIC-to-ASCII table

WORKING-
01
01

PROCEDUR
CAL

shows an example of EZACIC14 call instructions.

STORAGE SECTION.
OUT-BUFFER PIC X(length of output).
LENGTH PIC 9(8) BINARY.

E DIVISION.
L 'EZACIC14' USING OUT-BUFFER LENGTH.

Figure 70. EZACIC14 call instruction example

For equivalent PL/I and assembler language declarations, see

fparameter descriptions” on page 64

OUT-BUFFER

A buffer that contains the following:

* When called, EBCDIC data

Chapter 7. Using the CALL instruction application programming interface (API)

197

¢ Upon return, ASCII data

LENGTH
Specifies the length of the data to be translated.

198 2/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

EZACIC15

The EZACIC15 program is an alternative to EZACICO05, which translates ASCII

data to EBCDIC data. shows how EZACIC15 translates a byte of ASCII

data.

EBCDIC second hex digit of byte of ASCII data
output by |----mmmmm e o
EZACIC15 o| 1] 2| 3] 4] 5] 6| 7| 8| 9| A| B] c| D] E| F
eyt P LT PRy U YRR P S Ty R
0 |o0]e1]62|03]|37|2D|2E|2F|16]05|25]|6B|0C|0OD|OE|OF
B e D e e e s el e Tl TRl el el ol Sl b
1 |10]11]12]13|3C|3D|32|26]|18]|19|3F|27|1C|1D|1E|1F
B e e e e e Ll s Sl e Sl TRl el ol el el TP
2 |40|5A|7F|78|58B]6C|50|7D|4D|5D|5C|4E|6B|60|4B|61
B T e e e e S e e o ol P SRl Pl sl Sl TP
3 |FO|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F
—— ettt ettt b e -
4 |7c|c1|c2|c3|ca|c5|ce|c7|c8]|co|D1|D2|D3|D4|D5|D6
B e e R e e etk ST S e e e e Sl S
5 |D7|D8|D9|E2|E3|E4|E5|E6|E7|E8|E9|AD|EQ|BD|5F|6D
B e e e R s s S e L it i E sEEE SRl SRl SRl S
first | 6 |79]81]82|83|84[85[86(87(88]89]91]92]93]94]95]96
hex Pt T T Y U PR S . .
digit | 7 |97]|98|99|A2|A3|A4|A5|A6|A7|A8|A9|CO|4F|DO|AL|07
of B e D e e el s el e sl TRl el el Rl Sl T
byte 8 |20]21|22|23|24|15|06|17|28]|29|2A|2B|2C|09|0A|1B
of B e e e e e e e e e Tl TRl el el el Ll T
ASCITI | 9 |30]31|1A|33|34|35|36|08|38|39|3A|3B|04|14|3E|FF
data B T s Tt e e e T etk STl I L TPl BP P
A |41|AA|4A|B1|9F|B2|6A|B5|BB|B4|9A|8A|BO|CA|AF|BC
B e e s s e S S S e B e el s
B |90|8F|EA|FA|BE|AO|B6|B3|9D|DA|9B|8B|B7|B8|BI|A9
e e e Rt e e S et i EE sE sl Sl Sl el S
C |64|65|62|66|63|67|9E|68|74|71|72]|73|78|75|76]77
B e e e R s s S e L it i E sEEE SRl SRl SRl S
D |AC|69|ED|EE|EB|EF|EC|BF|80|FD|FE|FB|FC|BA|AE|59
B e Uy e Y S LTy i g
E |44|45|42|46]43|47]|9C|48|54|51|52|53|58|55]|56]|57
B e D e e e Ll L Sl s Tl TRl el el el Sl T
F |8C|49]|CD|CE|CB|CF|CC|E1|70|DD|DE|DB|DC|8D|8E|DF

Figure 71. EZACIC15 ASCII-to-EBCDIC table

WORKING-
01
01

shows an example of EZACIC15 call instructions.

STORAGE SECTION.
OUT-BUFFER PIC X(length of output).
LENGTH PIC 9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZACIC15' USING OUT-BUFFER LENGTH.

Figure 72. EZACIC15 call instruction example

For equivalent PL/1 and assembler language declarations, see

fparameter descriptions” on page 64

OUT-BUFFER

A buffer that contains the following:

* When called, ASCII data

Chapter 7. Using the CALL instruction application programming interface (API)

199

¢ Upon return, EBCDIC data

LENGTH
Specifies the length of the data to be translated.

200 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Call interface sample programs

This section provides sample programs for the call interface that you can use for a
PL/I or COBOL application program.

The following are the sample programs available in the SEZAINST data set:

Program Description

EZASOKPS PL/T call interface sample IPv4 server program
EZASOKPC PL/T call interface sample IPv4 client program
EZASO6PS PL/T call interface sample IPv6 server program
EZASO6PC PL/T call interface sample IPv6 client program
CBLOCK PL/I common variables

EZASO6CS COBOL call interface sample IPv6 server program
EZASO6CC COBOL call interface sample IPv6 client program

Sample code for IPv4 server program

The EZASOKPS PL/I sample program is a server program that shows you how to
use the following calls:
* ACCEPT

* BIND

+ CLOSE

* GETSOCKNAME

» INITAPI

» LISTEN

* READ

* SOCKET

* TERMAPI

* WRITE

Chapter 7. Using the CALL instruction application programming interface (API) 201

/***/

/* */
/* MODULE NAME: EZASOKPS - THIS IS A VERY SIMPLE IPV4 SERVER */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5694-A01 */
/* */
/* (C) Copyright IBM Corp. 1994, 2005 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV1R7 */
/* */

/***/

EZASOKPS: PROC OPTIONS(MAIN);

/* INCLUDE CBLOCK - common variables */
% include CBLOCK;

ID.TCPNAME = 'TCPIP'; /* Set TCP to use */
ID.ADSNAME = 'EZASOKPS'; /* and address space name */

open file(driver);
/***/

/* */
/* Execute INITAPI */
/* */
[FFkF gk ok kk ok kk ok kR kk kR kk ko kk ko kk ko kk ok ok k ok ok kk ko k ko kok K kK xrhhhhhh kKK *A /
/***/
/* */
/* Uncomment this code to set max sockets to the maximum. */
/* */
/* MAXSOC_INPUT = 65535; */
/* MAXSOC_FWD = MAXSOC_INPUT; */
R R R T R S A e T A T E T Kkkkkkkkkkkhkkhk [

call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
MAXSNO, ERRNO, RETCODE);
if retcode < 0 then do;
msg = 'FAIL: initapi' || errno;
write file(driver) from (msg);
goto getout;

end;

/***/
/* */
/* Execute SOCKET */
/* */

/***/

Figure 73. EZASOKPS PL/1 sample server program for IPv4 (Part 1 of 4)

202 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

call ezasoket(SOCKET, AF_INET, TYPE_STREAM, PROTO,
ERRNO, RETCODE);
if retcode < 0 then do;
msg = blank; /* clear field */
msg = 'FAIL: socket, stream, internet' || errno;
write file(driver) from (msg);
goto getout;
end;
else sock_stream = retcode;
/***/

/* */
/* Execute BIND */
/* */

/***/
name_id.port = 8888;
name_id.address = '01234567 'BX; /* internet address */
call ezasoket(BIND, SOCK_STREAM, NAME_ID,
ERRNO, RETCODE);

if retcode < 0 then do;

msg = blank; /* clear field */

msg = 'FAIL: bind' || errno;

write file(driver) from (msg);

goto getout;

end;

/***/
/* */
/* Execute GETSOCKNAME %/
/* */

/***/
name_id.port = 8888;
name_id.address = '01234567'BX; /* internet address */
call ezasoket (GETSOCKNAME, SOCK_STREAM,

NAME_ID, ERRNO, RETCODE) ;

msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: getsockname, stream, internet' || errno;

write file(driver) from (msg);
end;
else do;

msg = 'getsockname = ' || name_id.address;

write file(driver) from (msg);
end;
/***/
/* */
/* Execute LISTEN */
/% */
/***/
backlog = 5;

call ezasoket (LISTEN, SOCK_STREAM, BACKLOG,
ERRNO, RETCODE);
if retcode < 0 then do;
msg = blank; /* clear field */
msg = 'FAIL: listen w/ backlog = 5' || errno;
write file(driver) from (msg);
goto getout;

Figure 73. EZASOKPS PL/1 sample server program for IPv4 (Part 2 of 4)

Chapter 7. Using the CALL instruction application programming interface (API)

203

end;
/***/

/* */
/* Execute ACCEPT */
/* */

/***/
name_id.port = 8888;
name_id.address = '01234567'BX; /* internet address */
call ezasoket (ACCEPT, SOCK_STREAM,

NAME_ID, ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: accept' || errno;

write file(driver) from (msg);
end;
else do;

accpsock = retcode;

msg = 'accept socket = ' || accpsock;

write file(driver) from (msg);
end;
/***/
/* */
/* Execute READ */
/* */

/***/
nbyte = length(bufin);
call ezasoket(READ, ACCPSOCK,

NBYTE, BUFIN, ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;
msg = 'FAIL: read' || errno;
write file(driver) from (msg);
end;
else do;
msg = 'read = ' || bufin;

write file(driver) from (msg);
bufout = bufin;
nbyte = retcode;

end;

R A a A 22 2 e T TE T Ty
/* */
/* Execute WRITE */
/% */
[k F gk ke kk ok dk ok ok dk ok ok kk ok ok kok ok ko ok ok K Fk kK xR I IR KRRk h kK rhh kKK Kk Kkkkkkkkkkkhk [

call ezasoket(WRITE, ACCPSOCK, NBYTE, BUFOUT,
ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;
msg = 'FAIL: write' || errno;
write file(driver) from (msg);
end;
else do;
msg = 'write = ' || bufout;

Figure 73. EZASOKPS PL/1 sample server program for IPv4 (Part 3 of 4)

204 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

write file(driver) from (msg);

end;

/***/
/* */
/* Execute CLOSE accept socket */
/* */

/***/
call ezasoket(CLOSE, ACCPSOCK,

ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */

msg = 'FAIL: close, accept sock' || errno;

write file(driver) from (msg);
end;
/***/
/* */
/* Execute TERMAPI */
/* */
/***/
getout:

call ezasoket (TERMAPI);
close file(driver);
end ezasokps;

Figure 73. EZASOKPS PL/1 sample server program for IPv4 (Part 4 of 4)

Sample program for IPv4 client program

The EZASOKPC PL/I sample program is a client program that shows you how to

use the following calls provided by the call socket interface:

* CONNECT

* GETPEERNAME
* INITAPI

« READ

* SHUTDOWN

* SOCKET

* TERMAPI

* WRITE

Chapter 7. Using the CALL instruction application programming interface (API)

205

/***/

/* */
/* MODULE NAME: EZASOKPC - THIS IS A VERY SIMPLE IPV4 CLIENT */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5694-A01 */
/* */
/* (C) Copyright IBM Corp. 1994, 2002 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSVIR4 */
/* */

/***/

EZASOKPC: PROC OPTIONS(MAIN);

/* INCLUDE CBLOCK - common variables */
% include CBLOCK;

ID.TCPNAME = 'TCPIP'; /* Set TCP to use */
ID.ADSNAME = 'EZASOKPC'; /* and address space name */

open file(driver);
/***/

/* */
/* Execute INITAPI */
/% %/
[FFkF gk ok kk ok kk ok kR kk kR kk ko kk ko kk ko kk ok ok k ok ok kk ko k ko kok K kK xrhhhhhh kKK *A /

call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
MAXSNO, ERRNO, RETCODE);
if retcode < 0 then do;
msg = 'FAIL: initapi' || errno;
write file(driver) from (msg);
goto getout;

end;

/***/
/* */
/* Execute SOCKET */
/* */

/***/
call ezasoket(SOCKET, AF_INET, TYPE_STREAM, PROTO,
ERRNO, RETCODE);
if retcode < 0 then do;
msg = blank; /* clear field */
msg = 'FAIL: socket, stream, internet' || errno;
write file(driver) from (msg);

Figure 74. EZASOKPC PL/1 sample client program for IPv4 (Part 1 of 3)

206 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

goto getout;

end;

sock_stream = retcode; /* save socket descriptor */
[ek Hkdk Kk kK k KhK KK IRE KK KKK R T P *xk [
/* Execute CONNECT */
/% */

/***/
name_id.port = 8888;
name_id.address = '01234567 'BX; /* internet address */
call ezasoket(CONNECT, SOCK_STREAM, NAME_ID,
ERRNO, RETCODE);

if retcode < 0 then do;

msg = blank; /* clear field */

msg = 'FAIL: connect, stream, internet' || errno;

write file(driver) from (msg);

goto getout;

end;

/***/
/* */
/* Execute GETPEERNAME */
/* */

/***/
call ezasoket(GETPEERNAME, SOCK_STREAM,
NAME_ID, ERRNO, RETCODE);

msg = blank; /% clear field */
if retcode < 0 then do;

msg = 'FAIL: getpeername' || errno;

write file(driver) from (msg);
end;
else do;

msg = 'getpeername =' || name id.address;

write file(driver) from (msg);
end;
/***/
/* */
/* Execute WRITE */
/* */

/***/
bufout = message;
nbyte = length(message);
call ezasoket(WRITE, SOCK_STREAM, NBYTE, BUFOUT,
ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;
msg = 'FAIL: write' || errno;
write file(driver) from (msg);
end;
else do;
msg = 'write = ' || bufout;

Figure 74. EZASOKPC PL/1 sample client program for IPv4 (Part 2 of 3)

Chapter 7. Using the CALL instruction application programming interface (API)

207

write file(driver) from (msg);

end;

/***/
/* */
/* Execute READ */
/* */

/***/
nbyte = length(bufin);
call ezasoket (READ, SOCK STREAM,

NBYTE, BUFIN, ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: read' || errno;

write file(driver) from (msg);
end;
else do;

msg = 'read = ' || bufin;

write file(driver) from (msg);
end;
/***/
/* */
/* Execute SHUTDOWN from/to */
/* */
/***/
getout:
how = 2;

call ezasoket(SHUTDOWN, SOCK_STREAM, HOW,
ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */

msg = 'FAIL: shutdown' || errno;

write file(driver) from (msg);
end;
/***/
/* */
/* Execute TERMAPI */
/* */

/***/
call ezasoket (TERMAPI);

close file(driver);

end ezasokpc;

Figure 74. EZASOKPC PL/1 sample client program for IPv4 (Part 3 of 3)

Sample code for IPv6 server program

The EZASO6PS PL/I sample program is a server program that shows you how to
use the following calls provided by the call socket interface:
* ACCEPT

* BIND

* CLOSE

* EZACIC09

* FREEADDRINFO

* GETADDRINFO

* GETHOSTNAME

* GETSOCKNAME

+ INITAPI

* LISTEN

* NTOP

+ PTON

* READ

208 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

e SOCKET
 TERMAPI
* WRITE

/***/

/* */
/* MODULE NAME: EZASO6PS - THIS IS A VERY SIMPLE IPV6 SERVER */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" x/
/* */
/% 5694-A01 */
/* */
/* (C) Copyright IBM Corp. 2002, 2005 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. x/
/* */
/* Status: CSV1R7 */
/* */
/* """"" *khkkkkhkkhkkkhk **/
EZASO6PS: PROC OPTIONS(MAIN);

/* INCLUDE CBLOCK - common variables */
% include CBLOCK;

ID.TCPNAME = 'TCPCS'; /* Set TCP to use */
ID.ADSNAME = 'EZASO6PS'; /* and address space name x/

open file(driver);
/***/

/* */
/* Execute INITAPI */
/* */
/***/
JEZIIIIEE B R L R L E R R e o B R L R L E R R e o KRk kR * KKK *xk [
/* */
/* Uncomment this code to set max sockets to the maximum. */
/* */
/* MAXSOC_INPUT = 65535; */
/* MAXSOC_FWD = MAXSOC_INPUT; */

/***/
call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
MAXSNO, ERRNO, RETCODE);
if retcode < 0 then do;
msg = 'FAIL: initapi' || errno;
write file(driver) from (msg);
goto getout;

end;

[k F gk Kk kK k kkkxxrhhhhhkrxhhh kK Kk kK rxrhhhhhhhkkrhhhk kK Kk Kk kkkhh kK ok *xk [
/% */
/* Execute SOCKET */
/% */

/***/

Figure 75. EZASO6PS PL/1 sample server program for IPv6 (Part 1 of 6)

Chapter 7. Using the CALL instruction application programming interface (API)

209

call ezasoket(SOCKET, AF_INET6, TYPE_STREAM, PROTO,
ERRNO, RETCODE);
if retcode < 0 then do;
msg = blank; /* clear field */
msg = 'FAIL: socket, stream, internet' || errno;
write file(driver) from (msg);
goto getout;
end;
else sock_stream = retcode;
/***/

/* */
/* Execute PTON */
/* */
/***/
PRESENTABLE_ADDR = IPV6_LOOPBACK; /* Set IP address to use */

PRESENTABLE_ADDR_LEN = LENGTH(PRESENTABLE_ADDR) ; /* and its length */
call ezasoket(PTON, AF_INET6, PRESENTABLE_ ADDR,
PRESENTABLE_ADDR_LEN, NUMERIC_ADDR,
ERRNO, RETCODE);
if retcode < 0 then do;
msg = blank; /* clear field */
msg = 'FAIL: pton' || errno;
write file(driver) from (msg);
goto getout;

end;

name6_id.address = NUMERIC_ADDR; /* IPV6 internet address */
/***/
/* */
/* Execute GETHOSTNAME */
/* */

[e ke ek ok ok ok ok ok ok ok ok ok ko ke ke ko ko ko ko ko ok ko ok ke ke ko ke k
call ezasoket(GETHOSTNAME, HOSTNAME_LEN, HOSTNAME,
ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;
msg = 'FAIL: gethostname' || errno;

write file(driver) from (msg);
goto getout;

end;
else do;

msg = 'gethostname = ' || HOSTNAME;

write file(driver) from (msg);

GAI_NODE = HOSTNAME; /* Set host name for getaddrinfo to use */
end;
/***/
/* */
/* Execute GETADDRINFO */
/* */
/***/
GAI SERVLEN = 0; /* set service Tength */
GAI_HINTS.FLAGS = ai_CANONNAMEOK; /* Request canonical name */
HINTS = ADDR(GAI_HINTS); /* Set results pointer */

call ezasoket (GETADDRINFO,
GAI_NODE, GAI_NODELEN,
GAI_SERVICE, GAI_SERVLEN,

Figure 75. EZASO6PS PL/1 sample server program for IPv6 (Part 2 of 6)

210 2z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

HINTS, RES,
CANONNAME_LEN,
ERRNO, RETCODE);
msg = blank; /% clear field */
if retcode < 0 then do;
msg = 'FAIL: getaddrinfo' || errno;
write file(driver) from (msg);

end;

else do; /* process returned RES */
/***/
/* */
/* Call EZACICO9 to format the returned result address information =*/
/* */

/***/
call ezacicO9(RES, OPNAMELEN, OPCANON, OPNAME, OPNEXT,
RETCODE) ;
msg = blank; /* clear field */
if retcode ~= 0 then do;
msg = 'FAIL: EZACICO9' || RETCODE;
write file(driver) from (msg);

end;
else do;

msg = 'OPCANON = ' || OPCANON;

write file(driver) from (msg);
end;
/***/
/% */
/* Execute FREEADDRINFO */
/% */
JEZETIIED ok e o e o o e ok ok ok ok o ok ok ok ok ok ko ok e e o e ok e ok ok ok ok ok ko ko ko ok ko ok ok ke k *xk [

call ezasoket (FREEADDRINFO, RES,
ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: freeaddrinfo' || errno;

write file(driver) from (msg);
end;

end; /* end from getaddrinfo */
/***/

/* */
/* Execute BIND */
/* */

/***/
name6_id.port = 8888;
call ezasoket (BIND, SOCK_STREAM, NAME6_ID,
ERRNO, RETCODE);
if retcode < 0 then do;
msg = blank; /* clear field */
msg = 'FAIL: bind' || errno;
write file(driver) from (msg);
goto getout;

end;

/***/
/* */
/* Execute GETSOCKNAME */

Figure 75. EZASO6PS PL/1 sample server program for IPv6 (Part 3 of 6)

Chapter 7. Using the CALL instruction application programming interface (API)

211

/% */
[HFx ke k ko ko ko ko ko k ok ko kR ko ko ko ko ko ko ko ko ko [
call ezasoket (GETSOCKNAME, SOCK_STREAM,

NAME6_ID, ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: getsockname, stream, internet' || errno;

write file(driver) from (msg);
end;
/***/
/* */
/* Execute LISTEN */
/* */
/***/
backlog = 5;

call ezasoket (LISTEN, SOCK_STREAM, BACKLOG,
ERRNO, RETCODE);
if retcode < 0 then do;
msg = blank; /* clear field */
msg = 'FAIL: listen w/ backlog = 5' || errno;
write file(driver) from (msg);
goto getout;

end;

/***/
/* */
/* Execute ACCEPT */
/* */

/***/
call ezasoket(ACCEPT, SOCK_STREAM,
NAME6_ID, ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: accept' || errno;

write file(driver) from (msg);
end;
else do;

accpsock = retcode;

msg = 'accept socket = ' || accpsock;

write file(driver) from (msg);
end;
/***/
/* */
/* Execute NTOP */
/* */

[ke ke ek ok ko ok ok ok ok ok ok ko ke ke ko ko ko ko ok ko ke ke ke ko ko k[
call ezasoket(NTOP, AF_INET6, NUMERIC_ADDR,

PRESENTABLE_ADDR, PRESENTABLE_ADDR_LEN,

ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;
msg = 'FAIL: ntop' || errno;

write file(driver) from (msg);
goto getout;

end;

else do;

Figure 75. EZASO6PS PL/1 sample server program for IPv6 (Part 4 of 6)

212 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

msg = 'presentable address = ' || PRESENTABLE_ADDR;
write file(driver) from (msg);

end; /* */
[ek Hkdk Kk kK k Kk Kk xhh kK Kk kxR R R R e s R R R R R *xk [
/* */
/* Execute READ */
/* */

/***/
nbyte = length(bufin);
call ezasoket (READ, ACCPSOCK,

NBYTE, BUFIN, ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;
msg = 'FAIL: read' || errno;
write file(driver) from (msg);
end;
else do;
msg = 'read = ' || bufin;

write file(driver) from (msg);
bufout = bufin;
nbyte = retcode;

end;

JEZETTIEE kKK I I IR KRR hh I I ** Kk kK H ok *kkEx I IR hKhhh Ik kI *h* Kk kK Kk Kk kkkhhh Kk *xk [
/% */
/* Execute WRITE */
/% */

/***/

call ezasoket (WRITE, ACCPSOCK, NBYTE, BUFOUT,
ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: write' || errno;

write file(driver) from (msg);
end;
else do;

msg = 'write = ' || bufout;

write file(driver) from (msg);
end;
/***/
/* */
/* Execute CLOSE accept socket */
/* */

/***/
call ezasoket(CLOSE, ACCPSOCK,

ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */
msg = 'FAIL: close, accept sock' || errno;
write file(driver) from (msg);
end;
[ek Hkdk ke ok kK k Khkkkk kKRR KKK, R AR T *xk [
/* */
/* Execute TERMAPI */

Figure 75. EZASO6PS PL/1 sample server program for IPv6 (Part 5 of 6)

Chapter 7. Using the CALL instruction application programming interface (API)

213

/* */

/***/

getout:

call ezasoket (TERMAPI);
close file(driver);

end EZASO6PS;

Figure 75. EZASO6PS PL/1 sample server program for IPv6 (Part 6 of 6)

Sample program for IPv6 client program

The EZASO6PC PL/I sample program is a client program that shows you how to
use the following calls provided by the call socket interface:
* CONNECT

* GETNAMEINFO

* GETPEERNAME

+ INITAPI

+ PTON

* READ

* SHUTDOWN

* SOCKET

* TERMAPI

* WRITE

214 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

/***/

/* */
/* MODULE NAME: EZASO6PC - THIS IS A VERY SIMPLE IPV6 CLIENT */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5694-A01 */
/* */
/* (C) Copyright IBM Corp. 2002 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSVIR4 */
/* */

/***/

EZASO6PC: PROC OPTIONS(MAIN);

/* INCLUDE CBLOCK - common variables */
% include CBLOCK;

ID.TCPNAME = 'TCPCS'; /* Set TCP to use */
ID.ADSNAME = 'EZASO6PS'; /* and address space name */

open file(driver);

/***/

/* */
/* Execute INITAPI */
/* */

/***/

call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,
MAXSNO, ERRNO, RETCODE);
if retcode < 0 then do;
msg = 'FAIL: initapi' || errno;
write file(driver) from (msg);
goto getout;
end;

/***/

/* */
/* Execute SOCKET */
/% */

/***/

call ezasoket (SOCKET, AF_INET6, TYPE_STREAM, PROTO,
ERRNO, RETCODE);
if retcode < 0 then do;
msg = blank; /* clear field */
msg = 'FAIL: socket, stream, internet' || errno;
write file(driver) from (msg);

Figure 76. EZASO6PC PL/1 sample client program for IPv6 (Part 1 of 4)

Chapter 7. Using the CALL instruction application programming interface (API)

215

goto getout;
end;
sock_stream = retcode; /* save socket descriptor */

/***/

/* Execute PTON */
/* */
/***/
PRESENTABLE_ADDR = IPV6_LOOPBACK; /* Set the address to use */

PRESENTABLE_ADDR_LEN = LENGTH(PRESENTABLE_ADDR) ; /* and it's length %/
call ezasoket(PTON, AF_INET6, PRESENTABLE_ADDR,

PRESENTABLE_ADDR_LEN, NUMERIC_ADDR,

ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;
msg = 'FAIL: pton' || errno;

write file(driver) from (msg);
goto getout;

end;

msg = 'SUCCESS: pton converted ' || PRESENTABLE_ADDR;

name6_id.address = NUMERIC_ADDR; /* IPV6 internet address */
[kK gk ke ko k ok ok ok k ok k ok ok R R 2 2 R R R T TR T *kKx I IRk hhh AR KRR /
/* Execute CONNECT */
/* */

/***/

name6_id.port = 8888;
call ezasoket(CONNECT, SOCK_STREAM, NAME6_ID,
ERRNO, RETCODE);
if retcode < 0 then do;
msg = blank; /* clear field */
msg = 'FAIL: connect, stream, internet' || errno;
write file(driver) from (msg);
goto getout;
end;

/***/

/* */
/* Execute GETPEERNAME */
/* */

/***/

call ezasoket(GETPEERNAME, SOCK_STREAM,
NAME6_ID, ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: getpeername' || errno;

write file(driver) from (msg);
end;

/***/

/* */
/* Execute GETNAMEINFO */
/* */

Figure 76. EZASO6PC PL/1 sample client program for IPv6 (Part 2 of 4)

216 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

/***/

NAMELEN = 28 ; /* Set Tength of NAME */
GNI_HOST = blank; /* Clear Host name */
GNI_HOSTLEN = LENGTH(GNI_HOST); /* Set Host name Tlength */
GNI_SERVICE = blank; /* Clear Service name */
GNI_SERVLEN = LENGTH(GNI_SERVICE); /* Set Service name length */
GNI_FLAGS = NI_NAMEREQD; /* Set an error if name is not found =/

call ezasoket (GETNAMEINFO, NAME6_ID, NAMELEN,
GNI_HOST, GNI_HOSTLEN,
GNI_SERVICE, GNI_SERVLEN,
GNI_FLAGS,
ERRNO, RETCODE);
msg = blank; /* clear field */
if retcode < 0 then do;
msg = 'FAIL: getnameinfo' || errno;
write file(driver) from (msg);
end;
else do;
msg = 'getnameinfo host=' || GNI_HOST ;
write file(driver) from (msg);
msg = 'getnameinfo service=' || GNI_SERVICE ;
write file(driver) from (msg);
end;

/***/

/* */
/* Execute WRITE */
I+ */
JEZETIIED kK xx I IR hhhhhkkrhhh kKK * % ok kxF I I IR Khhhhkkrrhh kKK Hk Kk kkkkh kK ok *xk [

bufout = message;

nbyte = length(message);

call ezasoket(WRITE, SOCK_STREAM, NBYTE, BUFOUT,
ERRNO, RETCODE);

msg = blank; /* clear field */
if retcode < 0 then do;
msg = 'FAIL: write' || errno;
write file(driver) from (msg);
end;
else do;
msg = 'write = ' || bufout;
write file(driver) from (msg);
end;

/***/

/* */
/* Execute READ */
/* */

/***/

nbyte = length(bufin);
call ezasoket(READ, SOCK_STREAM,
NBYTE, BUFIN, ERRNO, RETCODE);
msg = blank; /* clear field */

Figure 76. EZASO6PC PL/1 sample client program for IPv6 (Part 3 of 4)

Chapter 7. Using the CALL instruction application programming interface (API)

217

if retcode < 0 then do;

msg = 'FAIL: read' || errno;
write file(driver) from (msg);
end;
else do;
msg = 'read = ' || bufin;
write file(driver) from (msg);
end;

/***/

/* */
/* Execute SHUTDOWN from/to */
/* */
/***/
getout:
how = 2;

call ezasoket (SHUTDOWN, SOCK_STREAM, HOW,
ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */
msg = 'FAIL: shutdown' || errno;
write file(driver) from (msg);

end;

/***/

/* */
/* Execute TERMAPI */
/% */
[k F gk ke ok kk ok kk ke k ok ok ke k ok ok ke k ok kR kK xx IR IRk hhh kI hhh kK Kk k kK xrhhhhhh kKK *A /

call ezasoket (TERMAPI);

close file(driver);
end ezasobpc;

Figure 76. EZASO6PC PL/1 sample client program for IPv6 (Part 4 of 4)

Common variables used in PL/I sample programs

The CBLOCK common storage area contains the variables that are used in the
PL/I programs in this section.

/**/

/* */
/* MODULE NAME: CBLOCK - SOKET COMMON VARIABLES */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5694-A01 x/
/* */
/* (C) Copyright IBM Corp. 1994, 2005 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV1R7 */
/* */

/**/
/**/

218 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

/* */
/* SOKET COMMON VARIABLES */
/* */
/**/
DCL ABS BUILTIN;
DCL ADDR BUILTIN;
DCL ACCEPT CHAR(16) INIT('ACCEPT');
DCL ACCPSOCK FIXED BIN(15); /* temporary ACCEPT socket */
DCL AF_INET FIXED BIN(31) INIT(2); /* internet domain */
DCL AF_INET6 FIXED BIN(31) INIT(19); /+* internet v6 domain */
DCL AF_IUCV FIXED BIN(31) INIT(17); /* iucv domain */
DCL ai_PASSIVE FIXED BIN(31) INIT(1);
/* flag: getaddrinfo hints */
DCL ai_ CANONNAMEOK FIXED BIN(31) INIT(2);
/* flag: getaddrinfo hints */
DCL ai NUMERICHOST FIXED BIN(31) INIT(4);
/* flag: getaddrinfo hints */
DCL ai_NUMERICSERV FIXED BIN(31) INIT(8);
/* flag: getaddrinfo hints */
DCL ai_ VAMAPPED FIXED BIN(31) INIT(10);
/* flag: getaddrinfo hints */
DCL ai ALL FIXED BIN(31) INIT(20);
/* flag: getaddrinfo hints */
DCL ai ADDRCONFIG FIXED BIN(31) INIT(40);
/* flag: getaddrinfo hints */
DCL ALIAS CHAR(255); /* alternate NAME */
DCL APITYPE FIXED BIN(15) INIT(2); /* default API type */
DCL BACKLOG FIXED BIN(31); /* max length of pending queuex/
DCL BADNAME CHAR(20); /* temporary name */
DCL BIND CHAR(16) INIT('BIND');
DCL BIT BUILTIN;
DCL BITZERO BIT(1); /* bit zero value */
DCL BLANK255 CHAR(255) INIT(' '); /* */
DCL BLANK CHAR(100) INIT(' '); /* */
DCL BUF CHAR(80) INIT(' '); /* macro READ/WRITE buffer */
DCL BUFF CHAR(15) INIT(' '); /* short buffer */
DCL BUFFER CHAR(32767) INIT(' '); /* BUFFER */
DCL BUFIN CHAR(32767) INIT(' '); /* Read buffer */
DCL BUFOUT CHAR(32767) INIT(' '); /* WRITE buffer */
DCL NCHBUFF CHAR(3200) INIT(' '); /* BUFFER */
DCL CANONNAME_LEN FIXED BIN(31);/* getaddrinfo canonical name lengthx/
DCL 1 CLIENT, /* socket addr of connection peer */
2 DOMAIN FIXED BIN(31) INIT(2), /* domain of client (AF_INET) */
2 NAME CHAR(8) INIT(' '), /* addr identifier for client x/
2 TASK CHAR(8) INIT(' '), /* task identifier for client =/
2 RESERVED CHAR(20) INIT(' '); /* reserved */
DCL CLOSE CHAR(16) INIT('CLOSE');
DCL COMMAND FIXED BIN(31) INIT(3); /* Query FNDELAY flag */
DCL CONNECT CHAR(16) INIT('CONNECT');
DCL COUNT FIXED BIN(31) INIT(100); /* elements in GRP_IOCTL TABLEx/
DCL DATA SOCK FIXED BIN(15); /* temporary datagram socket =/
DCL DEF FIXED BIN(31) INIT(0); /* default protocol */
DCL DONE_SENDING CHAR(1); /* ready flag */
DCL DRIVER FILE OUTPUT UNBUF ENV(FB RECSIZE(100)) RECORD;
DCL ERETMSK CHAR(4); /* indicate exception events =/
DCL ERR FIXED BIN(31); /* error number variable */
DCL ERRNO FIXED BIN(31) INIT(0); /* error number */
DCL ESNDMSK CHAR(4); /* check for pending */
/* exception events */
DCL EXIT LABEL; /* common exit point */
DCL EZACICO5 ENTRY OPTIONS(ASM,INTER) EXT; /* translate ascii>ebcdicx*/
DCL EZACICO9 ENTRY OPTIONS(ASM,INTER) EXT; /* format getaddrinfo res=/
DCL EZASOKET ENTRY OPTIONS(ASM,INTER) EXT; /* socket call */
DCL FCNTL CHAR(16) INIT('FCNTL');

Chapter 7. Using the CALL instruction application programming interface (API)

219

DCL
DCL
DCL

DCL
DCL
DCL
DCL
DCL

DCL

DCL

DCL

DCL

DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

2
DCL

FIONBIO FIXED BIN(31) INIT(-2147178626);/* flag: nonblocking */
FIONREAD FIXED BIN(31) INIT(+1074046847);/* flag:#readable bytesx/
FLAGS FIXED BIN(31) INIT(O); /* default: no flags */
/% 1 = 00B, SEND OUT-OF-BAND=*/
/* 4 = DON'T ROUTE */
FREEADDRINFO CHAR(16) INIT('FREEADDRINFO');
GAI_NODE CHAR(255) INIT(' '); /* getaddrinfo node */
GAI NODELEN FIXED BIN(31) INIT(255);/* getaddrinfo node length */
GAI SERVICE CHAR(32) INIT(' '); /* getaddrinfo service */
GAI_SERVLEN FIXED BIN(31) INIT(32); /* getaddrinfo service */
/* length */
1 GAI_HINTS, /* getaddrinfo hints addrinfo */
2 FLAGS FIXED BIN(31) INIT(®), /* hints flags */
2 AF FIXED BIN(31) INIT(0), /* hints family */
2 SOCTYPE FIXED BIN(31) INIT(0), /* hints socket type */
2 PROTO FIXED BIN(31) INIT(0), /* hints protocol */
2 NAMELEN FIXED BIN(31) INIT(O),
2 CANONNAME FIXED BIN(31) INIT(O),
2 NAME FIXED BIN(31) INIT(O),
2 NEXT FIXED BIN(31) INIT(0);
1 GAI_ADDRINFO BASED(RES), /* getaddrinfo RES addrinfo */
2 FLAGS FIXED BIN(31),
2 AF FIXED BIN(31),
2 SOCTYPE FIXED BIN(31),
2 PROTO FIXED BIN(31),
2 NAMELEN FIXED BIN(31), /* RES socket address struct Tength=/
2 CANONNAME POINTER, /* RES canonical name */
2 NAME POINTER, /* RES socket address structure */
2 NEXT POINTER; /* RES next addrinfo, zero if none.*/

1 GAI_NAME_ID BASED(GAI_ADDRINFO.NAME),

2 LEN BIT(8),

2 FAMILY BIT(8),

2 PORT FIXED BIN(15),

2 ADDRESS FIXED BIN(31),

2 RESERVED1 CHAR(8):
1 GAI_NAME6_ID BASED(GAI_ADDRINFO.NAME),

2 LEN BIT(8),

2 FAMILY BIT(8),

2 PORT FIXED BIN(15),

2 FLOWINFO FIXED BIN(31),

2 ADDRESS CHAR(16),

2 SCOPEID FIXED BIN(31);
GETADDRINFO CHAR(16) INIT('GETADDRINFO');
GETCLIENTID CHAR(16) INIT('GETCLIENTID');
GETHOSTBYADDR CHAR(16) INIT('GETHOSTBYADDR');
GETHOSTBYNAME CHAR(16) INIT('GETHOSTBYNAME');
GETHOSTNAME CHAR(16) INIT('GETHOSTNAME');
GETHOSTID CHAR(16) INIT('GETHOSTID');
GETIBMOPT CHAR(16) INIT('GETIBMOPT');
GETNAMEINFO CHAR(16) INIT('GETNAMEINFO');
GETPEERNAME CHAR(16) INIT('GETPEERNAME');
GETSOCKNAME CHAR(16) INIT('GETSOCKNAME');

GETSOCKOPT CHAR(16) INIT('GETSOCKOPT');

GIVESOCKET CHAR(16) INIT('GIVESOCKET');

GLOBAL CHAR(16) INIT('GLOBAL');

GNI_FLAGS FIXED BIN(31); /* getnameinfo flags */
GNI_HOST CHAR(255); /* getnameinfo host */
GNI HOSTLEN FIXED BIN(31); /* getnameinfo host length */
GNI_SERVICE CHAR(32); /* getnameinfo service */
GNI_SERVLEN FIXED BIN(31); /* getnameinfo service length */
HINTS POINTER; /*getaddrinfo hints addrinfo pointers/
1 HOMEIF, /* Home Interface Structure =/
ADDRESS CHAR(16); /* Home Interface Address */
HOSTADDR FIXED BIN(31); /* host internet address */

220 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

DCL
DCL

DCL
DCL
DCL
DCL

DCL
DCL
DCL

NN N N

DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

DCL
DCL

DCL

DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

HOSTNAME CHAR(24);

HOW FIXED BIN(31) INIT(2);
I FIXED BIN(15);

ICMP FIXED BIN(31) INIT(2);
1 1D,

/* host name from GETHOSTNAME =/
HOSTNAME_LEN FIXED BIN(31) INIT(24);

/* host name length GETHOSTNAME =/
/* how shutdown is to be done */

/*
/*

/*

Toop index
prototype icmp

?2?

2 TCPNAME CHAR(8) INIT('TCPIP'), /* remote address space
2 ADSNAME CHAR(8) INIT('USER9'); /* local address space

/* TCP/IP Addr Space

/* configuration structure

IDENT POINTER;
IFCONF CHAR(255);
1 IF_NAMEINDEX,
IF_NIHEADER,

3 IF_NITOTALIF FIXED BIN(31), /+Total Active Interfaces on Sys.
/* Number of entries returned

3 IF_NIENTRIES FIXED BIN(31),
IF_NITABLE(10) CHAR(24);
1 IF_NAMEINDEXENTRY,
IF_NIINDEX FIXED BIN(31),
IF_NINAME CHAR(16),
IF_NIEXT,
3 IF_NINAMETERM CHAR(1),
3 IF_RESERVED CHAR(3);
IFREQ CHAR(255);
INDEX BUILTIN;
IOCTL CHAR(16) INIT('IOCTL');
IOCTL_CMD FIXED BIN(31);
IOCTL_REQARG POINTER ;
IOCTL_RETARG POINTER ;
IOCTL_REQOO FIXED BIN(31);
IOCTL_REQO4 FIXED BIN(31);
IOCTL_REQO8 FIXED BIN(31);
IOCTL_REQ32 CHAR(32) INIT(' ');
IOCTL_RETOO FIXED BIN(31);
IOCTL_RETO4 FIXED BIN(31);
INITAPI CHAR(16) INIT('INITAPI');
1 INTERNET,

2 NETID1 FIXED BIN(31) INIT(9),

/*

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Interface Index

Null for C for Name len=16

Reserved
interface struct

ioctl command

/* Interface Name, blank padded

ure

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/

*/
*/

*/

send pointer to data area*/
return pointer to data areax/

command request
command request
command request
command request
command return
command return

internet address
network id, part

argument
argument
argument
argument
argument
argument

1

2 NETID2 FIXED BIN(31) INIT(67), /* network id, part 2
2 SUBNETID FIXED BIN(31) INIT(30), /* subnet id
2 HOSTID FIXED BIN(31) INIT(137); /* host id

IpP FIXED BIN(31) INIT(1);
1 IP_MREQ,
2 IMR_MULTIADDR,
3 NETID1 FIXED BIN(31),
3 NETID2 FIXED BIN(31),
3 SUBNETID FIXED BIN(31),
3 HOSTID FIXED BIN(31),
2 IMR_INTERFACE,
3 NETID1 FIXED BIN(31),
3 NETID2 FIXED BIN(31),
3 SUBNETID FIXED BIN(31),
3 HOSTID FIXED BIN(31);
1 IPV6_MREQ,
IPV6MR_MULTIADDR CHAR(16),
IPV6MR_INTERFACE FIXED BIN(31);

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

prototype ip 7?7

IP multicast addr of group

network id, part
network id, part
subnet id

host id

local IP addr of interface

network id, part
network id, part
subnet id

host id

IP_MULTICAST_TTL FIXED BIN(31) INIT(1048579);
IP_MULTICAST LOOP FIXED BIN(31) INIT(1048580);
IP_MULTICAST_IF FIXED BIN(31) INIT(1048583);
IP_ADD_MEMBERSHIP FIXED BIN(31) INIT(1048581);
IP_DROP_MEMBERSHIP FIXED BIN(31) INIT(1048582);

IPRES POINTER;

IPV6_JOIN_GROUP FIXED BIN(31) INIT(65541);
IPV6_LEAVE GROUP FIXED BIN(31) INIT(65542);

IPV6:LO0PBACK CHAR(3) INIT('::1");

Chapter 7. Using the CALL instruction application programming interface (API)

??

1
2

1
2

/* EZACICO9 RES addrinfo ptr

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

221

222

DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

IPV6_MULTICAST HOPS FIXED BIN(31) INIT(65545);
IPV6_MULTICAST IF FIXED BIN(31) INIT(65543);
IPV6_MULTICAST_LOOP FIXED BIN(31) INIT(65540);
IPV6_UNICAST HOPS FIXED BIN(31) INIT(65539);

IPV6_V6ONLY FIXED BIN(31) INIT(65546);

J FIXED BIN(15); /* loop index
K FIXED BIN(15); /* loop index

LENGTH BUILTIN;
LABL CHAR(9);
LISTEN CHAR(16) INIT('LISTEN');

MAXSNO FIXED BIN(31) INIT(0); /* max descriptor assigned

1 MAXSOC_INPUT FIXED BIN(31) INIT(0);
1 MAXSOC_FWD,
2 MAXSOC_IGNORE FIXED BIN(15) INIT(0),

2 MAXSOC FIXED BIN(15) INIT(255); /* largest sock # checked
DCL MESSAGE CHAR(50) INIT('I love my 1 @ Rottweiler!'); /* message

DCL MSG CHAR(100) INIT(' ');

DCL 1 NAME_ID,

/*

message text

/* socket addr of connection peer

2 FAMILY FIXED BIN(15) INIT(2), /*addr'g family TCP/IP def
2 PORT FIXED BIN(15), /* system assigned port #
2 ADDRESS FIXED BIN(31), /* 32-bit internet
2 RESERVED CHAR(8); /* reserved
DCL 1 NAME6_ID, /* socket addr of connection peer
2 FAMILY FIXED BIN(15) INIT(19), /* NAMELN IGNORED & FAMILY
2 PORT FIXED BIN(15), /* port #
2 FLOWINFO FIXED BIN(31), /* Flow info
2 ADDRESS CHAR(16), /* IPv6 internet address
2 SCOPEID FIXED BIN(31); /* Scope ID
DCL NAMEL CHAR(255) VARYING; /* name field, long
DCL NAMES CHAR(24); /* name field, short
DCL NAMELEN FIXED BIN(31); /* length of name/alias field
DCL NBYTE FIXED BIN(31); /* Number of bytes in buffer
DCL 1 NETCONFHDR, /* Network Configuration Hdr
2 NCHEYECATCHER CHAR(4) INIT('6NCH'), /* Eye Catcher '6NCH'
2 NCHIOCTL BIT(32) INIT('CO14F608'BX),
/* The IOCTL being processed
with this instance of the
NetConfHdr. (RAS item)
2 NCHBUFFERLENGTH FIXED BIN(31) INIT(3200), /* Buffer Length */
2 NCHBUFFERPTR POINTER, /* Buffer Pointer

2 NCHNUMENTRYRET FIXED BIN(31);

DCL NI_NOFQDN FIXED BIN(31) INIT(1);

DCL NI_NUMERICHOST FIXED BIN(31) INIT(2);
DCL NI_NAMEREQD FIXED BIN(31) INIT(4);
DCL NI_NUMERICSERV FIXED BIN(31) INIT(8);

DCL NI_DGRAM FIXED BIN(31) INIT(10);

/* Number of HomelIF returned via
SIOCGHOMEIF6 or the number of

GRT6RtEntry's returned via
SIOCGRT6TABLE.

/*
/*
/*
/*
/*

flag: getnameinfo
flag: getnameinfo
flag: getnameinfo
flag: getnameinfo

flag: getnameinfo

DCL NOTE(3) CHAR(25) INIT('Now is the time for 198 g',

DCL NS FIXED BIN(15);
DCL NTOP CHAR(16) INIT('NTOP');

DCL NULL BUILTIN;

DCL 1 NUMERIC_ADDR CHAR(16);
DCL OPNAMELEN FIXED BIN(31);
DCL OPCANON CHAR(256);

DCL OPNAME POINTER;

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

'ood people to
' aid of their parties!');

/*
/*

/*

/*
/*

come to the',

socket descriptor, new
Numeric to Presentation

NTOP/PTON Numeric address

/* Socket address structure length

Canonical name
Socket address structure

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/

DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

DCL

DCL
DCL
DCL

DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

OPNEXT POINTER; /* Next result address info in chain */

OPTL FIXED BIN(31); /* length of OPTVAL string */
OPTLEN FIXED BIN(31); /* Tength of OPTVAL string */
OPTN CHAR(15); /* OPTNAME value (macro) x/
OPTNAME FIXED BIN(31); /* OPTNAME value (call) */
OPTVAL CHAR(255); /* GETSOCKOPT option data */
OPTVALD FIXED BIN(31); /* SETSOCKOPT option data */
1 OPT_STRUC, /* structure for option */
2 ON_OFF FIXED BIN(31) INIT(1), /* enable option */
2 TIME FIXED BIN(31) INIT(5); /* time-out in seconds */
1 OPT_STRUCT, /* structure for option */
2 ON FIXED BIN(31), /* used for getsockopt */
2 TIMEOUT FIXED BIN(31); /* time-out in seconds */
PLITEST BUILTIN; /* debug tool */

PRESENTABLE_ADDR CHAR(45); /* NTOP/PTON presentable address */
PRESENTABLE_ADDR _LEN FIXED BIN(15);

/% NTOP/PTON presentable address length*/
PROTO FIXED BIN(31) INIT(0); /* prototype default */
PTON CHAR(16) INIT('PTON'); /* Presentation to numeric */
READ CHAR(16) INIT('READ');
READV CHAR(16) INIT('READV');
RECV CHAR(16) INIT('RECV');
RECVFROM CHAR(16) INIT('RECVFROM');
RECVMSG CHAR(16) INIT('RECVMSG');
REUSE ~ FIXED BIN(31) INIT('4'); /x toggle, reuse local addr */

REQARG FIXED BIN(31); /* command request argument */
RES POINTER; /* getaddrinfo RES addrinfo ptr =*/
RETC FIXED BIN(31); /* return code variable */
RETARG CHAR(255); /* return argument data area */
RETCODE FIXED BIN(31) INIT(0); /* return code */
RETLEN FIXED BIN(31); /* return area data length */
RRETMSK CHAR(4); /* indicate READ EVENTS */
RSNDMSK CHAR(4) ; /* check for pending read events */
RTENTRY CHAR(50) INIT('dummy table'); /* router entry */
SAVEFAM FIXED BIN(15); /* temporary family name */

SELECB CHAR(4) INIT('1');
SELECT CHAR(16) INIT('SELECT');
SELECTEX CHAR(16) INIT('SELECTEX');
SEND CHAR(16) INIT('SEND');
SENDMSG CHAR(16) INIT('SENDMSG');
SENDTO CHAR(16) INIT('SENDTO');
SETSOCKOPT CHAR(16) INIT('SETSOCKOPT');
SHUTDOWN CHAR(16) INIT('SHUTDOWN');
SIOCADDRT FIXED BIN(31) INIT(-2144295158);
/* flag: add routing entry=/
SIOCATMARK FIXED BIN(31) INIT(+1074046727);
/* flag: out-of-band datax/
SIOCDELRT FIXED BIN(31) INIT(-2144295157);
/* flag: delete routing =/
SIOCGIFADDR FIXED BIN(31) INIT(-1071601907);
/*flag: network int addr=/
SIOCGHOMEIF6 BIT(32) INIT('CO14F608'BX);
/* flag: netw int config */
SIOCGIFBRDADDR FIXED BIN(31) INIT(-1071601902);
/*flag net broadcast=*/
SIOCGIFCONF FIXED BIN(31) INIT(-1073174764);
/* flag: netw int config*/
SIOCGIFDSTADDR FIXED BIN(31) INIT(-1071601905);
/* flag: net des addrx/
SIOCGIFFLAGS FIXED BIN(31) INIT(-1071601903);
/* flag: net intf flags*/
SIOCGIFMETRIC FIXED BIN(31) INIT(-1071601897);
/* flag: get rout metrx/
SIOCGIFNAMEINDEX BIT(32) INIT('4000F603'BX);

Chapter 7. Using the CALL instruction application programming interface (API)

223

/* flag: name and indexes */
DCL SIOCGIFNETMASK FIXED BIN(31) INIT(-1071601899);
/* flag: network maskx/
DCL SIOCGIFNONSENSE FIXED BIN(31) INIT(-1234567890);
/* flag: nonsense */
DCL SIOCSIFMETRIC FIXED BIN(31) INIT(-2145343720);
/* flag: set rout metrx/

/* The following constant is defined in EZBZTLS1, but is also */
/* included here for completeness. */
/* DCL SIOCTTLSCTL BIT(32) INIT('CO38D90B'BX) */
/* flag: ttls */
DCL SOCK FIXED BIN(15); /* socket descriptor */
DCL SOCKET CHAR(16) INIT('SOCKET');
DCL SOCK DATAGRAM FIXED BIN(15); /* socket descriptor datagram =/
DCL SOCK RAW FIXED BIN(15); /* socket descriptor raw */
DCL SOCK STREAM FIXED BIN(15); /* stream socket descriptor */
DCL SOCK STREAM 1 FIXED BIN(15); /* stream socket descriptor */

DCL SO_BROADCAST FIXED BIN(31) INIT(32); /* toggle, broadcast msg =*/
DCL SO_ERROR FIXED BIN(31) INIT(4103); /* check/clear async error */
DCL SO _KEEPALIVE FIXED BIN(31) INIT(8); /* request status of streamx/
DCL SO_LINGER FIXED BIN(31) INIT(128); /* toggle, linger on close =*/
DCL SO _OOBINLINE FIXED BIN(31) INIT(256);/*toggle, out-of-bound datax/
DCL SO_REUSEADDR FIXED

BIN(31) INIT(4); /* toggle, local address reuse*/
DCL SO _SNDBUF FIXED BIN(31) INIT(4097);
DCL SO TYPE FIXED BIN(31) INIT(4104); /* return type of socket */

DCL STRING BUILTIN;
DCL SUBSTR BUILTIN;
DCL SUBTASK CHAR(8) INIT('ANYNAME'); /* task/path identifier */
DCL SYNC CHAR(16) INIT('SYNC');
DCL TAKESOCKET CHAR(16) INIT('TAKESOCKET');
DCL TASK CHAR(16) INIT('TASK');
DCL TERMAPI CHAR(16) INIT('TERMAPI'); /x */
DCL TIME BUILTIN;
DCL 1 TIMEOUT,
2 TIME_SEC FIXED BIN(31), /* value in secs */
2 TIME_MSEC FIXED BIN(31); /* value in millisecs */
DCL TYPE_DATAGRAM FIXED BIN(31) INIT(2);/*fixed lengthconnectionless*/
DCL TYPE RAW FIXED BIN(31) INIT(3); /* internal protocol interface */
DCL TYPE STREAM FIXED BIN(31) INIT(1); /* two-way byte stream */
DCL WRETMSK CHAR(4); /* indicate WRITE EVENTS */
DCL WRITE CHAR(16) INIT('WRITE');
DCL WRITEV CHAR(16) INIT('WRITEV');
DCL WSNDMSK CHAR(4); /*check for pending write events x/
DCL TCP_NODELAY FIXED BIN(31) INIT(-2147483647);

COBOL call interface sample IPv6 server program

The EZASO6CS program is a server program that shows you how to use the
following calls provided by the call socket interface:
* ACCEPT

* BIND

* CLOSE

* EZACICO09

* FREEADDRINFO

* GETADDRINFO

* GETCLIENTID

* GETHOSTNAME

 INITAPI

* LISTEN

* NTOP

¢ PTON

224 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

READ
SOCKET
TERMAPI
WRITE

ke ek ko
MODULE NAME: EZASO6CS - THIS IS A VERY SIMPLE IPV6 SERVER

Copyright: Licensed Materials - Property of IBM

"Restricted Materials of IBM"

5694-A01

(C) Copyright IBM Corp. 2002, 2003

US Government Users Restricted Rights -

Use, duplication or disclosure restricted by

GSA ADP Schedule Contract with IBM Corp.
Status: CSV1R5

LANGUAGE: COBOL II

F ok 3k X X ok ok 3k X X X %k 3k X X X X F %
EE R R R R T R I

khhkhkhkhhhkhhhkhhhhdhhhkrhhhhhhdhhdhhhhhhhhdhhhhhhhhhrhdhhhhhdhhdrhdhrhhhdhhdhrkisk
Identification Division.

k=== ===============%
Environment Division.
k=====================%
k==============%

Data Division.
k==============%

K o e e e *
* Socket interface function codes *
K o o *
01 soket-functions.

02 soket-accept pic x(16) value 'ACCEPT

02 soket-bind pic x(16) value 'BIND

02 soket-close pic x(16) value 'CLOSE

02 soket-connect pic x(16) value 'CONNECT

02 soket-fcntl pic x(16) value 'FCNTL

02 soket-freeaddrinfo pic x(16) value 'FREEADDRINFO '
02 soket-getaddrinfo pic x(16) value 'GETADDRINFO .
02 soket-getclientid pic x(16) value 'GETCLIENTID '.
02 soket-gethostbyaddr pic x(16) value 'GETHOSTBYADDR
02 soket-gethostbyname pic x(16) value 'GETHOSTBYNAME '
02 soket-gethostid pic x(16) value 'GETHOSTID '
02 soket-gethostname pic x(16) value 'GETHOSTNAME '
02 soket-getnameinfo pic x(16) value 'GETNAMEINFO '
02 soket-getpeername pic x(16) value 'GETPEERNAME '
02 soket-getsockname pic x(16) value 'GETSOCKNAME '

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 1 of 13)

Chapter 7. Using the CALL instruction application programming interface (API)

225

02 soket-getsockopt pic x(16) value 'GETSOCKOPT

02 soket-givesocket pic x(16) value 'GIVESOCKET '
02 soket-initapi pic x(16) value 'INITAPI '
02 soket-ioctl pic x(16) value 'IOCTL '
02 soket-Tisten pic x(16) value 'LISTEN '
02 soket-ntop pic x(16) value 'NTOP '
02 soket-pton pic x(16) value 'PTON '
02 soket-read pic x(16) value 'READ '
02 soket-recv pic x(16) value 'RECV ',
02 soket-recvfrom pic x(16) value 'RECVFROM ',
02 soket-select pic x(16) value 'SELECT !
02 soket-send pic x(16) value 'SEND '
02 soket-sendto pic x(16) value 'SENDTO '
02 soket-setsockopt pic x(16) value 'SETSOCKOPT '
02 soket-shutdown pic x(16) value 'SHUTDOWN '
02 soket-socket pic x(16) value 'SOCKET '
02 soket-takesocket pic x(16) value 'TAKESOCKET '
02 soket-termapi pic x(16) value 'TERMAPI '
02 soket-write pic x(16) value 'WRITE ',
T T T e T *
* Work variables *
L T L L T T T T L L L L L T, *
01 errno pic 9(8) binary value zero.
01 retcode pic s9(8) binary value zero.
01 client-ipaddr-dotted pic x(15) value space.
01 server-ipaddr-dotted pic x(15) value space.
01 ezaconn-function pic x value space.
88 CONNECTED value 'Y'.
01 saved-message-id pic x(8) value space.
88 close-down-message-received value '*CLSDWN='.
01 Terminate-Options pic x value space.
88 Opened-API value 'A'.
88 Opened-Socket value 'S'.
01 saved-message-id-len pic 9(8) Binary value 8.
01 Cur-time .
02 Hour pic 9(2).
02 Minute pic 9(2).
02 Second pic 9(2).
02 Hund-Sec pic 9(2).
01 S pic 9(4) comp.
L e T e T *
* Variables used for the INITAPI call *
E T T T T T L LT L L L L T T *
01 maxsoc-fwd pic 9(8) Binary.
01 maxsoc-rdf redefines maxsoc-fwd.
02 filler pic x(2).
02 maxsoc pic 9(4) Binary.
01 initapi-ident.
05 tcpname pic x(8) Value 'TCPCS '.
05 ashame pic x(8) Value space.
01 subtask pic x(8) value 'EZAS06CS'.
01 maxsno pic 9(8) Binary Value 1.
K o o *
* Variables returned by the GETCLIENTID Call *
T e T T L L L L T T *

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 2 of 13)

226 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

01 clientid.
05 clientid-domain
05 clientid-name
05 clientid-task

pic 9(8) Binary value 19.
pic x(8) value space.
pic x(8) value space.

05 filler pic x(20) value Tow-value.
K o *
* Variables used for the SOCKET call *
K o o o *
01 AF-INET pic 9(8) Binary Value 2.
01 AF-INET6 pic 9(8) Binary Value 19.
01 SOCK-STREAM pic 9(8) Binary Value 1.
01 SOCK-DATAGRAM pic 9(8) Binary Value 2.
01 SOCK-RAW pic 9(8) Binary Value 3.
01 IPPROTO-IP pic 9(8) Binary Value zero.
01 IPPROTO-TCP pic 9(8) Binary Value 6.
01 IPPROTO-UDP pic 9(8) Binary Value 17.
01 IPPROTO-IPV6 pic 9(8) Binary Value 41.
01 socket-descriptor pic 9(4) Binary Value zero
K o o o *
* Variables returned by the GETHOSTNAME Call *
K o o *
01 host-name-len pic 9(8) binary
01 host-name pic x(24).
01 host-name-char-count pic 9(4) binary.
01 host-name-unstrung pic x(24) value spaces.
K o o *
% Variables used/returned by the GETADDRINFO Call *
K o o *
01 node-name pic x(255).
01 node-name-len pic 9(8) binary.
01 service-name pic x(32).
01 service-name-len pic 9(8) binary.
01 canonical-name-Ten pic 9(8) binary.
01 ai-passive pic 9(8) binary value 1.
01 ai-canonnameok pic 9(8) binary value 2.
01 ai-numerichost pic 9(8) binary value 4.
01 ai-numericserv pic 9(8) binary value 8.
01 ai-vdmapped pic 9(8) binary value 16.
01 ai-all pic 9(8) binary value 32.
01 ai-addrconfig pic 9(8) binary value 64.
L e e L e e T *
* Variables used for the BIND call *
e e e e e L T e e e e TP *
01 server-socket-address.

05 server-family pic 9(4) Binary value 19.

05 server-port pic 9(4) Binary value 1031

05 server-flowinfo pic 9(8) Binary value 0.

05 server-ipaddr.

10 filler pic 9(16) Binary value 0.
10 filler pic 9(16) Binary value 0.
05 server-scopeid pic 9(8) Binary value 0.
01 NBYTE PIC 9(8) COMP value 80.
01 BUF PIC X(80).
01 BACKLOG PIC S9(8) COMP VALUE 10.
T e e T L L e T T *

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 3 of 13)

Chapter 7. Using the CALL instruction application programming interface (API)

227

% Variables used/returned by the EZACICO9 call *

K o o *
01 dinput-addrinfo-ptr usage is pointer.
01 output-name-len pic 9(8) binary.
01 output-canonical-name pic x(256).
01 output-name usage is pointer.
01 output-next-addrinfo usage is pointer.
L e T e e *
* Variables used for the LISTEN call *
e e L e e T e e e T *
01 backlog-level pic 9(4) Binary Value zero.
K o *
* Variables used for the ACCEPT call *
K o o *
01 socket-descriptor-new pic 9(4) Binary Value zero.
K o o o *
* Variables used for the NTOP/PTON call *
K o o *
01 ING6ADDR-ANY pic x(45)
value '::'
01 ING6ADDR-LOOPBACK pic x(45)
value '::1"'.
01 ntop-family pic 9(8) Binary.
01 pton-family pic 9(8) Binary.
01 presentable-addr pic x(45) value spaces.
01 presentable-addr-Ten pic 9(4) Binary value 45.
01 numeric-addr.
05 filler pic 9(16) Binary Value 0.
05 filler pic 9(16) Binary Value 0.
K o o *
* Variables used by the RECV Call *
K o o e *
01 client-socket-address.
05 client-family pic 9(4) Binary Value 19.
05 client-port pic 9(4) Binary Value 1032.
05 client-flowinfo pic 9(8) Binary Value zero.
05 client-ipaddr.
10 filler pic 9(16) Binary Value 0.
10 filler pic 9(16) Binary Value 0.
05 client-scopeid pic 9(8) Binary Value zero.
K o *
* Buffer and length field for recv and send operation *
I e T e e e T e e e T *
01 send-request-len pic 9(8) Binary Value zero.
01 read-request-len pic 9(8) Binary Value zero.
01 read-buffer pic x(4000) value space.
01 filler redefines read-buffer.
05 message-id pic x(8).
05 filler pic x(3992).
E e e e T T T T e b T T *
* recv and send flags *
K o *
01 send-flag pic 9(8) Binary value zero.
01 recv-flag pic 9(8) Binary value zero.
L e e e e e *

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 4 of 13)

228 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

* Error message for socket interface errors

77 failure

01 ezaerror-msg.
05 filler
05 ezaerror-function
05 filler
05 filler
05 ezaerror-retcode
05 filler
05 filler
05 ezaerror-errno
05 filler

05 ezaerror-text

03 hints-addrinfo.
05 hints-ai-flags
05 hints-ai-family
05 hints-ai-socktype
05 hints-ai-protocol

05 filler
05 filler
05 filler
05 filler

03 hints-addrinfo-ptr
03 results-addrinfo-ptr

*

* Results address info

*

01 results-addrinfo.
05 results-ai-flags
05 results-ai-family
05 results-ai-socktype
05 results-ai-protocol
05 results-ai-addr-len

pic S9(8) comp.

pic x(9) Value 'Function=".
pic x(16) Value space.

pic x value ' '.

pic x(8) Value 'Retcode='.

pic ---99.

pic x value
pic x(9) Value 'Errorno='.
pic zzz99.

pic x value
pic x(50) value ' '.

pic 9(8) binary.
pic 9(8) binary.
pic 9(8) binary.
pic 9(8) binary.
pic 9(8) binary.
pic 9(8) binary.
pic 9(8) binary.
pic 9(8) binary.
usage is pointer.
usage is pointer.

pic 9(8) binary.
pic 9(8) binary.
pic 9(8) binary.
pic 9(8) binary.
pic 9(8) binary.

05 results-ai-canonical-name usage is pointer.

05 results-ai-addr-ptr

05 results-ai-next-ptr
*

usage is pointer.
usage is pointer.

* Socket address structure from EZACICO9.

*
01 output-name-ptr
01 output-ip-name.
03 output-ip-family
03 output-ip-port
03 output-ip-sock-data
03 output-ipv4-sock-data
output-ip-sock-data.
05 output-ipv4-ipadd
05 filler
03 output-ipv6-sock-data

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 5 of 13)

usage is pointer.

pic 9(4) Binary.

pic 9(4) Binary.

pic x(24).
redefines

r pic 9(8) Binary.
pic x(20).
redefines

Chapter 7. Using the CALL instruction application programming interface (API)

229

output-ip-sock-data.
05 output-ipv6-flowinfo pic 9(8) Binary.
05 output-ipv6-ipaddr.

10 filler pic 9(16) Binary.
10 filler pic 9(16) Binary.
05 output-ipv6-scopeid pic 9(8) Binary.
A - SS =SS SSSSSSSS oSS SS oSS SSSSSSSSSSSSSSSSS==S===%
Procedure Division using L1.
A= SSSCSSSCSSCSS oSS oSS SSSSSSSSSSSSSSSSSSSSSS=S=S===%

NN NN NN NN NI NN NN NN NN N NN NN NN NN NN NN 5

PROCEDURE CONTROLS

INININININNININNINNNINNINN NN N NN NN NN NN NN NN NN NN NN o

*

*

Perform Initialize-API thru Initialize-API-Exit.
Perform Get-ClientID thru Get-ClientID-Exit.
Perform Sockets-Descriptor thru Sockets-Descriptor-Exit.
Perform Presentation-To-Numeric thru
Presentation-To-Numeric-Exit.

Perform Get-Host-Name thru Get-Host-Name-Exit.
Perform Get-Address-Info thru Get-Address-Info-Exit.
Perform Bind-Socket thru Bind-Socket-Exit.

Perform Listen-To-Socket thru Listen-To-Socket-Exit.

Perform Accept-Connection thru Accept-Connection-Exit.

Move 45 to presentable-addr-len.

Move spaces to presentable-addr.

Move server-ipaddr to numeric-addr.

Move 19 to ntop-family.

Perform Numeric-TO-Presentation thru
Numeric-To-Presentation-Exit.

Perform Read-Message thru Read-Message-Exit.
Perform Write-Message thru Write-Message-Exit.
Perform Close-Socket thru Exit-Now.
I e T e T e e e e T T PP *
* Initialize socket API *
K o e e e e *

Initialize-API.
Move soket-initapi to ezaerror-function.

L e T e T *
* If you want to set maxsoc to the max, uncomment the next line.*
E T T T T T L LT L L L L T T *

* Move 65535 to maxsoc-fwd.
Call 'EZASOKET' using soket-initapi maxsoc initapi-ident
subtask maxsno errno retcode.
Move 'Initapi failed' to ezaerror-text.
If retcode < 0 move 12 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Move 'A' to Terminate-Options.
Initialize-API-Exit.
Exit.

* Let us see the client-id *

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 6 of 13)

230 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Get-ClientID.

move soket-getclientid to ezaerror-function.

Call 'EZASOKET' using soket-getclientid clientid errno

retcode.
Display 'Client ID = ' clientid-name
"task=' clientid-task.

Move 'Getclientid failed' to ezaerror-text.

If retcode < 0 move 24 to failure.

Perform Return-Code-Check thru Return-Code-Exit.
Get-ClientID-Exit.

Exit.
K o o *
* Get us a stream socket descriptor. *
K o *

Sockets-Descriptor.
move soket-socket to ezaerror-function.
Call 'EZASOKET' using soket-socket AF-INET6 SOCK-STREAM
IPPROTO-IP errno retcode.
Move 'Socket call failed' to ezaerror-text.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Move retcode to socket-descriptor.
Move 'S' to Terminate-Options.
Sockets-Descriptor-Exit.

Exit.
T L L T T T L L L T, *
* Use PTON to create an IP address to bind to. *
e ————————— *

Presentation-To-Numeric.
move soket-pton to ezaerror-function.
move IN6ADDR-LOOPBACK to presentable-addr.
Call 'EZASOKET' using soket-pton AF-INET6
presentable-addr presentable-addr-len
numeric-addr
errno retcode.
Move 'PTON call failed' to ezaerror-text.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
move numeric-addr to server-ipaddr.
Presentation-To-Numeric-Exit.

Exit.
L e e e e *
* Get the host name. *
K e e e *

Get-Host-Name.
move soket-gethostname to ezaerror-function.
move 24 to host-name-1len.
Call 'EZASOKET' using soket-gethostname
host-name-len host-name
errno retcode.
display 'Host name = ' host-name.

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 7 of 13)

Chapter 7. Using the CALL instruction application programming interface (API) 231

Move 'GETHOSTNAME call failed' to ezaerror-text.

If retcode < 0 move 24 to failure.

Perform Return-Code-Check thru Return-Code-Exit.
Get-Host-Name-Exit.

Exit.
K o = = = = = *
* Get address information *
K o o o *

Get-Address-Info.
move soket-getaddrinfo to ezaerror-function.
move 0 to host-name-char-count.
inspect host-name tallying host-name-char-count
for characters before x'00'.
unstring host-name delimited by x'00'
into host-name-unstrung
count in host-name-char-count.
string host-name-unstrung delimited by ' '
into node-name.
move host-name-char-count to node-name-len
display 'node-name-Ten: ' node-name-Ten.
move spaces to service-name.
move 0 to service-name-len.
move 0 to hints-ai-family.
move ai-canonnameok to hints-ai-flags
move 0 to hints-ai-socktype.
move 0 to hints-ai-protocol.
display 'GETADDRINFO Input fields: '
display 'Node name = ' node-name.
display 'Node name length = ' node-name-len.
display 'Service name = ' service-name.
display 'Service name length = ' service-name-len.
display 'Hints family = ' hints-ai-family.
display 'Hints flags = ' hints-ai-flags.
display 'Hints socktype = ' hints-ai-socktype.
display 'Hints protocol = ' hints-ai-protocol.
set address of results-addrinfo to results-addrinfo-ptr.
move soket-getaddrinfo to ezaerror-function.
set hints-addrinfo-ptr to address of hints-addrinfo.
Call 'EZASOKET' using soket-getaddrinfo
node-name node-name-len
service-name service-name-1len
hints-addrinfo-ptr
results-addrinfo-ptr
canonical-name-Ten
errno retcode.
Move 'GETADDRINFO call failed' to ezaerror-text.
If retcode < 0 move 24 to failure
Perform Return-Code-Check thru Return-Code-Exit
else
Perform Return-Code-Check thru Return-Code-Exit
display 'Address of results addrinfo is '
results-addrinfo-ptr.
set address of results-addrinfo to results-addrinfo-ptr
set input-addrinfo-ptr to address of results-addrinfo

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 8 of 13)

232 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

display 'Address of input-addrinfo-ptr is '

input-addrinfo-ptr.
Perform Format-Result-AI thru Format-Result-AI-Exit
Perform Set-Next-Addrinfo thru

Set-Next-Addrinfo-Exit until

output-next-addrinfo is equal to NULLS
Perform Free-Address-Info thru Free-Address-Info-Exit.
Get-Address-Info-Exit.

Exit.
K o o = *
* Set next addrinfo address *
L e e e e e *

Set-Next-Addrinfo.
display 'Setting next addrinfo address as '
results-ai-next-ptr.
display 'Address of output-next-addrinfo as '
output-next-addrinfo.
set address of results-addrinfo to output-next-addrinfo.
set input-addrinfo-ptr to address of results-addrinfo.
display 'Address of input-addrinfo-ptr is '
input-addrinfo-ptr.
Perform Format-Result-AI thru Format-Result-AI-Exit.
Set-Next-Addrinfo-Exit.

Exit.
K e e e e e *
* Format result address information *
T L L T T T L L L T, *

Format-Result-AI.
move 'EZACICO9' to ezaerror-function.
move zeros to output-name-len.
move spaces to output-canonical-name.
set output-name to nulls.
set output-next-addrinfo to nulls.
Call 'EZACICO9' using input-addrinfo-ptr
output-name-Ten
output-canonical-name
output-name
output-next-addrinfo
retcode.
Move 'EZACICO9 call failed' to ezaerror-text.
display 'EZACICO9 output:'
display 'Canonical name ' output-canonical-name.
display 'name length = ' output-name-Ten.

display 'name = ' output-name.
display 'next addrinfo = ' output-next-addrinfo.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
display 'Formatting result address ip address'.
set address of output-ip-name to output-name.
move results-ai-family to ntop-family.
display 'ntop-family = ' ntop-family.
if ntop-family = AF-INET then

display 'Formatting ipv4 addres'

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 9 of 13)

Chapter 7. Using the CALL instruction application programming interface (API) 233

move output-ipv4-ipaddr to numeric-addr
move 16 to presentable-addr-Ten

else
display 'Formatting ipv6 addres'
move output-ipv6-ipaddr to numeric-addr
move 45 to presentable-addr-Ten.

move spaces to presentable-addr.

Perform Numeric-To-Presentation thru

Numeric-To-Presentation-Exit.
Format-Result-AI-Exit.
Exit.

Free-Address-Info.
move soket-freeaddrinfo to ezaerror-function.
Call 'EZASOKET' using soket-freeaddrinfo
results-addrinfo-ptr
errno retcode.
Move 'FREEADDRINFO call failed' to ezaerror-text.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Free-Address-Info-Exit.
Exit.

Bind-Socket.
Move soket-bind to ezaerror-function.
Call 'EZASOKET' using soket-bind socket-descriptor
server-socket-address errno retcode.
Display 'Port = ' server-port
' Address = ' presentable-addr.
Move 'Bind call failed' to ezaerror-text
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Bind-Socket-Exit.
Exit.

Listen-To-Socket.

Move soket-Tisten to ezaerror-function.

Call 'EZASOKET' using soket-listen socket-descriptor

backlog errno retcode.

Display 'Backlog="' backlog.

Move 'Listen call failed' to ezaerror-text.

If retcode < 0 move 24 to failure.

Perform Return-Code-Check thru Return-Code-Exit.
Listen-To-Socket-Exit.

Exit.

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 10 of 13)

234 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Accept-Connection.

Move soket-accept to ezaerror-function.

Call 'EZASOKET' using soket-accept socket-descriptor

server-socket-address errno retcode.

Move retcode to socket-descriptor-new.

Display 'New socket=' retcode.

Move 'Accept call failed' to ezaerror-text .

If retcode < 0 move 24 to failure.

Perform Return-Code-Check thru Return-Code-Exit.
Accept-Connection-Exit.

Exit.

Numeric-To-Presentation.
move soket-ntop to ezaerror-function.
Call '"EZASOKET' using soket-ntop ntop-family
numeric-addr
presentable-addr presentable-addr-len
errno retcode.
Display 'Presentable address = ' presentable-addr.
Move 'NTOP call failed' to ezaerror-text.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Numeric-TO-Presentation-Exit.
Exit.

Read-Message.
move soket-read to ezaerror-function.
move spaces to buf.

display 'New socket desciptor = ' socket-descriptor-new.
Call '"EZASOKET' using soket-read socket-descriptor-new
nbyte buf
errno retcode.
display 'Message received = ' buf.

Move 'Read call failed' to ezaerror-text.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Read-Message-Exit.
Exit.

Write-Message.
move soket-write to ezaerror-function.
move 'Message from EZAS06SC' to buf.
Call 'EZASOKET' using soket-write socket-descriptor-new

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 11 of 13)

Chapter 7. Using the CALL instruction application programming interface (API)

235

nbyte buf
errno retcode.
Move 'Write call failed' to ezaerror-text
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Write-Message-Exit.

Exit.
e ———————— *
* Close connected socket *
K o o o = = *

Close-Socket.
move soket-close to ezaerror-function
Call 'EZASOKET' using soket-close socket-descriptor-new
errno retcode.
Accept cur-time from time.
Display cur-time ' EZASO6CS : CLOSE RETCODE=' RETCODE
' ERRNO= ' ERRNO.
If retcode < 0 move 24 to failure
move 'Close call Failed' to ezaerror-text
perform write-ezaerror-msg thru write-ezaerror-msg-exit.
Close-Socket-Exit.

Exit.
K o o = = = *
* Terminate socket API *
K o = = = = = *

exit-term-api.
Call 'EZASOKET' using soket-termapi.

K e e ————————————— *
* Terminate program *
K o e *
exit-now.

move failure to return-code.

Goback.

*
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
*

* ok F X

write-ezaerror-msg.
move errno to ezaerror-errno.
move retcode to ezaerror-retcode.
display ezaerror-msg.
write-ezaerror-msg-exit.
exit.

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 12 of 13)

236 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

* Check Return Code after each Socket Call *

Return-Code-Check.
Accept Cur-Time from TIME.
move errno to ezaerror-errno.
move retcode to ezaerror-retcode.
Display Cur-Time ' EZASO6CS: ' ezaerror-function
' RETCODE= ' ezaerror-retcode
' ERRNO= ' ezaerror-errno.
IF RETCODE < 0
Perform Write-ezaerror-msg thru write-ezaerror-msg-exit
Move zeros to errno retcode
IF Opened-Socket Go to Close-Socket
ELSE IF Opened-API Go to exit-term-api
ELSE Go to exit-now.
Move zeros to errno retcode.
Return-Code-Exit.
Exit.

Figure 77. EZASO6CS COBOL call interface sample IPv6 server program (Part 13 of 13)

COBOL call interface sample IPv6 client program

The EZASO6CC program is a client module that shows you how to use the
following calls provided by the call socket interface:
« CLOSE

¢ CONNECT

* GETCLIENTID

* GETNAMEINFO

 INITAPI

* NTOP

+ PTON

* READ

* SHUTDOWN

¢ SOCKET

* TERMAPI

* WRITE

Chapter 7. Using the CALL instruction application programming interface (API) 237

Sk ke ko ko koo koo
MODULE NAME: EZASO6CC - THIS IS A VERY SIMPLE IPV6 CLIENT

Copyright: Licensed Materials - Property of IBM

"Restricted Materials of IBM"

5694-A01

(C) Copyright IBM Corp. 2002, 2003

US Government Users Restricted Rights -

Use, duplication or disclosure restricted by

GSA ADP Schedule Contract with IBM Corp.
Status: CSV1R5

LANGUAGE: COBOL II

* ok Sk 3k X X ok 3k 3k X X X %k %X X X X X F
EGHE S R I R T S S N

B e e R R R R T S R e S R R e R E R e L e

Identification Division.

k=====================%
Environment Division.
k=====================%
k==============%
Data Division.
k==============+%

K o o = = = = = = = = = *
* Socket interface function codes *
K o o o *
01 soket-functions.

02 soket-accept pic x(16) value 'ACCEPT

02 soket-bind pic x(16) value 'BIND

02 soket-close pic x(16) value 'CLOSE

02 soket-connect pic x(16) value 'CONNECT

02 soket-fentl pic x(16) value 'FCNTL

02 soket-freeaddrinfo pic x(16) value 'FREEADDRINFO

02 soket-getclientid pic x(16) value 'GETCLIENTID
02 soket-gethostbyaddr pic x(16) value 'GETHOSTBYADDR
02 soket-gethostbyname pic x(16) value 'GETHOSTBYNAME
02 soket-gethostid pic x(16) value 'GETHOSTID

02 soket-gethostname pic x(16) value 'GETHOSTNAME
02 soket-getnameinfo pic x(16) value 'GETNAMEINFO

02 soket-getaddrinfo pic x(16) value 'GETADDRINFO ',
02 soket-getpeername pic x(16) value 'GETPEERNAME '

Figure 78. EZASO6CC COBOL call interface sample IPv6 client program (Part 1 of 9)

238

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

01
01
01
01

01

01

01

01

01

02 soket-getsockname
02 soket-getsockopt
02 soket-givesocket
02 soket-initapi

02 soket-ioctl

02 soket-Tisten

02 soket-ntop

02 soket-pton

02 soket-read

02 soket-recv

02 soket-recvfrom
02 soket-select

02 soket-send

02 soket-sendto

02 soket-setsockopt
02 soket-shutdown
02 soket-socket

02 soket-takesocket
02 soket-termapi

02 soket-write

errno

retcode
index-counter
buffer-element.

05 buffer-element-nbr
05 filler
server-ipaddr-dotted
client-ipaddr-dotted
close-server

88 close-server-down
Connect-Flag

88 CONNECTED
Client-Server-Flag
88 CLIENTS

88 SERVERS
Terminate-Options

88 Opened-API

88 Opened-Socket
timer-accum
timer-interval
Cur-time.

02 Hour

02 Minute

02 Second

02 Hund-Sec

Failure

maxsoc-fwd

value 'GETSOCKNAME
value 'GETSOCKOPT
value 'GIVESOCKET
value 'INITAPI
value 'IOCTL
value 'LISTEN
value 'NTOP

value 'PTON

value 'READ

value 'RECV

value 'RECVFROM
value 'SELECT
value 'SEND

value 'SENDTO
value 'SETSOCKOPT
value 'SHUTDOWN
value 'SOCKET
value 'TAKESOCKET
value 'TERMAPI
value 'WRITE

9(8) binary value zero.

s9(8) binary value zero.

9(8) binary value zero.

9(5).

x(3) value space.

x(15) value space.
x(15) value space.

9(8) Binary value zero.

value 1.

pic

pic

pic

pic
pic

pic
pic
pic
pic
Pic

pic

01 maxsoc-rdf redefines maxsoc-fwd.

Figure 78. EZASO6CC COBOL call interface sample IPv6 client program (Part 2 of 9)

02 filler

Chapter 7. Using the CALL instruction application programming interface (API)

pic

x value space.
value 'Y'.
x value space.
value 'C'.
value 'S'.
x value space.
value 'A'.
value 'S'.
9(8) Binary value zero.
9(8) Binary value 2000.

9(2).
9(2).
9(2).
9(2).
S9(8) comp.

9(8) Binary.

x(2).

239

02 maxsoc pic 9(4) Binary.
01 initapi-ident.

05 tcpname pic x(8) Value 'TCPCS '.

05 asname pic x(8) Value space.
01 subtask pic x(8) value 'EZS06CC'.
01 maxsno pic 9(8) Binary Value 1.
K o = = = = = *
* Variables used by the SHUTDOWN Call *
K o o o *
01 how pic 9(8) Binary
K o = = = = = = = = *
* Variables returned by the GETCLIENTID Call *
K o = *
01 clientid.

05 clientid-domain pic 9(8) Binary value 19.

05 clientid-name pic x(8) value space.

05 clientid-task pic x(8) value space.

05 filler pic x(20) value Tow-value.
K o o *
* Variables returned by the GETNAMEINFO Call *
K o = = = = = *
01 name-Ten pic 9(8) binary.
01 host-name pic x(255).
01 host-name-len pic 9(8) binary.
01 service-name pic x(32).
01 service-name-len pic 9(8) binary.
01 name-info-flags pic 9(8) binary value 0
01 ni-nofqdn pic 9(8) binary value 1
01 ni-numerichost pic 9(8) binary value 2.
01 ni-namereqd pic 9(8) binary value 4.
01 ni-numericserver pic 9(8) binary value 8.
01 ni-dgram pic 9(8) binary value 16.
K o o *
* Variables used for the SOCKET call *
K o o = = *
01 AF-INET pic 9(8) Binary Value 2.
01 AF-INET6 pic 9(8) Binary Value 19.
01 SOCK-STREAM pic 9(8) Binary Value 1.
01 SOCK-DATAGRAM pic 9(8) Binary Value 2.
01 SOCK-RAW pic 9(8) Binary Value 3.
01 IPPROTO-IP pic 9(8) Binary Value zero.
01 IPPROTO-TCP pic 9(8) Binary Value 6.
01 IPPROTO-UDP pic 9(8) Binary Value 17.
01 IPPROTO-IPV6 pic 9(8) Binary Value 41.
01 socket-descriptor pic 9(4) Binary Value zero.
T e T e *
* Server socket address structure *
K o e *
01 server-socket-address.

05 server-afinet pic 9(4) Binary Value 19.

05 server-port pic 9(4) Binary Value 1031.

05 server-flowinfo pic 9(8) Binary Value zero.

05 server-ipaddr.

10 filler pic 9(16) Binary Value 0.
10 filler pic 9(16) Binary Value 0.

Figure 78. EZASO6CC COBOL call interface sample IPv6 client program (Part 3 of 9)

240 2z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

05 server-scopeid pic 9(8) Binary Value zero.

01 NBYTE PIC 9(8) COMP value 80.
01 BUF PIC X(80).
K o o *
* Variables used by the BIND Call *
K o *
01 client-socket-address.
05 client-family pic 9(4) Binary Value 19.
05 client-port pic 9(4) Binary Value 1032.
05 client-flowinfo pic 9(8) Binary Value 0.
05 client-ipaddr.
10 filler pic 9(16) Binary Value 0.
10 filler pic 9(16) Binary Value 0.
05 client-scopeid pic 9(8) Binary Value 0.
K o e e e e e e *
* Buffer and length fields for send operation *
K o e e e *
01 send-request-length pic 9(8) Binary value zero.
01 send-buffer.
05 send-buffer-total pic x(4000) value space.
05 closedown-message redefines send-buffer-total.
10 closedown-1id pic x(8).
10 filler pic x(3992).

05 send-buffer-seq redefines send-buffer-total
pic x(8) occurs 500 times.

K o o *
* Variables used for the NTOP/PTON call *
K o o *
01 ING6ADDR-ANY pic x(45)
value '::'
01 IN6ADDR-LOOPBACK pic x(45)
value '::1'".

01 presentable-addr pic x(45) value spaces.
01 presentable-addr-Ten pic 9(4) Binary value 45.
01 numeric-addr.

05 filler pic 9(16) Binary Value 0.

05 filler pic 9(16) Binary Value 0.
e e e e e e e T e T] *
* Buffer and length fields for recv operation *
K o e *
01 read-request-length pic 9(8) Binary value zero.
01 read-buffer pic x(4000) value space.
e e e e e L T e e e e TP *
* Other fields for send and reccfrom operation *
K o e e e e e e *
01 send-flag pic 9(8) Binary value zero.
01 recv-flag pic 9(8) Binary value zero.
L e e T e e e e e T *
* Error message for socket interface errors *
E e e T T T LT e T T Ty *
01 ezaerror-msg.

05 filler pic x(9) Value 'Function=".

05 ezaerror-function pic x(16) Value space.

05 filler pic x value ' '.

05 filler pic x(8) Value 'Retcode='.

Figure 78. EZASO6CC COBOL call interface sample IPv6 client program (Part 4 of 9)

Chapter 7. Using the CALL instruction application programming interface (API) 241

05 ezaerror-retcode pic ---99.

05 filler pic x value ' '.

05 filler pic x(9) Value 'Errorno='.
05 ezaerror-errno pic zzz99.

05 filler pic x value ' '

05 ezaerror-text pic x(50) value ' '.

Linkage Section.

o I NN NN NN NN NN NN NN NN NN NN NN,

* PROCEDURE CONTROLS

e PN NN NN NN NN NN NN NN NN NN NN NN NN NN NN,

*

*

Perform Initialize-API thru Initialize-API-Exit.
Perform Get-Client-1ID thru Get-Client-ID-Exit.
Perform Sockets-Descriptor thru Sockets-Descriptor-Exit.
Perform Presentation-To-Numeric thru
Presentation-To-Numeric-Exit.
Perform CONNECT-Socket thru CONNECT-Socket-Exit.
Perform Numeric-TO-Presentation thru
Numeric-To-Presentation-Exit.
Perform Get-Name-Information thru
Get-Name-Information-Exit.

Perform Write-Message thru Write-Message-Exit.
Perform Shutdown-Send thru Shutdown-Send-Exit.
Perform Read-Message thru Read-Message-Exit.
Perform Shutdown-Receive thru Shutdown-Receive-Exit.
Perform Close-Socket thru Exit-Now.
K o o *
* Initialize socket API *
K o o *

Initialize-API.
Move soket-initapi to ezaerror-function.
Call 'EZASOKET' using soket-initapi maxsoc initapi-ident
subtask maxsno errno retcode.
Move 'Initapi failed' to ezaerror-text.
If retcode < 0 move 12 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Move 'A' to Terminate-Options.
Initialize-API-Exit.

Exit.
K o o o = = = = = *
* Let us see the client-id *
K o o = = = = = = = = = *

Get-Client-ID.
Move soket-getclientid to ezaerror-function.
Call '"EZASOKET' using soket-getclientid clientid errno
retcode.

Figure 78. EZASO6CC COBOL call interface sample IPv6 client program (Part 5 of 9)

242 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Display 'Our client ID = ' clientid-name ' ' clientid-task.
Move 'Getclientid failed' to ezaerror-text.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Move 'C' to client-server-flag.
Get-Client-ID-Exit.

Exit.
K o o *
* Get us a stream socket descriptor *
K o o *

Sockets-Descriptor.

Move soket-socket to ezaerror-function.

Call '"EZASOKET' using soket-socket AF-INET6 SOCK-STREAM

IPPROTO-IP errno retcode.

Move 'Socket call failed' to ezaerror-text.

If retcode < 0 move 60 to failure.

Perform Return-Code-Check thru Return-Code-Exit.

Move 'S' to Terminate-Options.

Move retcode to socket-descriptor.
Sockets-Descriptor-Exit.

Exit.
e e e e e e e e e e e e e e e e e e e, e e e e e e e e e ————————— *
* Use PTON to create an IP address to bind to. *
K o o o o o *

Presentation-To-Numeric.
move soket-pton to ezaerror-function.
move IN6ADDR-LOOPBACK to presentable-addr.
Call 'EZASOKET' using soket-pton AF-INET6
presentable-addr presentable-addr-len
numeric-addr
errno retcode.
Move 'PTON call failed' to ezaerror-text.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
move numeric-addr to server-ipaddr.
Presentation-To-Numeric-Exit.

Exit.
L e e e e e T T e *
* CONNECT *
e T e e e e e T T *

Connect-Socket.
Move space to Connect-Flag.
Move zeros to errno retcode.
move soket-connect to ezaerror-function.
CALL 'EZASOKET' USING SOKET-CONNECT socket-descriptor
server-socket-address errno retcode.
Move 'Connection call failed' to ezaerror-text.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
If retcode = 0 Move 'Y' to Connect-Flag.
Connect-Socket-Exit.
Exit.

Figure 78. EZASO6CC COBOL call interface sample IPv6 client program (Part 6 of 9)

Chapter 7. Using the CALL instruction application programming interface (API) 243

Numeric-To-Presentation.
move soket-ntop to ezaerror-function.
move server-ipaddr to numeric-addr.
move soket-ntop to ezaerror-function.
Call 'EZASOKET' using soket-ntop AF-INET6
numeric-addr
presentable-addr presentable-addr-len
errno retcode.
Display 'Presentable address = ' presentable-addr.
Move 'NTOP call failed' to ezaerror-text.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Numeric-TO-Presentation-Exit.

Exit.
K o *
* Use GETNAMEINFO to get the host and service names *
K o e e e e *

Get-Name-Information.
move 28 to name-len.
move 255 to host-name-Ten.
move 32 to service-name-len.
move ni-namereqd to name-info-flags.
move soket-getnameinfo to ezaerror-function.
Call 'EZASOKET' using soket-getnameinfo
server-socket-address name-len
host-name host-name-Ten
service-name service-name-1len
name-info-flags
errno retcode.
Display 'Host name = ' host-name.
Display 'Service = ' service-name.
Move 'Getaddrinfo call failed' to ezaerror-text.
If retcode < 0 move 24 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Get-Name-Information-Exit.

Exit.
I e T e e e T e e e T *
* Write a message to the server *
K o e e e e e - *

Write-Message.
Move soket-write to ezaerror-function.
Move 'Message from EZASO6CC' to buf.
Call 'EZASOKET' using soket-write socket-descriptor
nbyte buf
errno retcode.
Move 'Write call failed' to ezaerror-text.
If retcode < 0 move 84 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Write-Message-Exit.

Figure 78. EZASO6CC COBOL call interface sample IPv6 client program (Part 7 of 9)

244 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

it *
* Shutdown to pipe *
K e e e ——————————— *

Shutdown-Send.
Move soket-shutdown to ezaerror-function.
move 1 to how.
Call 'EZASOKET' using soket-shutdown socket-descriptor
how
errno retcode.
Move 'Shutdown call failed' to ezaerror-text.
If retcode < 0 move 99 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Shutdown-Send-Exit.
Exit.

Read-Message.
Move soket-read to ezaerror-function.
Move spaces to buf.
Call 'EZASOKET' using soket-read socket-descriptor
nbyte buf
errno retcode.
If retcode < 0
Move 'Read call failed' to ezaerror-text
move 120 to failure
Perform Return-Code-Check thru Return-Code-Exit.
Read-Message-Exit.

Exit.
L e e T e e e *
* Shutdown receive pipe *
I e e e e e T T e e e T Y *

Shutdown-Receive.
Move soket-shutdown to ezaerror-function.
move 0 to how.
Call '"EZASOKET' using soket-shutdown socket-descriptor
how
errno retcode.
Move 'Shutdown call failed' to ezaerror-text.
If retcode < 0 move 99 to failure.
Perform Return-Code-Check thru Return-Code-Exit.
Shutdown-Receive-Exit.

Exit.
K o o o o = = = = = = = = *
* Close socket *
K o o = = = = = = = = = = *

Close-Socket.
Move soket-close to ezaerror-function.
Call 'EZASOKET' using soket-close socket-descriptor
errno retcode.

Figure 78. EZASO6CC COBOL call interface sample IPv6 client program (Part 8 of 9)

Chapter 7. Using the CALL instruction application programming interface (API)

245

Move 'Close call failed' to ezaerror-text.
If retcode < 0 move 132 to failure
perform write-ezaerror-msg thru write-ezaerror-msg-exit.
Accept Cur-Time from TIME.
Display Cur-Time ' EZASO6CC: ' ezaerror-function
' RETCODE=' RETCODE ' ERRNO= ' ERRNO.
Close-Socket-Exit.

Exit.
e ———————— *
* Terminate socket API *
K o o o = = *

exit-term-api.
ACCEPT cur-time from TIME.
Display cur-time ' EZASO6CC: TERMAPI '
' RETCODE= ' RETCODE ' ERRNO= ' ERRNO.
Call 'EZASOKET' using soket-termapi.

K o *
* Terminate program *
K o o *
exit-now.

Move failure to return-code.

Goback.
K o *
* Subroutine. *
K mmmmm—————— *
* Write out an error message *
K o o *

write-ezaerror-msg.
Move errno to ezaerror-errno.
Move retcode to ezaerror-retcode.
Display ezaerror-msg.
write-ezaerror-msg-exit.

Exit.
K o e e - *
* Check Return Code after each Socket Call *
T g g g S g S gy *

Return-Code-Check.
Accept Cur-Time from TIME.
Display Cur-Time ' EZASO6CC: ' ezaerror-function
' RETCODE="' RETCODE ' ERRNO= ' ERRNO.
IF RETCODE < 0
Perform Write-ezaerror-msg thru write-ezaerror-msg-exit
Move zeros to errno retcode
IF Opened-Socket Go to Close-Socket
ELSE IF Opened-API Go to exit-term-api
ELSE Go to exit-now.
Move zeros to errno retcode.
Return-Code-Exit.
Exit.

Figure 78. EZASO6CC COBOL call interface sample IPv6 client program (Part 9 of 9)

246 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Chapter 8. IMS Listener samples

This chapter includes sample programs using the IMS Listener. The following
samples are included:

+ [“IMS TCP/IP control statements’]
* |“Sample program explicit-mode” on page 251|

» |“Sample program implicit-mode” on page 26|

+ [“Sample program - IMS MPP client” on page 270}

IMS TCP/IP control statements

This chapter contains examples of the control statements required to define and
initiate the various IMS TCP/IP components.

JCL for starting a message processing region

The following is an example of the JCL that is required to start an IMS message
processing region in which TCP/IP servers can operate. Note the STEPLIB
statements that point to TCP/IP and the C run-time library. A C run-time library is
required when you use the GETHOSTBYADDR or GETHOSTBYNAME call. For
more information, refer to the|z/OS Program Directory|or the section on C compilers
and run-time libraries in the /OS Communications Server: IP Sockets Application
(Programming Interface Guide and Reference]

This sample is based on the IMS procedure (DFSMPR). You might have to modify
the language run-time libraries to match your programming language

requirements.

// PROC SOUT=A,RGN=2M,SYS2=,

// CL1=001,CL2=000,CL3=000,CL4=000,

// OPT=N,OVLA=0,SPIE=0,VALCK=0,TLIM=00,
// PCB=000,PRLD=,STIMER=,S0D=,DBLDL=,
// NBA=,0BA=,IMSID=IMS1,AGN=,VSFX=,VFREE=,
// SSM=,PREINIT=,ALTID=,PWFI=N,

// APARM=

//*

//REGION EXEC PGM=DFSRRCOO,REGION=&RGN, ;

// TIME=1440,DPRTY=(12,0),

// PARM=(MSG,&CL1&CL2&CL3&CL4, ;

// &0PT&OVLARSPIE&VALCK&TLIM&PCB, ;

// &PRLD,&STIMER,&SOD,&DBLDL,&NBA, ;

// &0BA,&IMSID,&AGN,&VSFX,&VFREE, ;

// &SSM,&PREINIT,&ALTID,&PWFI,;

// '&APARM')

/18&*;

//STEPLIB DD DSN=IMS31.&SYS2;RESLIB,DISP=SHR

// DD DSN=IMS31.&SYS2;PGMLIB,DISP=SHR

// DD DSN=PLI.LL.V2R3MO.SIBMLINK,DISP=SHR
// DD DSN=PLI.LL.V2R3MO.PLILINK,DISP=SHR

// DD DSN=C370.LL.V2R2MO.SEDCLINK,DISP=SHR
/1* Use the following for LE/370 C run-time Tibraries:
/1* DD DSN=CEE.V1R3MO.SCEERUN,DISP=SHR

// DD DSN=TCPIP.SEZATCP,DISP=SHR

© Copyright IBM Corp. 1994, 2005 247

//PROCLIB DD DSN=IMS31.&SYS2;PROCLIB,DISP=SHR

//SYSUDUMP DD SYSOUT=&SOUT,DCB=(LRECL=121,BLKSIZE=3129,RECFM=VBA),;
// SPACE=(125, (2500,100) ,RLSE, ,ROUND)

/1

JCL for linking the IMS Listener

The following examples are JCL that can be used to link the IMS Listener.
EZAIMSCZ JCLIN

248 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

//EZAIMSCZ JOB (accounting,information),programmer.name,
// MSGLEVEL=(1,1) ,MSGCLASS=A,CLASS=A

//***

//*NOTE: ANY ZONE UPDATED WITH THE LINK COMMAND OR CROSS-ZONE *

/1* INFORMATION CANNOT BE PROCESSED BY SMP/E R6 OR EARLIER.=*
[[xHk xRk khk gk ok gk k ok ok ok d ok ko kkkk ko kk ok ok ok ok ok ok k ko k ko k ko k ko kkkk ko k ok k ok k ok
/]*

//* 5694-A01 (C) Copyright IBM Corp. 1997, 2002

//* Licensed Materials - Property of IBM

//* This product contains "Restricted Materials of IBM"
//* A1l rights reserved.

//* US Government Users Restricted Rights -

//* Use, duplication or disclosure restricted by

//* GSA ADP Schedule Contract with IBM Corp.

//* See IBM Copyright Instructions.

/1*

/1%

//* Function: Perform SMP/E LINK for IMS module
/1%

//* Instructions:

/1* Change all Tower case characters to values
/1* suitable for your installation.

/1*

//* targetzone: z/0S Target Zone

//* imszone : IMS Target Zone

/1*

/1%

//* Change the high-level qualifier 'imshlq' to match the

//* high-level qualifier for your installation's IMS target

//* data set.

/1*

//* Beginning with IMS VIR7 the target Tib has changed from

//* RESLIB to SDFSRESL. If you are running IMS VIR7 or higher,
//* you must comment or delete the RESLIB DD card and uncomment
//* the SDFSRESL DD card.

/1%

//EZAIMSCZ EXEC PGM=GIMSMP,REGION=4096K
//***
//RESLIB DD DISP=SHR,DSN=imsh1q.RESLIB

//*SDFSRESL DD DISP=SHR,DSN=imsh1q.SDFSRESL
//***
/1*

//SMPCSI dd dsn=zos.global.csi,disp=old

/1*

//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(900,200))

//SYSUT2 DD UNIT=SYSDA,SPACE=(1700, (600,100))

//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(600,100))

//SYSUT4 DD UNIT=SYSDA,SPACE=(1700, (600,100))

//SMPWRK1 DD UNIT=SYSDA,SPACE=(8800,(75,0,216)),

// DCB=(BLKSIZE=8800,LRECL=80)

//SMPWRK2 DD UNIT=SYSDA,SPACE=(8800, (75,0,216)),

// DCB=(BLKSIZE=8800,LRECL=80)

//SMPWRK3 DD UNIT=SYSDA,SPACE=(3200,(75,0,216)),

// DCB=(BLKSIZE=3200,LRECL=80)

Figure 79. Cross zone Lnk IMS application interface (Part 1 of 2)

Chapter 8. IMS Listener samples

249

//SMPWRK4 DD UNIT=SYSDA,SPACE=(3200,(75,0,216)),

/1l DCB=(BLKSIZE=3200, LRECL=80)

//SMPWRK6 DD UNIT=SYSDA,SPACE=(3200, (75,0,216))
//*

//SMPLIST DD SYSOUT=+

//SMPOUT DD SYSOUT=+

//SMPRPT DD SYSOUT=+

//SMPSNAP DD SYSOUT=+

//SMPHOLD DD DUMMY

//SYSPRINT DD SYSOUT=#

/1*
//***
/1*

//SMPCNTL DD =

SET BDY(targetzone). /* z/0S target zone =*/
LINK MODULE (DFSLIO00)

FROMZONE (imszone) /* IMS target zone */
INTOLMOD (EZAIMSLN)

RC(LINK=00).

Figure 79. Cross zone Lnk IMS application interface (Part 2 of 2)

EZAIMSPL JCLIN

//LINKIMS JOB (accounting,information),programmer.name,

// MSGLEVEL=(1,1) ,MSGCLASS=A,CLASS=A

[] FHFkk ke ke kk ke kK rxIhhhhhhhkkrhhh kKK ko, kKK I I IR KRKhhhhhkr*hh kKK * ok *%
//* *
//* THIS JOB SERVES AS AN ALTERNATIVE TO THE CROSS ZONE LINK =*
//* PERFORMED BY RUNNING EZAIMSCZ. *
//* *
//* UPDATE THE JOB, SYSLMOD AND RESLIB DD CARDS TO SUIT YOUR =
//* INSTALLATION . *
//* *

//**
//LNKIMS ~ EXEC PGM=IEWL,PARM='XREF,LIST,REUS'
//SYSPRINT DD SYSOUT=+
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=tcpip.v3rl.SEZALINK,DISP=SHR
//RESLIB DD DSN=ims.RESLIB,DISP=SHR
//SYSLIN DD *

ORDER CMCOPYR

INCLUDE RESLIB(DFSLI000)

INCLUDE SYSLMOD(EZAIMSLN)

ENTRY EZAIMSLN

MODE RMODE (24) AMODE (31)

NAME EZAIMSLN(R)
/*

Listener IMS definitions

The following statements define the Listener as an IMS BMP application and the
PSB that it uses. Note that the name ALTPCB is required.

PSB definition

ALTPCB PCB TYPE=TP,MODIFY=YES
PSBGEN PSBNAME=EZAIMSLN,IOASIZE=1000
SSASIZE=1000, LANG=ASSEM

TRANSACT MODE=SNGL

250 2z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Application definition
APPLCTN PSB=EZAIMSLN,PGMTYPE=BATCH

Sample program explicit-mode

The following is an example of an explicit-mode client server program pair. The
client program name is EZAIMSC2; you can find it in SEZAINST(EZAIMSC2). The
server program name is EZASVAS2; its IMS trancode is DLSI102. You can find the
sample in SEZAINST(EZASVAS?2).

Program flow

The client begins execution and obtains the host name and port number from
startup parameters. It then issues SOCKET and CONNECT calls to establish
connectivity to the specified host and port. Upon successful completion of the
connect, the client sends the TRM, which tells the Listener to schedule the
specified transaction (DLSI102). The Listener schedules that transaction and places
a TIM on the IMS message queue. Finally, it issues a GIVESOCKET call and waits
for the server to take the socket.

When the requested server (EZASVAS?2) begins execution, it issues a GU call to
obtain the TIM. Using addressability information from the TIM, it issues INITAPI
and TAKESOCKET calls. The server then sends SERVER MSG #1 to the client.

When the client receives the message, it displays SERVER MSG #1 on stdout and then
sends END CLIENT MSG #2 to the server, and displays a success message on stdout.

It then blocks on another receive() until the server responds.

The server, upon receipt of a message with the characters END as the first 3
characters, sends SERVER MSG #2 back to the client and closes the socket.

When the client receives this message, it prints SERVER MSG #2 on stdout, closes the
socket, and ends.

Sample explicit-mode client program (C language)

Chapter 8. IMS Listener samples 251

/*
* Include Files.
*/
/* #define RESOLVE_VIA_LOOKUP =/
#pragma runopts(NOSPIE NOSTAE)
#define 1im 50
#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>
/*
* Client Main.
*/
main(argc, argv)
int argc;
char *xargv;
{
unsigned short port; /%
char buf ?2?2(1im??); /*
char bufl ?2?2(1im??);
char buf2 ??2(1im??);
char buf3 ??2(1im??);

port client will connect to
sned receive buffers 0 -3

struct hostent *hostnm; /* server host name information

struct sockaddr_in server; /* server address

int s; /* client socket

/*

* Check Arguments Passed. Should be hostname and port.

*/

if (argc != 3)

{

/* fprintf(stderr, "Usage: %s hostname port\n", argv[0]);
printf("Usage: %s hostname port\n", argv [01);
exit(1l);

1
printf("Usage: %s hostname port\n", argv [e1);

/*

* The host name is the first argument. Get the server address.

*/

hostnm = gethostbyname(argv[1]);

if (hostnm == (struct hostent

{

*) 0)

/% fprintf(stderr, "Gethostbyname failed\n"); */
printf("Gethostbyname failed\n");

exit(2);

/*

Figure 80. Sample C client to drive IMS Listener (Part 1 of 3)

252 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

*/
*/

*/
*/
*/

* The port is the second argument.

*/

port = (unsigned short) atoi(argv[2]);

/*

* Put a message into the buffer.

*/

strcpy (buf,"2000+TRNREQ*DLS1102 ")}

/*

* Put the server information into the server structure.
* The port must be put into network byte order.

*/

server.sin_family
server.sin_port
server.sin_addr.s_addr

AF_INET;
htons (port);
*((unsigned Tong *)hostnm->h_addr);

* Get a stream socket.
if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)

tcperror("Socket()");

exit(3);
1
/*
* Connect to the server.
*/

if (connect(s, (struct sockaddr *)&server, sizeof(server)) < 0)

tcperror("Connect()");
exit(4);

1
if (send(s, buf, sizeof(buf), 0) < 0)
{

tcperror("Send()");

exit(5);
printf("send one complete\n");
/*
* The server sends message #1. Receive it into bufferl
*/

if (recv(s, bufl, sizeof(bufl), 0) < 0)
tcperror("Recv()");
exit(6);

}

printf("receive one complete\n");

Figure 80. Sample C client to drive IMS Listener (Part 2 of 3)

Chapter 8. IMS Listener samples 253

printf(bufl,"\n");
/* fprintf(stdout,bufl,"\n"); x/
/*
* Put end message into the buffer.
*/
strcpy (buf2, "END CLIENT MESSAGE #2 ");
if (send(s, buf2, sizeof(buf2), 0) < 0)
{
tcperror("Send()");
exit(7);

printf("send two complete\n");
/: The server sends back message #2. Receive it into buffer 2.
1;/(recv(s, buf3, sizeof(buf3), 0) < 0)
{ tcperror("Recv()");
exit(8);

printf("receive two complete\n");

/* fprintf(stdout,buf3,"\n"); x/
printf(buf3,"\n");

/*

* Close the socket.

*/

close(s);

printf("Client Ended Successfully\n");
exit(0);

Figure 80. Sample C client to drive IMS Listener (Part 3 of 3)

Sample explicit-mode server program (Assembler language)

254 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

EZASVAS2 CSECT
USING EZASVAS2,BASE
SAVE (14,12)
LR BASE, 15
ST R13,SAVEAREA+4
LA R13,SAVEAREA

MVC PSBS(L'PSBS%3),0(1)

* % % 3k kX

L R2,0(RO,R1)
USING I0PCB,R2

L R3,4(RO,R1)
USING ALTPCBI,R3

L R4,8(RO,R1)
LA R4,0(RO,R4)

USING ALTPCB2,R4

REG 1 CONTAINS PTR TO PCB ADDR LIST

REG 13 CONTAINS PTR TO DL/I SAVE AREA
REG 14 CONTAINS PTR DL/I RETURN ADDRESS
REG 15 CONTAINS PROGRAMS ENTRY POINT

ENTRY POINT
ADDRESSABILITY
SAVE DL/I REGS
SAVE AREA CHAINING

NEW SAVE AREA
SAVE PCB LIST

LOAD ADDR OF I/0 PCB
ADDRESSABILITY
LOAD ADDR OF ALT PCB
ADDRESSABILITY

LOAD ADDR OF ALT PCB
REMOVE HIGH ORDER BIT

ADDRESSABILITY

LA R5,I0AREAIN

LA R7,I0AREAOT POINT TO OUTPUT AREA FOR TCPIP

*
GUCALL DS OH GET UNIQUE CALL
ER R
* Get Transaction-initiation message containing Sockets data *
KA AA R AA R A AR AR hA A h A kA Ak hhhhhhhhdhkhkhdhhkhh bk dhhdhhdhhhhkdhhhrddhhrhdhxkx
CALL ASMTDLI, (GUFUNCT, (2),(5)),VL GET TIM
CLC STATUS(L'STATUS),=CL2'QC' IF NO MESSAGES

BE GOBACK RETURN TO IMS

* ELSE NEXT INSTR
CLC STATUS(L'STATUS),=CL2"' IF BLANK OK
BNE ~ ERRRTN SOME WRONG HERE

* ELSE NEXT INSTR

*
XR R6,R6 CLEAR REG
BAL R6,INITAPI GO INSERT SEGMENT
B GUCALL SET RETURN ADDRESS

*

*

INITAPI DS OH

* Set up for INITAPI
MVC TCPNAME(L'TCPNAME),TIMTCPAS
MVC ASDNAME (L'ASDNAME) ,TIMSAS
MVC SUBTASK(L'SUBTASK),TIMSTD

* Set up for takeSOCKET
MVC NAME(L'NAME),TIMLAS

TCP Address space
Server address space
Server task id

Listener address space

Figure 81. Sample assembler IMS server (Part 1 of 6)

Chapter 8. IMS Listener samples

255

MVC TASK(L'TASK),TIMLTD Listener task id
MVC S(L'S),TIMSD Socket descriptor

XC ERRNO(L'ERRNO),ERRNO

XC RETCODE(L'RETCODE),RETCODE
* EX 0,*
AKX Ak h Kk hkhhhhhhhhhhhdhhhhhhhhhk ko hkhkhkhkhkhkhhkdhhhhdhhhhhhhhkdkx
* Issue INITAPI *
AR R AR AR AR Ak hhhhhhhhhhkk

CALL EZASOKET, (INITFUNC,MAXSOC,IDENT,SUBTASK, X

MAXSNO, ERRNO,RETCODE) , VL

L R9,RETCODE

LTR R9,R9

BNM TAKESOC

*

INITERR DC CL21'INITAPI COMMAND ERROR'

*

TAKESOC DS OH

R e o e T T T R R R R S S R L S S L L 2 L L e

* Issue takeSOCKET *

R R e e T T R T S R R S R L R St e L R L e 2 L e

CALL EZASOKET, (TAKEFUNC,S,CLIENT,ERRNO,RETCODE),VL

L R9,RETCODE
LTR R9,R9
BNM SENDTEXT
*
TAKERR DC CL16'TAKESOCKET ERROR'
*Set up to send "SERVER MSG #1"
SENDTEXT DS OH
*
MVC S(L'S),RETCODE+2
XC BUF(LENG),BUF
MVC BUF(13),=CL13'SERVER MSG #1'
*Translate to ASCII, if necessary
* CALL EZACICO4, (BUF,LENGTH),VL
""""""""""""""""""""""""""""" *kkkkkkkhhhkhk
* Send "SERVER MSG #1" *

B R R R R R R Rk R Rk kR R R R R R R R R R R R R R R R ko

CALL EZASOKET, (SENDFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE) , X

VL
L R9,RETCODE
LTR R9,R9

BNM RECVTEXT

*

SENDERR1 DC CL16'SEND ERROR' Abend on error
RECVTEXT DS ©OH

EE R

* Receive client message #2 *
kkhkkkkhkkkhkkhkkhhkkkhhkkhkkhkkhhkkhhkhhkkhhkkhhkkhhkkhkkhhkkhhkkhhkkhkkhhkkhhkhkhhkkhkhkkhkhkkhkkhkkhkkhkk**

CALL EZASOKET, (RECVFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X
VL
* Translate to EBCDIC if necessary

Figure 81. Sample assembler IMS server (Part 2 of 6)

256 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

* CALL EZACICO5, (BUF,LENGTH),VL

L R9,RETCODE
LTR R9,R9
BNM CHECKTXT

DC CL16'RECEIVE ERROR' Abend on error

*

CHECKTXT DS OH
*
CLC BUF(3),=CL3'END" Test for end of message
BNE RECVTEXT If not eom, read again
*
* Set up to send shutdown message
SENDEND DS OH
*
XC BUF(LENG),BUF
MVC BUF(13),=CL13'SERVER MSG #2'
* Translate to ASCII if necessary

* CALL EZACICO4, (BUF,LENGTH),VL
KA A A A A A A A A A A A A A AA A A Ak hhhkhhhhhhhhhhhhhdhdhdhhdhdhhdhhdhhdhhhdkdxdxx
* Send "SERVER MSG #2" to indicate shutdown *
Kook ke ke kK k T T T T Kkkokkok ko kk *
CALL EZASOKET, (SENDFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X
VL
L R9,RETCODE
LTR R9,R9

BNM SOCKCLOS

*

SENDERR2 DC CL16'SEND ERROR' Abend on error

*

SOCKCLOS DS OH

B o e e e T T e T T T T T T s T

* Close the socket *
AR A AR A A A A A A A A A A A A A A A A ARk hhhhhhhhhhhhhdhdkhhdhdhdhdhdhdhhdhdhkdxsk

CALL EZASOKET, (CLOSFUNC,S,ERRNO,RETCODE) , VL

L R9,RETCODE
LTR R9,R9
BNM TERMAPI

*

CLOSERR DC CL16'CLOSE ERROR'

*

TERMAPI DS OH

R R R R o e e e T R T T S T T T s T

* Terminate the API *
Khhhhhhhhhhhhhhhhhhhhdhhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk ke hhhhhhhhhhhkhdkx

CALL EZASOKET, (TERMFUNC),VL

*

PROCTCP DS OH Talk to TCPIP Client

* AND ALTERNATE

* SUCESSFUL MSG
XR R9,R9 CLEAR REG
LA R9,0TLEN LOAD LENGTH
STH R9,0TLTH STORE LEN THERE

Figure 81. Sample assembler IMS server (Part 3 of 6)

Chapter 8. IMS Listener samples

257

*

ERRRTN

*

*

GOBACK

Figure 81. Sample assembler IMS server (Part 4 of 6)

258

XC OTRSV(L'OTRSV),OTRSV CLEAR RESERVE DATA
MVC OTMSG(L'OTMSG),DCINMSG MOVE IN MSG
MVC OTLITDT(L'OTLITDT),DCDATE MOVE IN DATE
MVC OTLITIME(L'OTLITIME),DCTIME MOVE IN TIME
UNPK OTDATE,CDATE MAKE TIME & DATE
0I OTDATE+7,X'FO' EBCDIC
UNPK OTTIME,CTIME
0I OTTIME+7,X'FO'
XR R9,R9 GET READY
L R9, INPUTMSN INPUT COUNT
CVD R9,DLBWORK INPUT COUNT
UNPK OTINPUTN,DLBWORK INPUT COUNT
0I OTINPUTN+7,X'FO' FIX SIGN
MVC OTFILL(L'OTFILL),=28X'40" FILL CHAR
MVC OTLTERM(L'OTLTERM),LTERMN ADD TERMINAL
CALL ASMTDLI, (ISRTFUNCT, (3),(7),,USER1),VL
XC IOAREAOT(L'IOAREAOT),IOAREAOT
BR R6
DS OH SOME WRONG HERE
L R13,4(R13)
RETURN (14,12),RC=8 RELOAD DL/I REGS & RETURN
ERROR
DS OH RETURN TO IMS
L R13,4(R13)
RETURN (14,12),RC=0 RELOAD DL/I REGS & RETURN
DS D
DS 3F
SPACE 1
EQU 12
EQU 15
EQU ©
EQU 1
EQU 2
EQU 3
EQU 4
EQU 5
EQU 6
EQU 7
EQU 8
EQU 9
EQU 10
EQU 11
EQU 12
EQU 13
EQU 14
EQU 15
SPACE 1

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

SAVEAREA
*
GUFUNCT
GNFUNCT
PURGFUNCT
ISRTFUNCT
BADCALL
ERROPT

*
DCINMSG
DCDATE
DCTIME
USER1
USER2
WTOR

*
INITFUNC
TAKEFUNC
SENDFUNC
RECVFUNC
CLOSFUNC
TERMFUNC
SELEFUNC
*
WORKTCPIP
APITYPE
MAXSOC
MAX
MAXSNO

*

IDENT
TCPNAME
ASDNAME
*

CLIENT
DOMAIN
NAME
TASK
RESERVED
*
SUBTASK
ERRNO
RETCODE
FLAGS
NBYTE
BUF

LENG
LENGTH
TIMEOUT
SECONDS
MILLISEC
RSNDMASK
WSNDMASK
ESNDMASK

DS
DC

DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
EQU
DS

DS
DS
DS

DS
DC
DS
DS
DS

DS
DS
DS
DC
DC
DS
EQU
DC
DS
DS
DS
DS
DS
DS

0
1

C
C

F
8F'0"

L4'GU
L4'GN

CL4'PURG'
CL4'ISRT'
CL8'BAD CALL'

F

lol

GET UNIQUE CALL
GET NEXT

PURGE CALL
INSERT CALL

BAD LIT
1=nodump O=dump

CL26"' INPUT MESSAGE SUCESSFUL '

CL6' DATE '
CL6' TIME '
CL8'USER1
CL8'USER2
CL8'WTOR

CL16"'INITAPI'

CL16'TAKESOCKET'
CL16'SEND'
CL16'RECV'
CL16'CLOSE"

CL16'TERMAPI'

CL16'SELECT'

CL27'TCPIP WORK DATA BEGINS HERE'

A
A
5
F

]
C
C

0
F
C
C
2

C
F
F
F
F
C
5

L2(2)
L2 (MAX)
0

IOOI

CL16
L8
L8

CL38
I2I
L8
L8
0B'0"

L8

IOI
I50I
L(LENG)
0

AL4 (LENG)

0
F
F

D

CL (MAX)
CL(MAX)
CL(MAX)

Figure 81. Sample assembler IMS server (Part 5 of 6)

Chapter 8. IMS Listener samples

259

RRETMASK
WRETMASK
ERETMASK
S

*

DLBWORK

IOAREAIN
TIMLEN
TIMRSV
TIMID
TIMLAS
TIMLTD
TIMSAS
TIMSTD
TIMSD

*
TIMTCPAS
TIMDT

*

IOAREAOT
OTLTH
OTRSV
OTLTERM
OTINPUTN
0TMSG
OTLITDT
OTDATE
OTLITIME
OTTIME
OTFILL
OTLEN

*

I0PCB
LTERMN

STATUS
CDATE
CTIME
INPUTMSN
MSGOUTDN
USERID

*
ALTPCB1
ALTERM1

ALSTAT1

*

ALTPCB2
ALTERMZ

ALSTAT2

*

DS
DS
EQU

DSECT
DS
DS
DS
DS
DS
DS
DS
DS

DSECT
DS
DS
DS

DSECT
DS
DS
DS

END

CL (MAX)
CL (MAX)
CL (MAX)
H

0D
D
OF
0CL56
H

H
CL8
CL8
CL8
CL8
CL8
H

CL8
H

OF
0CL119

BL2

BL2

cL8

cL8

CL25

CL6

cL8

CL6

cL8

cL28
(%-I0AREAQT)

CL8
CL2
CL2
PL4
PLA
BL4
CL8
CL8

CL8
CL2
CL2

CL8
CL2
CL2

I/0 AREA INPUT

Length of trans init msg

reserved set to zeros

LISTENER ID set to LISTANR

LISTENER addr space name

LISTENER taskid for takesocket

SERVER addr space name

SERVER TASK ID user in initapi

socket given in LISTENER used in
tasksocket

TCPIP addr space name

Data type of client

ASCII(0) or EBCDIC(1)

I/0 AREA OUTPUT

I/0 AREA

LOGICAL TERMINAL NAME
RESERVED FOR IMS
STATUS CODE

CURRENT DATE YYDDD
CURRENT TIME HHMMSST
SEQUENCE NUMBER
MESSAGE OUT DESC NAME
USER ID OF SOURCE

ALTERNATE PCB
DESTINATION NAME
RESERVED FOR IMS
STATUS CODE

ALTERNATE PCB
DESTINATION NAME
RESERVED FOR IMS
STATUS CODE

Figure 81. Sample assembler IMS server (Part 6 of 6)

260 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Sample program implicit-mode

The following is an example of an implicit-mode client server program pair. The
client program name is EZAIMSCI; you can find it in hlq.SEZAINST(EZAIMSC1).
The server program name is EZASVAS]; its IMS trancode is DLSI101. The sample
program is located in hlq.SEZAINST(EZASVAS1). When link editing the sample
program, module EZAIMSAS should be included from the SEZALOAD target
library.

Program flow

The client begins execution and obtains the host name and port number from the
startup parameters. It then issues SOCKET and CONNECT calls to establish
connectivity to the specified host and port. Upon successful completion of the
CONNECT, the client sends the TRM, which tells the Listener to schedule the
specified transaction (DLSI101). Because implicit-mode protocol requires that all
input data segments be transmitted before the server application is scheduled, the
client follows the TRM with 2 segments of application data and an end-of-message
(EOM) segment. The Listener schedules DLSI101 and places a TIM on the IMS
message queue, followed by the 2 segments of application data. Finally, the
Listener issues a GIVESOCKET call and waits for the server to take the socket.

When the requested server (EZASVASI1) begins execution, it issues a GU call to
ASMADLI. Behind the scenes, the Assist module issues its own GU and retrieves
the TIM from the IMS message queue. Using addressability information from the
TIM, it issues INITAPI and takeSOCKET calls, which establish connectivity with
the client.

Once connectivity is established, the Assist module issues a GN to the IMS
message queue, which returns the first segment of application data sent by the
client. This data is returned to the server mainline. (Thus, to the server mainline,
the first segment of application data is returned in response to its GU.) In the
sample program, the first segment of application data is the data record: THIS IS
FIRST TEXT MESSAGE SEND TO SERVER. This record is echoed back to the client by
means of an IMS ISRT call to ASMADLI. The IMS Assist module intercepts the
ISRT and issues a TCP/IP write() to echo the segment back to the client. The
server mainline then issues a GN ASMADLI (which the Assist module intercepts
and executes another GN ASMTDLI) to receive the second segment of user data.
This segment is also echoed back to the client, using an IMS ISRT call, which the
Assist module intercepts and replaces with a TCP/IP write() to the client.

After the second client data segment, the message queue contains an EOM
segment, denoting the client’s end-of-message. When the server has echoed the
second input segment to the client, it issues another GN to ASMADLI. ASMADLI
receives an end-of-message indication from the message queue and passes a QD
status code back to the server mainline.

At this point, the server mainline has completed processing that message and
issues a GU to see whether another message has arrived for that trancode. This GU
triggers the Assist module to send a final CSMOKY message to the client,
indicating successful completion. It then issues another GU to the IMS message
queue to determine whether another message for that trancode has been queued. If
so, the server program repeats itself; if not, the server issues a GOBACK and ends.

Sample implicit-mode client program (C language)

Chapter 8. IMS Listener samples 261

/*

* Include Files.

*/

/* #define RESOLVE_VIA_LOOKUP */
#pragma runopts(NOSPIE NOSTAE)
#define Tim 119

#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>

#include <socket.h>

#include <netdb.h>

#include <stdio.h>

/*
* Client Main.
*/
main(argc, argv)
int argc;
char **argv;
{

unsigned short port; /*
struct sktmsg
{
short msglen;
short msgrsv;

char msgtrn??(877?);

port client will connect to

char msgdat??(1im??);

} msgbuff;
struct datmsg
{
short datlen;
short datrsv;

char datdat??(1im??);

send receive buffer

server host name information
server address

client socket

length for send

* Check Arguments Passed. Should be hostname and port.

} datbuff;

char buf ??(1im??); /*
struct hostent xhostnm; /*
struct sockaddr_in server; /=
int s; /*
int len; /*
/*

*/

if (argc != 3)

{

printf("Invalid parameter
exit(1l);

count\n");

printf("Usage: %s program name\n",argv??(0??));

/*

Figure 82. Sample C client to drive IMS Listener (Part 1 of 5)

262 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

*/
*/
*/
*/
*/

* The host name is the first argument. Get the server address.
*/

printf("Usage: %s host name\n",argv??(1??));

hostnm = gethostbyname(argv[1]);
if (hostnm == (struct hostent =) 0)

printf("Gethostbyname failed\n");
exit(2);

}

/*

* The port is the second argument.

*/

printf("Usage: %s port name\n",argv??(2?7));

port = (unsigned short) atoi(argv[2]);
/*
* Put the server information into the server structure.
* The port must be put into network byte order.
*/
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = *((unsigned Tong *)hostnm->h_addr);
/*
* Get a stream socket.
*/
if ((s = socket(AF_INET, SOCK STREAM, 0)) < 0)
{
tcperror("Socket()");
exit(3);
1
/*
* Connect to the server.
*/
if (connect(s, (struct sockaddr *)&server, sizeof(server)) < 0)
{

tcperror("Connect()");

exit(4);
1
/*
* Put a message into the buffer.
*/

msgbuff.msgdat??(02?)="\0";

msgbuff.msgrsv = 0;

msgbuff.msglen = 20;

strncat (msgbuff.msgtrn,"*TRNREQ*",
Tim-strlen(msgbuff.msgdat)-1);

strncat (msgbuff.msgdat,"DLSI101 ",

Figure 82. Sample C client to drive IMS Listener (Part 2 of 5)

Chapter 8. IMS Listener samples 263

Tim-strlen(msgbuff.msgdat)-1);
len=20;
if (send(s, (char *)&msgbuff, Ten, 0) < 0)
{
tcperror("Send()");
exit(5);

printf("\n");
printf(msgbuff.msgdat);
printf("send one complete\n");

/*
* Put a text message into the buffer.
*
/
datbuff.datdat??(0??)="'\0";
datbuff.datlen = 46;
datbuff.datrsv = 0;
strncat(datbuff.datdat,"THIS IS FIRST TEXT MESSAGE SEND TO SERVER ",
lim-strlen(datbuff.datdat)-1);
len=46;
if (send(s, (char *)&datbuff, len, 0) < 0)
{

tcperror("Send()");
exit(6);

1

printf("\n");

printf(datbuff.datdat);

printf("\n");

printf("send for first text message complete\n");

/*
* Put a text message into the buffer.
*/

datbuff.datdat??(0?2?)="\0";
datbuff.datlen = 47;
strncat(datbuff.datdat,"THIS IS 2ND TEXT MESSAGE SENDING TO SERVER",
lim-strlen(datbuff.datdat)-1);
len=47;
if (send(s, (char *)&datbuff, Ten, 0) < 0)
{

tcperror("Send()");
exit(7);

1

printf("\n");

printf(datbuff.datdat);

printf("\n");

printf("send for 2nd test message complete\n");

Figure 82. Sample C client to drive IMS Listener (Part 3 of 5)

264 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

/*
* Put a end message into the buffer.

*/

datbuff.datdat??(0??)="\0";
datbuff.datlen = 4;
strncpy(datbuff.datdat," ",1im);
len=4;
if (send(s, (char *)&datbuff, len, 0) < 0)
{

tcperror("Send()");
exit(8);

1

printf("\n");

printf(datbuff.datdat);

printf("\n");

printf("send for end message complete\n");

/*

* The server sends back the same message. Receive it into the
* buffer.

*/

strncpy(datbuff.datdat," ",1im);

if (recv(s,(char *)&datbuff, 1im, 0) < 0)

tcperror("Recv()");
exit(9);

printf("receive one text complete\n");

printf(datbuff.datdat);

printf("\n");

/*

* The server sends back the same message. Receive it into the
% buffer.

*/

strncpy(datbuff.datdat," ",1im);

if (recv(s,(char *)&datbuff, 1im, 0) < 0)

{

tcperror("Recv()");
exit(10);

printf("receive two text complete\n");
printf(datbuff.datdat);

printf("\n");

/*

Figure 82. Sample C client to drive IMS Listener (Part 4 of 5)

Chapter 8. IMS Listener samples 265

* The server sends eof message. Receive it into the
* buffer.
*/

strncpy(datbuff.datdat,” ",1im);

if (recv(s,(char *)&datbuff, 4, 0) < 0)

{

tcperror("Recv()");

exit(11);
1
printf("receive eof complete\n");
printf("\n");
printf(datbuff.datdat);
printf("\n");
strncpy(datbuff.datdat," ",1im);
if (recv(s,(char *)&datbuff, 12, 0) < 0)
{

tcperror("Recv()");

exit(12);
!
printf("receive CSMOKY complete\n");
printf("\n");
printf(datbuff.datdat);
printf("\n");
/*
* Close the socket.
*/
close(s);
printf("Client Ended Successfully\n");
exit(0);

Figure 82. Sample C client to drive IMS Listener (Part 5 of 5)

Sample implicit-mode server program (Assembler language)

266 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

EZASVAS1

* % % 3k kX

*

GUCALL

*
*

*

GNCALL

*
*

CSECT

USING EZASVASI,BASE

SAVE (14,12)

LR BASE, 15

ST R13,SAVEAREA+4

LA R13,SAVEAREA

MVC PSBS(L'PSBS%3),0(1)

REG 1 CONTAINS PTR TO PCB ADDR LIST
REG 13 CONTAINS PTR TO DL/I SAVE AREA
REG 14 CONTAINS PTR DL/I RETURN ADDRESS
REG 15 CONTAINS PROGRAMS ENTRY POINT

L R2,0(RO,R1)
USING I0PCB,R2

L R3,4(RO,R1)
USING ALTPCBI,R3

L R4,8(RO,R1)
LA R4,0(RO,R4)

USING ALTPCB2,R4

LA R5,I0AREAIN
LA R7,I0AREAOT

DS OH

CALL

CLC STATUS(L'STATUS),=CL2'QC'

BE GOBACK
CLC STATUS(L'STATUS),=CL2'
BNE ~ ERRRTN

XR R6,R6
LA R6,GNCALL
BAL R6,ISRTCALL

DS OH

CALL

CLC STATUS(L'STATUS),=CL2'QD'

BE GUCALL
CLC STATUS(L'STATUS),=CL2'
BNE ~ ERRRTN

ENTRY POINT
ADDRESSABILITY
SAVE DL/I REGS
SAVE AREA CHAINING

NEW SAVE AREA
SAVE PCB LIST

LOAD ADDR OF I/0 PCB
ADDRESSABILITY
LOAD ADDR OF ALT PCB
ADDRESSABILITY

LOAD ADDR OF ALT PCB
REMOVE HIGH ORDER BIT

ADDRESSABILITY

POINT TO OUTPUT AREA

GET UNIQUE CALL

ASMADLI, (GUFUNCT, (2),(5)),VL

IF NO MESSAGES
RETURN TO IMS
ELSE NEXT INSTR
' IF BLANK OK
SOME WRONG HERE
ELSE NEXT INSTR

CLEAR REG
SET RETURN ADDRESS
GO INSERT SEGMENT

GET NEXT CALL

ASMADLI, (GNFUNCT, (2), (5)),VL

IF NO MORE SEGMENTS
RETURN TO IMS

' IF NO MORE SEGMENTS
SOME WRONG HERE

Figure 83. Sample assembler IMS server (Part 1 of 4)

Chapter 8. IMS Listener samples

267

XR R6,R6 CLEAR REG
LA R6,GNLOOP SET RETURN ADDRESS
BAL R6,ISRTCALL GO INSERT SEGMENT

*

GNLOOP B GNCALL

*

ISRTCALL DS OH INSERT - WRITE TO TERMINAL
* AND ALTERNATE
* SUCESSFUL MSG
XR R9,R9 CLEAR REG
LA R9,0TLEN LOAD LENGTH
STH R9,0TLTH STORE LEN THERE
XC OTRSV(L'OTRSV),0TRSV CLEAR RESERVE DATA
MVC ~ OTMSG(L'OTMSG),DCINMSG MOVE IN MSG
MVC OTLITDT(L'OTLITDT),DCDATE ! " DATE
MVC OTLITIME(L'OTLITIME),DCTIME " " TIME
UNPK OTDATE,CDATE MAKE TIME & DATE
01 OTDATE+7,X'FO' EBCDIC

UNPK OTTIME,CTIME
01 OTTIME+7,X'FO'

XR R9,R9 GET READY

L R9, INPUTMSN INPUT COUNT
CVD R9,DLBWORK INPUT COUNT
UNPK OTINPUTN,DLBWORK INPUT COUNT
01 OTINPUTN+7,X'FO' FIX SIGN

MVC OTFILL(L'OTFILL),=28X'40' FILL CHAR
MVC OTLTERM(L'OTLTERM),LTERMN ADD TERMINAL

* For LTERM USERI....
CALL ASMADLI, (ISRTFUNCT,(2),(7)),VL
* For LTERM USERZ....

XC IOAREAOT(L'IOAREAOT),IOAREAQT

BR R6
*
ERRRTN DS OH SOME WRONG HERE
*
L R13,4(R13)
RETURN (14,12),RC=8 RELOAD DL/I REGS & RETURN
* ERROR
*
GOBACK DS OH RETURN TO IMS
*
L R13,4(R13)
RETURN (14,12),RC=0 RELOAD DL/I REGS & RETURN
*
DS D
PSBS DS 3F
SPACE 1
BASE EQU 12
RC EQU 15
RO EQU ©

Figure 83. Sample assembler IMS server (Part 2 of 4)

268 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

R15

SAVEAREA
GUFUNCT
GNFUNCT
PURGFUNCT
ISRTFUNCT
BADCALL
ERROPT
DCINMSG
DCDATE
DCTIME
USER1
USER2
WTOR

*

DLBWORK

IOAREAIN

IOAREAOT
OTLTH
OTRSV
OTLTERM
OTINPUTN
0TMSG
OTLITDT
OTDATE
OTLITIME
OTTIME
OTFILL
OTLEN

*

I0PCB
LTERMN

STATUS
CDATE

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
SPACE

DS
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

DS
DS
EQU

DSECT
DS
DS
DS
DS

OOoONOOTHE WN —

1
1

5

OF

18F'0’

CLA'GU
CL4'GN '
CL4'PURG'
CL4'ISRT'
CL8'BAD CALL'
F'it

GET UNIQUE CALL
GET NEXT

PURGE CALL
INSERT CALL

BAD LIT
1=NODUMP 2=DUMP

CL26"' INPUT MESSAGE SUCESSFUL '

CL6' DATE '
CL6' TIME '
CL8'USER1
CL8'USER2
CL8'WTOR '

0D

D

OF
CL119
OF
0CL119
BL2
BL2
CL8
CL8
CL25
CL6
CL8
CL6
CL8
CL46
(*-IOAREAOQT)

CL8
CL2
CL2
PLA

I/0 AREA INPUT

I/0 AREA OUTPUT

I/0 AREA

LOGICAL TERMINAL NAME
RESERVED FOR IMS
STATUS CODE

CURRENT DATE YYDDD

Figure 83. Sample assembler IMS server (Part 3 of 4)

Chapter 8. IMS Listener samples

269

CTIME
INPUTMSN
MSGOUTDN
USERID

*
ALTPCB1
ALTERM1

ALSTAT1

*

ALTPCB2
ALTERMZ

ALSTAT2

*
*

DS PLA
DS BL4
DS CL8
DS CL8
DSECT

DS CL8
DS CL2
DS CL2
DSECT

DS CL8
DS CL2
DS CL2
END

CURRENT TIME HHMMSST
SEQUENCE NUMBER
MESSAGE OUT DESC NAME
USER ID OF SOURCE

ALTERNATE PCB
DESTINATION NAME
RESERVED FOR IMS
STATUS CODE

ALTERNATE PCB
DESTINATION NAME
RESERVED FOR IMS
STATUS CODE

Figure 83. Sample assembler IMS server (Part 4 of 4)

Sample program - IMS MPP client

Most of the discussion in this book assumes that the IMS system is the server;
however, some applications require that the server be a TCP/IP host. The
following is an example of a program in which the client is an IMS MPP, and the
server is a TCP/IP host.

For simplicity, we have coded both client and server to execute on an MVS host.
The client (EZAIMSC3) is initiated by a 3270-driven IMS MPP; the server
(EZASVAS3) is a TSO job which is already running when the client starts.

The samples are located in hlq.SEZAINST(EZAIMSC3) and
hlq. SEZAINST(EZASVASS3).

Program flow

A TSO Submit command is used to start the server. Once started, it executes the
TCP/IP connection sequence for an iterative server (INITAPI, SOCKET, BIND,
LISTEN, SELECT, and ACCEPT) and then waits for the client to request
connection.

Note that the BIND call returns a socket descriptor which is then used to listen for
a connection request. The ACCEPT call also returns a socket descriptor, which is
used for the application data connection. Meanwhile, the original listener socket is
available to receive additional connection requests.

The client is started by calling an IMS transaction which, in turn, executes the
TCP/IP connection sequence for a client (INITAPI, SOCKET, and CONNECT).

Upon receiving the connection request from the client, the server issues a READ
and waits for the client to WRITE the initial message. The server contains a
READ/WRITE loop which echoes client transmissions until an "END” message is
received. When this message is received, it sets a "last record” switch, echoes the
end message to the client, and terminates.

270 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

Note that in order for the server to terminate, it must close two sockets: one -- the
socket on which it listens for connection requests; the other -- the socket on which
the data transfers took place.

The client and server both include Write To Operator macros, which allow you to

monitor progress through the application logic flow. At the end of this appendix
you will find a sample of the WTO output from the client and the server.

Sample client program for non-IMS server

Chapter 8. IMS Listener samples 271

EZAIMSC3 CSECT
EZAIMSC3 AMODE
EZAIMSC3 RMODE

GBLB
&TRACE SETB

GBLB
&SUBTR SETB

MODULE NAME:

Copyright:

Status:

INPUT: None

L O R T R S I I . R N N N S S N

Flag Reason

*

* $Q1= D316.15 CSVIR5 020604 BKELSEY : Support 64K sockets
*
K o o o S S e -
S0C0000 DS OH
USING *,R15 Tell assembler to use reg 15
B S0C00100 Branch to startup address
DC CL16"'IMSTCPCLEYECATCH'
BUFLEN EQU 1000 Set length of I/0 buffers
RABASE DC A(S0CO000+4096)

ANY

ANY

&TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION
1 1=TRACE ON 0=TRACE OFF

&SUBTR ASSEMBLER VARIABLE TO CONTROL SUBTRACE

0 1=SUBTRACE ON 0=SUBTRACE OFF

EZAIMSC3

Licensed Materials - Property of IBM
"Restricted Materials of IBM"

5694-A01

(C) Copyright IBM Corp. 2003

US Government Users Restricted Rights -

Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

CSVIR5

MODULE FUNCTION: Sample program of an IMS MPP TCP client. This

module connects with a TCP/IP server and
exchanges msgs with it. The number of msgs
exchanged is determined by a constant and

the Tength of the messages is also determined

by a constant.

Note: If an error occurs during processing, this
module will send an error message to the system
console and then AbendsOcl.

LANGUAGE: Assembler

ATTRIBUTES: Reusable

Change History:

Release Date Origin Description

Figure 84. Sample of IMS program as a client (Part 1 of 10)

272 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

L I T R D R R I R R

* ok F

* Control Variables for this program *
K o e e e e *
SOCMSGN DC F'005' Number of messages to be exchanged
SOCMSGL DC F'200' Length of messages to be exchanged
SERVPORT DC H'5000' Port Address of Server
SOCTASK DC F'o' Task number for this client
SERVLEN DC H'O' Length of server's name
SERVNAME DC CL24" ! Internet name of server
SENDINT DC CL8'00000010" Delay interval between sends
K o *
* Constants used for call functions *
K o *
INITAPI DC CL16'INITAPI'
GETHSTID DC CL16'GETHOSTID'
SOCKET DC CL16'SOCKET'
GHBN DC CL16'GETHOSTBYNAME'
CONNECT DC CL16'CONNECT'
READ DC CL16'READ'
WRITE DC CL16'WRITE'
CLOSE DC CL16'CLOSE'
TERMAPI DC CL16'TERMAPI'
K *
* Beginning of program execution statements *
K o e e e *
S0C00100 DS OH Beginning of program
STM R14,R12,12(R13) Save callers registers
LR R3,R15 Move base reg to R3
L R4 ,R4BASE Add R4 as second base reg
DROP R15 Tell assembler to drop R15 as base
USING SOC0000,R3,R4 Tell assembler to use R3 and R4 as X
base registers
LR R7,R13 Save address of previous save area
LA R12,S0CSTG Move address of program stg to R12
LA R13,SOCSTGL Move Tength of program stge to R13
SR R14,R14 Clear R14
SR R15,R15 Clear R15
MVCL R12,R14 Clear program storage
LA R13,S0CSTG Move address of program stg to R13
USING SOCSTG,R13 Tell Assembler about storage
ST R7,SOCSAVEL Save address of lower save area
ST R13,8(R7) Complete save area chain
S0C00200 DS OH

*

* Build message for console

*
MVC
L
CvD
UNPK
01
MvVC
LA
MvVC
MvC

MSG1D,MSG1C

RO, SOCTASK

RO, DWORK
MSGTD,DWORK+5(3)
MSGTD+4,X'FO"
MSG2D,MSG2CS
R6,MSG
MSGLEN,=AL2 (MSGTL)
WTOLIST,WTOPROT

Initialize first part of message
Get task number

Convert task number to decimal
Convert decimal to character
Clear sign

Move 'Started' to message

Put text address in R6

Put length of text in msg hdr.
Move prototype WTO to list form

Figure 84. Sample of IMS program as a client (Part 2 of 10)

Chapter 8. IMS Listener samples

273

WTO

Issue

MvC
MvC
MvVC
MvC
MvC
MvC

CALL

L

C

BL
ATF

TRACE ENTRY

LA
MvVC
WTO

.TRACEO1 ANOP

*
*
*

Issue

MvVC

CALL

AIF
TRACE ENTRY
LA
MvC
WTO

.TRACEO8 ANOP

*
*
*

Issue

MvC
MvC
MvC
XC

CALL

TEXT=(R6), Write message to operator
MF=(E,WTOLIST)

INITAPI Call to connect to interface

SOCTASKC(3),=CL3'SOC' Build Task Identifier
SOCTASKC+3(5) ,MSGTD

MSG2D,MSG2C1 Move 'INITAPI'to message
MAXSOC,=AL2(50) Initialize MAXSOC field
ASTCPNAM,=CL8'TCPV3 ' Initialize TCP Name
ASCLNAME,=CL8'TCPCLINT' 1Initialize AS Name

EZASOKET,
(INITAPI,MAXSOC,ASIDENT,SOCTASKC,HISOC,ERRNO,
RETCODE),

VL Specify variable parameter Tist
R6,RETCODE Check for sucessful call

R6,=F'0"' Is it Tess than zero

SOCERR Yes, go display error and terminat

(NOT &TRACE).TRACEO1
FOR INITAPI TRACE TYPE =1

R6,MSG Put text address in R6
MSGLEN,=AL2 (MSGTL) Put length of text in msg hdr.
TEXT=(R6), Write message to operator

MF=(E,WTOLIST)

GETHOSTID Call to obtain internet address of host

MSG2D,MSG2C8 Move 'GTHSTID'to message
EZASOKET, Issue GETHOSTID Call
(GETHSTID,SERVIADD),

VL Specify Variable parameter list

(NOT &TRACE).TRACEO8
FOR GETHOSTID TRACE TYPE = 8

R6,MSG Put text address in R6
MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
TEXT=(R6), Write message to operator

MF=(E,WTOLIST)

SOCKET Call to obtain a socket descriptor

MSG2D,MSG2C2 Move 'SOCKET' to message
AF,=F'2' Address Family = Internet
SOCTYPE,=F'1" Type = Stream Sockets
PROTO,PROTO Clear protocol field

EZASOKET, Issue SOCKET Call
(SOCKET,AF,SOCTYPE,PROTO, ERRNO,RETCODE) ,

VL Specify variable parameter list

Figure 84. Sample of IMS program as a client (Part 3 of 10)

274

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

> > >

L R6,RETCODE Check for sucessful call
C R6,=F'0"' Is it Tess than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACEQ2
* TRACE ENTRY FOR SOCKET TRACE TYPE = 2

LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACEG2 ANOP

* Get socket descriptor number
L R6,RETCODE Descriptor number returned
STH R6,SOCDESC Save it

* Issue CONNECT Command to Connect to Server

’ MVC SSOCAF,=H'2' Set AF=INET

MVC SSOCPORT,SERVPORT Move Port Number
MVC SSOCINET,SERVIADD Move Internet Address of Server

MVC MSG2D,MSG2C4 Move 'CONNECT' to message
*
CALL EZASOKET, Issue CONNECT Call X
(CONNECT, SOCDESC,SERVSOC, ERRNO,RETCODE) , X
VL Specify variable parameter Tist
*
L R6,RETCODE Check for sucessful call
C R6,=F'0"' Is it less than zero
BL SOCERR Yes, go display error and terminat

AIF (NOT &TRACE).TRACE04
TRACE ENTRY FOR CONNECT TRACE TYPE = 4

*

LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACEO4 ANOP

Send initial message to server

MVC BUFFER(L'MSG1),MSG1 Move Message to Buffer

LA R6,L'MSG1 Get length of message
ST R6,DATALEN Put length in data field
MVC MSG2D,MSG2C5 Move 'WRITE' to message
*
CALL EZASOKET, Issue WRITE Call X
(WRITE,SOCDESC,DATALEN,BUFFER, ERRNO,RETCODE) , X
VL
*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it Tess than zero
BL SOCERR Yes, go display error and terminat

AIF (NOT &TRACE).TRACE®5
* TRACE ENTRY FOR WRITE TRACE TYPE =5
MVC MSGLEN,=AL2 (MSGTL+18) Put length of text in msg hdr.

Figure 84. Sample of IMS program as a client (Part 4 of 10)

Chapter 8. IMS Listener samples

275

MVC MSG3D,ERR3C ' RETCODE= '

MVI ~ MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal

UNPK MSG4D,DWORK+4(4) Unpack it

0I MSG4D+6,X'FO' Correct the sign

LA R6,MSG Put text address in R6

WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACEO5 ANOP

*

* Read response to initial message
*
MVC MSG2D,MSG2C6 Move 'READ' to message
LA R6,L'BUFFER Get Tength of buffer
ST R6,DATALEN Put length in data field
*
CALL EZASOKET, Issue READ Call X
(READ,SOCDESC,DATALEN,BUFFER, ERRNO,RETCODE) , X
VL Specify variable parameter Tist
*
L R6,RETCODE Check for sucessful call
C R6,=F'0"' Is it Tess than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE06
* TRACE ENTRY FOR READ TRACE TYPE = 6
MVC MSGLEN,=AL2(MSGTL+18) Put Tength of text in msg hdr.
MVC MSG3D,ERR3C ' RETCODE= '
MVI MSG3S,C'+' Move sign
L R6,RETCODE Get return code value
CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4(4) Unpack it
0I MSG4D+6,X'FO' Correct the sign
LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator X
MF=(E,WTOLIST)
.TRACEG6 ANOP
*
* Send second message to server
*
MVC BUFFER(L'MSG2),MSG2 Move Message to Buffer
LA R6,L"'MSG2 Get length of message
ST R6,DATALEN Put length in data field
MVC MSG2D,MSG2C5 Move 'WRITE' to message
*
CALL EZASOKET, Issue WRITE Call X
(WRITE,SOCDESC,DATALEN,BUFFER, ERRNO,RETCODE) , X
VL
*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it Tess than zero
BL SOCERR Yes, go display error and terminat

AIF (NOT &TRACE).TRACE15
= TRACE ENTRY FOR WRITE TRACE TYPE = 5
MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.

Figure 84. Sample of IMS program as a client (Part 5 of 10)

276 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

MVC MSG3D,ERR3C ' RETCODE= '

MVI ~ MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4(4) Unpack it

0I MSG4D+6,X'FO' Correct the sign

LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator

MF=(E,WTOLIST)
.TRACE15 ANOP

L R6,RETCODE Check for sucessful call
C R6,=F'0"' Is it less than zero
BL SOCERR Yes, go display error and terminat

Read response to second message

MVC MSG2D,MSG2C6 Move 'READ' to message
*
CALL EZASOKET, Issue READ Call
(READ, SOCDESC, SOCMSGL ,BUFFER, ERRNO,RETCODE) ,
VL Specify variable parameter list
*
L R6,RETCODE Check for sucessful call
C R6,=F'0"' Is it less than zero
BL SOCERR Yes, go display error and terminat

AIF (NOT &TRACE).TRACE16
TRACE ENTRY FOR READ TRACE TYPE = 6
MVC MSGLEN,=AL2(MSGTL+18) Put Tength of text in msg hdr.

*

MVC MSG3D,ERR3C ' RETCODE= '

MVI ~ MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4 (4) Unpack it

01 MSG4D+6,X'FO' Correct the sign

LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator

MF=(E,WTOLIST)
.TRACE16 ANOP

*
Send End message to server

MVC BUFFER(L'ENDMSG),ENDMSG Move end message to buffer

LA R6,L"'ENDMSG Get Tength of message
ST R6,SOCMSGL Put length in Tength field
MVC MSG2D,MSG2C5 Move 'WRITE' to message
*
CALL EZASOKET, Issue WRITE Call
(WRITE,SOCDESC,SOCMSGL,BUFFER, ERRNO,RETCODE) ,
VL
*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it Tess than zero
BL SOCERR Yes, go display error and terminat

AIF (NOT &TRACE).TRACE25

Figure 84. Sample of IMS program as a client (Part 6 of 10)

>

Chapter 8. IMS Listener samples

277

= TRACE ENTRY FOR WRITE TRACE TYPE = 5

MVC MSGLEN,=AL2 (MSGTL+18) Put length of text in msg hdr.

MVC MSG3D,ERR3C ' RETCODE= '

MVI ~ MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4(4) Unpack it

0I MSG4D+6,X'FO' Correct the sign

LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator

MF=(E,WTOLIST)

.TRACE25 ANOP

*
*
*

Read response to end message

MVC MSG2D,MSG2C6 Move 'READ' to message
CALL EZASOKET, Issue READ Call
(READ, SOCDESC,SOCMSGL ,BUFFER, ERRNO,RETCODE) ,
VL Specify variable parameter Tist
L R6,RETCODE Check for sucessful call
C R6,=F'0"' Is it Tess than zero
BL SOCERR Yes, go display error and terminat

AIF (NOT &TRACE).TRACE26

* TRACE ENTRY FOR READ TRACE TYPE = 6

MVC ~ MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.

MVC MSG3D,ERR3C ' RETCODE= '

MVI MSG3S,C'+' Move sign

L R6,RETCODE Get return code value

CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4(4) Unpack it

0I MSG4D+6,X'FO' Correct the sign

LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator

MF=(E,WTOLIST)

.TRACE26 ANOP

*
*
*

Close socket

MVC MSG2D,MSG2C7 Move 'CLOSE' to message

CALL EZASOKET, Issue CLOSE Call
(CLOSE,SOCDESC,ERRNO,RETCODE) ,
VL Specify variable parameter Tist

L R6,RETCODE Check for sucessful call

C R6,=F'0' Is it Tess than zero

BL SOCERR Yes, go display error and terminat

AIF (NOT &TRACE).TRACE®7

* TRACE ENTRY FOR CLOSE TRACE TYPE = 7

LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator

MF=(E,WTOLIST)

Figure 84. Sample of IMS program as a client (Part 7 of 10)

278

z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

><

.TRACEO7

*
*
*

SOCERR

ABEND

WTOPROT

WTOPROTL
MSG1C
MSG2CS
MSG2CE
ERR3C
ERR5C
MSG2C1
MSG2C2

ANOP

Terminate Connection to API

CALL

Issue

MVC
LA

MvVC
WTO

EZASOKET,
(TERMAPI) ,
VL

Issue TERMAPI Call

Specify variable parameter list

console message for task termination

MSG2D,MSG2CE
R6,MSG

MSGLEN,=AL2 (MSGTL)
TEXT=(R6),
MF=(E,WTOLIST)

Return to Caller

L
LM
BR

Write

DS
MVC
MvVC
MVC
MvVC
MVI
MvVC
L
CvD
UNPK
0I

L
CvD
UNPK
01
LA
MvVC
WTO

DS
DC
WTO

EQU
DC
DC
DC
DC
DC
DC
DC

R13,SOCSAVEL
R14,R12,12(R13)
R14

Move 'Ended' to message

Put text address in R6

Put Tength of text in msg hdr.
Write message to operator

error message to operator and ABENDSOC1

OH

ERR1D,MSG1D
ERRTD,MSGTD
ERR2D,MSG2D
ERR3D, ERR3C
ERR3S,C'-"
ERR5D, ERR5C
R6,RETCODE

R6, DWORK

ERR4D, DWORK+4 (4)
ERR4D+6,X ' FO"
R6, ERRNO

R6, DWORK

ERR6D, DWORK+4 (4)
ERR6D+6,X'FO"
R6,ERR
ERRLEN, =AL2 (ERRTL)
TEXT=(R6),
MF=(E,WTOLIST)
OH

H'O'

TEXT=,

MF=L

*-WTOPROT

Write error message to operator
"IMSTCPCL, TASK #'

Move task number to message
Call Type

' RETCODE= '

Move sign which is always minus
' ERRNO= '

Get return code value

Convert it to decimal

Unpack it

Correct the sign

Get errno value

Convert it to decimal

Unpack it

Correct the sign

Put text address in R6

Put Tength of text in msg hdr.
Write message to operator

Force ABEND
List form of WTO Macro

Length of WTO Prototype

CL17"IMSTCPCL, TASK # '

CL8' STARTED'
CL8' ENDED
CL10" RETCODE= '
CL8' ERRNO= '
CL8' INITAPI'
CL8' SOCKET

Figure 84. Sample of IMS program as a client (Part 8 of 10)

Chapter 8. IMS Listener samples

279

MSG2C4
MSG2C5
MSG2C6
MSG2C7
MSG2C8
MSG2C35
MSG1
MSG2
ENDMSG

SOCSTG
SOCSAVE
SOCSAVE1
SOCSAVEL
SOCSAVEH
SOCSAV14
SOCSAV15
SOCSAVO
SOCSAV1
SOCSAv2
SOCSAV3
SOCSAV4
SOCSAV5
SOCSAV6
SOCSAV7
SOCSAV8
SOCSAV9
SOCSAV10
SOCSAV11
SOCSAV12
SOCSAV13
MAXSOC

SOCTASKC
SOCDESC
HISOC

AF
SOCTYPE
NS
SERVAL
SERVSOC
SSOCAF
SSOCPORT
SSOCINET

MSG
MSGLEN
MSG1D
MSGTD
MSG2D
MSGE
MSGTL
MSG3D

DC
DC
DC
DC
DC
DC
DC
DC
DS

DS
DS
DS
EQU
EQU
DS

CL8' CONNECT'

CL8" WRITE
CL8' READ
CL8"' CLOSE

CL8' GTHSTID'

CL8" SYNC

CL16'CLIENT MESSAGE 1' First msg to server
CL16'CLIENT MESSAGE 2' 2nd msg to server

0CL48
CL3"END'
CLas" !
0D

OF

OF

-n

e e e e e e e e e e e e e e M M M M |

L8

IOI
F
H
CL17
CL5
CL8
*
MSGE-MSG1D
CL10

C
H

F

F

F

F
12F
oF
H

H

F

D

0

End Message for Server
End indicator for SRV1
Pad with blanks

PROGRAM STORAGE

Save Area

Word for high-level languages

Address of previous save area

Address of next save area

Reg 14

Reg 15

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg 10

Reg 11

Reg 12

Reg 13

Maximum number of sockets for this
application

Character task identifier

Socket Descriptor Number

Highest socket descriptor available

Address family for socket call

Type of socket

New socket number for socket call

Alias array for server

Socket Address of Server

Address Family of Server = 2

Port number for Server

Internet address for Server

Reserved

Message area

Length of message

"IMSTCPCL, TASK #'

Task Number

Last part of message

End of message

Length of message text

' RETCODE = '

OOoONOUT, WN = O

Figure 84. Sample of IMS program as a client (Part 9 of 10)

280 z/0S V1R7.0 Comm Svr: IP IMS Sockets Guide

MSG3S
MSG4D
ERR
ERRLEN
ERRID
ERRTD
ERR2D
ERR3D
ERR3S
ERR4D
ERR5D
ERR6D
ERRE
ERRTL
BUFFER
DATALEN
DWORK
RECNO
ERRNO
RETCODE
PROTO
ASIDENT
ASTCPNAM
SERVIADD
ASCLNAME
WTOLIST
SOCSTGE
SOCSTGL

RO
R1
R2

R13
R14
R15
GWABAR

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
EQU
EQU
LTORG
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

c

cL7

OF

H

CL17

CL5

cL8

CL10

c

cL7

cL8

cL7

*
ERRE-ERR1D
CL (BUFLEN)
F

D

PL4

F

F

F

OF

CL8

F

CL8
CL(WTOPROTL)

*

SOCSTGE-SOCSTG

OCOoONOOTREWN —O

Sign which is always -
Return code

Error message area
Length of message
"IMSTCPCL, TASK #'
Task Number

Last part of message

' RETCODE = '

Sign which is always -
Return code

" ERRNO ='

Error number

End of message

Length of message text
Socket I1/0 Buffer
Length of buffer data
DoubTe word work area
Record Number

Error number returned from call

Return code from call

Protocol field for socket

Address space identifier for initapi
Name of TCP/IP Address Space
Internet address for Server

Our name as known to TCP/IP

List form of WTO Macro
End of Program Storage

Length of Program Storage

Figure 84. Sample of IMS program as a client (Part 10 of 10)

Sample server program for IMS MPP client

Chapter 8. IMS Listener samples

28